Measure and Integration 2007-solutions extra exercises Chapter 13

1. (Extra exercise 1) Let (X, \mathcal{A}) and (Y, \mathcal{B}) be measure space, and let $(X \times Y, \mathcal{A} \otimes \mathcal{B})$ be the corresponding product measurable space, where $\mathcal{A} \otimes \mathcal{B}=\sigma(\mathcal{A} \times \mathcal{B})$.
(a) Show that for all $E \in \mathcal{A} \otimes \mathcal{B}$, and for all $x_{0} \in X$ and all $y_{0} \in Y$, one has $E_{x_{0}}=\left\{y \in Y:\left(x_{0}, y\right) \in E\right\} \in \mathcal{B}$ and $E_{y_{0}}=\left\{x \in X:\left(x, y_{0}\right) \in E\right\} \in \mathcal{A}$.
(b) Let $f: X \times Y \rightarrow \overline{\mathbb{R}}$ be $\mathcal{A} \otimes \mathcal{B} / \mathcal{B}(\overline{\mathbb{R}})$ measurable. Show that for all $x_{0} \in X$ and all $y_{0} \in Y$, the functions $f_{x_{0}}: Y \rightarrow \overline{\mathbb{R}}$ and $f_{y_{0}}: X \rightarrow \overline{\mathbb{R}}$ given by $f_{x_{0}}(y)=f\left(x_{0}, y\right)$ and $f_{y_{0}}(x)=f\left(x, y_{0}\right)$ are $\mathcal{A} / \mathcal{B}(\overline{\mathbb{R}})$ respectively $\mathcal{B} / \mathcal{B}(\overline{\mathbb{R}})$ measurable.

Proof (a): Let

$$
\mathcal{C}=\left\{E \in \mathcal{A} \otimes \mathcal{B}: E_{x_{0}} \in \mathcal{B}, E_{y_{0}} \in \mathcal{A} \text { for all } x_{0} \in X, y_{0} \in Y\right\} .
$$

To prove part (a), we need to show that \mathcal{C} is a σ-algebra containing $\mathcal{A} \times \mathcal{B}$: $-\emptyset \in \mathcal{C}$ since $\emptyset_{x_{0}}=\emptyset \in \mathcal{B}$ and $\emptyset_{y_{0}}=\emptyset \in \mathcal{A}$.

- Let $E \in \mathcal{C}$, then $\left(E^{c}\right)_{x_{0}}=\left(E_{x_{0}}\right)^{c} \in \mathcal{B}$ and $\left(E^{c}\right)_{y_{0}}=\left(E_{y_{0}}\right)^{c} \in \mathcal{A}$, hence $E^{c} \in \mathcal{C}$.
- Let $E_{1}, E_{2}, \ldots \in \mathcal{C}$, then $\left(\cup_{n} E_{n}\right)_{x_{0}}=\cup_{n}\left(E_{x_{0}}\right) \in \mathcal{B}$ and $\left(\cup_{n} E_{n}\right)_{y_{0}}=\cup_{n}\left(E_{y_{0}}\right) \in \mathcal{A}$. Thus, $\cup_{n} E_{n} \in \mathcal{C}$. The above show that \mathcal{C} is a σ-algebra. Now let $A \times B \in \mathcal{A} \times \mathcal{B}$, then

$$
(A \times B)_{x_{0}}= \begin{cases}B & x_{0} \in A \\ \emptyset & x_{0} \notin A\end{cases}
$$

so that $(A \times B)_{x_{0}} \in \mathcal{B}$. Similarly,

$$
(A \times B)_{y_{0}}= \begin{cases}A & y_{0} \in B \\ \emptyset & y_{0} \notin B\end{cases}
$$

so that $(A \times B)_{y_{0}} \in \mathcal{A}$. Thus $\mathcal{A} \times \mathcal{B} \subset \mathcal{C} \subset \mathcal{A} \otimes \mathcal{B}$ which implies that $\mathcal{A} \otimes \mathcal{B}=\mathcal{C}$. Hence, $E_{x_{0}} \in \mathcal{B}, E_{y_{0}} \in \mathcal{A}$ for all $E \in \mathcal{A} \otimes \mathcal{B}$ and all $x_{0} \in X, y_{0} \in Y$.

Alternatively, notice that $\mathbf{1}_{E_{x_{0}}}(y)=\mathbf{1}_{E}\left(x_{0}, y\right)$ and $\mathbf{1}_{E_{y_{0}}}(x)=\mathbf{1}_{E}\left(x, y_{0}\right)$. By theorem 13.5, the functions $y \rightarrow \mathbf{1}_{E}\left(x_{0}, y\right)=\mathbf{1}_{E_{x_{0}}}(y)$ and $x \rightarrow \mathbf{1}_{E}\left(x, y_{0}\right)=\mathbf{1}_{E_{y_{0}}}(x)$ are measurable, hence $E_{x_{0}} \in \mathcal{B}, E_{y_{0}} \in \mathcal{A}$ (see Example 8.5(i) on p. 59).

Proof (b): Let $B \in \mathcal{B}(\overline{\mathbb{R}})$, then $f^{-1}(B) \in \mathcal{A} \otimes \mathcal{B}$. By part (a) we have

$$
\begin{aligned}
f_{x_{0}}^{-1}(B) & =\left\{y \in Y: f_{x_{0}}(y)=f\left(x_{0}, y\right) \in B\right\} \\
& =\left\{y \in Y:\left(x_{0}, y\right) \in f^{-1}(B)\right\} \\
& =\left\{y \in Y: y \in\left(f^{-1}(B)\right)_{x_{0}}\right. \\
& =\left(f^{-1}(B)\right)_{x_{0}} \in \mathcal{B} .
\end{aligned}
$$

Similarly, $f_{y_{0}}^{-1}(B)=\left(f^{-1}(B)\right)_{y_{0}} \in \mathcal{A}$.
2. (Extra exercise 2) Suppose (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are σ-finite measure spaces. Let $f: X \rightarrow[0, \infty), g: Y \rightarrow[0, \infty)$ be $\mathcal{A} / \mathcal{B}(\mathbb{R})$ respectively $\mathcal{B} / \mathcal{B}(\mathbb{R})$ measurable functions. Define $h: X \times Y \rightarrow[0, \infty)$ by $h(x, y)=f(x) g(y)$. Show that h is $\mathcal{A} \otimes \mathcal{B} / \mathcal{B}(\mathbb{R})$ measurable.

Proof. Define $\bar{f}: X \times Y \rightarrow[0, \infty)$ by $\bar{f}(x, y)=f(x)$ and $\bar{g}: X \times Y \rightarrow[0, \infty)$ by $\bar{g}(x, y)=g(y)$. Then \bar{f} and \bar{g} are $\mathcal{A} \otimes \mathcal{B} / \mathcal{B}(\mathbb{R})$ measurable since for any $B \in \mathcal{B}(\mathbb{R})$, we have $\bar{f}^{-1}(B)=f^{-1}(B) \times Y \in \mathcal{A} \otimes \mathcal{B}$ and $\bar{g}^{-1}(B)=X \times g^{-1}(B) \in \mathcal{A} \otimes \mathcal{B}$. Now, $h(x, y)=f(x) g(y)=\bar{f}(x, y) \bar{g}(x, y)$ is the product of two $\mathcal{A} \otimes \mathcal{B} / \mathcal{B}(\mathbb{R})$ measurable functions, hence h is $\mathcal{A} \otimes \mathcal{B} / \mathcal{B}(\mathbb{R})$ measurable.

