Mathematisch Instituut

3584 CD Utrecht

Measure and Integration 2006-Selected Solutions 13

1. (Exercise 13.6, p.131)

- (i) Prove that $\int_{(0,\infty)} e^{-tx} d\lambda(t) = \frac{1}{x}$ for all x > 0.
- (ii) Use (i) and Fubini's Theorem to show that

$$\lim_{n \to \infty} \int_{(0,n)} \frac{\sin x}{x} d\lambda(x) = \frac{\pi}{2}.$$

Proof(i): Since $e^{-tx} > 0$ for all t and x, hence, for each fixed x > 0 the sequence $e^{-tx}\mathbf{1}_{(0,n)}(t) \nearrow e^{-tx}\mathbf{1}_{(0,\infty)}$. Furthermore, for each n, the function $t \to e^{-tx}$ is Riemann integrable on [0,n]. Thus, by Beppo-Levi, and Theorem 11.8(i),

$$\int_{(0,\infty)} e^{-tx} d\lambda(t) = \lim_{n \to \infty} \int_{(0,n)} e^{-tx} d\lambda(t)$$

$$= \lim_{n \to \infty} \int_{[0,n]} e^{-tx} d\lambda(t)$$

$$= \lim_{n \to \infty} \int_0^n e^{-tx} dt$$

$$= \lim_{n \to \infty} \frac{-1}{x} e^{-tx} \Big|_0^n = \frac{1}{x}.$$

Proof(ii): Note first that the function $\frac{\sin x}{x}$ is **not** Lebesgue integrable on $(0, \infty)$ (see Remark 11.11 on p.97), so we have to be careful in the application of Fubini's Theorem.

Let $I = \lim_{n \to \infty} \int_{(0,n)} \frac{\sin x}{x} d\lambda(x)$, then by part (i),

$$I = \lim_{n \to \infty} \int_{(0,n)} \lim_{k \to \infty} \int_{(0,k)} e^{-tx} \sin x d\lambda(t) d\lambda(x).$$

Since $|\int_{(0,k)} e^{-tx} \sin x \, d\lambda(t)| \leq |\frac{\sin x}{x}|$ which is Riemann and Lebesgue integrable on [0,n], hence by Lebesgue Dominated Convergence Therem,

$$I = \lim_{n \to \infty} \lim_{k \to \infty} \int_{(0,n)} \int_{(0,k)} e^{-tx} \sin x \, d\lambda(t) \, d\lambda(x).$$

By Fubini's Theorem, and integration by parts (after replacing the Lebesgue integral by the Riemann integral), we get

$$I = \lim_{n \to \infty} \lim_{k \to \infty} \int_{(0,k)} \int_{(0,n)} e^{-tx} \sin x \, d\lambda(x) \, d\lambda(t)$$
$$= \lim_{n \to \infty} \lim_{k \to \infty} \int_{(0,k)} \frac{1}{t^2 + 1} \left(1 - e^{-nt} (\cos n + t \sin n) \right) d\lambda(t).$$

Now,

$$|\mathbf{1}_{(0,k)}\frac{1}{t^2+1}\left(1-e^{-nt}(\cos n+t\sin n)\right)| \le \frac{2}{t^2+1} + \frac{te^{-nt}}{t^2+1} \in \mathcal{L}^1((0,\infty)),$$

Thus by Lebesgue Dominated Convergence Therem,

$$I = \lim_{n \to \infty} \int_{(0,\infty)} \frac{1}{t^2 + 1} \left(1 - e^{-nt} (\cos n + t \sin n) \right) d\lambda(t).$$

Finally, on $(0, \infty)$,

$$\left|\frac{1}{t^2+1}\left(1-e^{-nt}(\cos n+t\sin n)\right)\right| \le \frac{2}{t^2+1} + \frac{te^{-t}}{t^2+1},$$

hence again by Lebesgue Dominated Convergence Therem, we get

$$I = \int_{(0,\infty)} \lim_{n \to \infty} \frac{1}{t^2 + 1} \left(1 - e^{-nt} (\cos n + t \sin n) \right) d\lambda(t)$$

$$= \int_{(0,\infty)} \frac{1}{t^2 + 1} d\lambda(t)$$

$$= \arctan t \Big|_0^\infty = \frac{\pi}{2}.$$

- 2. (**Exercise 13.9, p.131**) Let $u : \mathbb{R} \to [0, \infty)$ be a Borel measurable function (there is a misprint in the book in the definition of u). Denote by $S[u] = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le u(x)\}$ and $\Gamma[u] = \{(x, u(x)) : x \in \mathbb{R}\}.$
 - (i) Show that $S[u] \in \mathcal{B}(\mathbb{R}^2)$.
 - (ii) Is $\lambda^2(S[u]) = \int u \, d\lambda$?
 - (iii) Show that $\Gamma[u] \in \mathcal{B}(\mathbb{R}^2)$ and that $\lambda^2(\Gamma[u]) = 0$.

Proof(i): Define $W: \mathbb{R}^2 \to \mathbb{R}^2$ by W(x,y) = (u(x),y). By Theorem 13.10(ii), W is $\mathcal{B}(\mathbb{R}^2)/\mathcal{B}(\mathbb{R}^2)$ measurable (or simply notice that $W^{-1}([a,b)\times[c,d))=u^{-1}([a,b))\times[c,d)\in\mathcal{B}(\mathbb{R}^2)$). Let $U:\mathbb{R}^2\to\mathbb{R}$ be given by U(x,y)=x-y, then U is $\mathcal{B}(\mathbb{R}^2)/\mathcal{B}(\mathbb{R})$ measurable, and hence the composition $U\circ W(x,y)=U(u(x),y)=u(x)-y$ is $\mathcal{B}(\mathbb{R}^2)/\mathcal{B}(\mathbb{R})$ measurable. Finally,

$$S[u] = (\mathbb{R} \times [0, \infty)) \cap (U \circ W)^{-1}[0, \infty) \in \mathcal{B}(\mathbb{R}^2).$$

Proof(ii): The answer is yes. To see that, notice that for each fixed $x \in \mathbb{R}$, one has

$$\mathbf{1}_{S[u]}(x,y) = 1 \iff y \in [0, u(x)] \iff \mathbf{1}_{[0,u(x)]}(y) = 1.$$

Thus, by Tonelli's Theorem (or Theorem 13.5), we have

$$\lambda^{2}(S[u]) = \int_{\mathbb{R}^{2}} \mathbf{1}_{S[u]}(x, y) d\lambda^{2}(x, y)$$

$$= \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \mathbf{1}_{S[u]}(x, y) d\lambda(y) d\lambda(x)$$

$$= \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \mathbf{1}_{[0, u(x)]}(y) d\lambda(y) d\lambda(x)$$

$$= \int_{\mathbb{R}^{2}} \lambda([0, u(x)]) d\lambda(x)$$

$$= \int_{\mathbb{R}^{2}} u(x) d\lambda(x).$$

Proof(iii): We use the same notation as in part (i).

$$\Gamma[u] = (U \circ W)^{-1}(\{0\}) \in \mathcal{B}(\mathbb{R}^2).$$

Notice that for each fixed x,

$$\mathbf{1}_{\Gamma[u]}(x,y) = 1 \iff y = u(x) \iff \mathbf{1}_{\{u(x)\}}(y) = 1.$$

Thus.

$$\lambda^{2}(S[u]) = \int_{\mathbb{R}^{2}} \mathbf{1}_{\Gamma[u]}(x, y) d\lambda^{2}(x, y)$$

$$= \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \mathbf{1}_{\Gamma[u]}(x, y) d\lambda(y) d\lambda(x)$$

$$= \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \mathbf{1}_{\{u(x)\}}(y) d\lambda(y) d\lambda(x)$$

$$= \int_{\mathbb{R}^{2}} \lambda(\{u(x)\}) d\lambda(x) = 0.$$

- 3. (Exercise 13.11, p.131) Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be two σ -finite measure spaces such that $\mathcal{A} \neq \mathcal{P}(X)$, and such that \mathcal{B} contains non-empty null-sets.
 - (i) Show that the product space $(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu)$ is never complete even if (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are both complete.
 - (ii) Conclude that neither $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}), \lambda \times \lambda)$ nor the product of the completed spaces $(\mathbb{R}^2, \mathcal{B}^*(\mathbb{R}) \otimes \mathcal{B}^*(\mathbb{R}), \overline{\lambda} \times \overline{\lambda})$ are complete.

Proof(i): The proof is done by contradiction. Assume that $(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu)$ is complete. Let $Z \in \mathcal{P}(X) \setminus \mathcal{A}$ en $N \in \mathcal{B}$ a ν -null set. By exercise 13.2 (p. 130), the set $X \times N$ is a $\mu \times \nu$ null-set. Since $Z \times N \subset X \times N$ and $(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu)$ is complete, it follows that $Z \times N$ is also a $\mu \times \nu$ null-set and hence is $\mathcal{A} \otimes \mathcal{B}$ measurable. By Theorem 13.5, the mapping $x \longrightarrow \mathbf{1}_{Z \times N}(x, y) = \mathbf{1}_{Z}(x)\mathbf{1}_{N}(y)$ is \mathcal{A} -measurable (note that $\mathbf{1}_{N}(y)$ is a constant). This implies that $\mathbf{1}_{Z}$ is \mathcal{A} -measurable, and hence $Z \in \mathcal{A}$, which is a contradiction. Hence, $(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu)$ is not complete.

Proof(ii): This a direct consequence of part (i).

- 4. (Exercise 13.12, p.132) Let μ be a bounded measure on $([0,\infty),\mathcal{B}[0,\infty))$.
 - (i) Show that $A \in \mathcal{B}[0,\infty) \otimes \mathcal{P}(\mathbb{N})$ if and only if $A = \bigcup_{j \in \mathbb{N}} B_j \times \{j\}$, where $B_j \in \mathcal{B}[0,\infty)$.
 - (ii) Show that there exists a unique measure π on $\mathcal{B}[0,\infty)\otimes\mathcal{P}(\mathbb{N})$ satisfying

$$\pi(B \times \{n\}) = \int_{B} e^{-t} \frac{t^{n}}{n!} d\mu(t).$$

Proof(i): Clearly any set of the form $A = \bigcup_{j \in \mathbb{N}} B_j \times \{j\}$, where $B_j \in \mathcal{B}[0, \infty)$ belongs to $\mathcal{B}[0, \infty) \otimes \mathcal{P}(\mathbb{N})$. Now suppose $A \in \mathcal{B}[0, \infty) \otimes \mathcal{P}(\mathbb{N})$. For each $k \in \mathbb{N}$, let $A_k = \{x \in [0, \infty) : (x, k) \in A\}$. Notice that $\mathbf{1}_A(x, k) = \mathbf{1}_{A_k}(x)$. By Theorem 13.5, for any $k \in \mathbb{N}$, the function $x \to \mathbf{1}_A(x, k) = \mathbf{1}_{A_k}(x)$ is $\mathcal{B}[0, \infty)$ -measurable, hence $A_k \in \mathcal{B}[0, \infty)$. Finally, notice that $A = \bigcup_{k \in \mathbb{N}} A_k \times \{k\}$.

Proof(ii): Let ν be counting measure on $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$. From example 9.10(ii), for any non-negative (measurable) function f on \mathbb{N} , and for any $M \subset \mathbb{N}$ one has,

$$\int_{M} f \, d\nu = \sum_{n \in M} f(n).$$

Consider the product measure $\mu \times \nu$ (note that the underlying measure spaces are σ -finite). The function $f:[0,\infty)\times\mathbb{N}\to[0,\infty)$ given by $f(t,n)=e^{-t\frac{t^n}{n!}}$ is non-negative and measurable (can you see why?). Furthermore, the set function $\pi:\mathcal{B}[0,\infty)\otimes\mathcal{P}(\mathbb{N})\to[0,\infty]$ given by

$$\pi(C) = \int_C e^{-t} \frac{t^n}{n!} d(\mu \times \nu)(t, n) = \int_{[0, \infty) \times \mathbb{N}} \mathbf{1}_C e^{-t} \frac{t^n}{n!} d(\mu \times \nu)(t, n),$$

defines a measure on $\mathcal{B}[0,\infty)\otimes\mathcal{P}(\mathbb{N})$ (exercise 9.5, p.74), and clearly

$$\pi(B \times \{n\}) = \int_B e^{-t} \frac{t^n}{n!} d\mu(t).$$

It remains to show that π is unique. Let $B \in \mathcal{B}[0,\infty)$ and $M \in \mathcal{P}(\mathbb{N})$, by Tonelli's Theorem,

$$\pi(B \times M) = \int_{B} \int_{M} e^{-t} \frac{t^{n}}{n!} d\nu(n) d\mu(t)$$

$$= \int_{B} \sum_{n \in M} e^{-t} \frac{t^{n}}{n!} d\mu(t)$$

$$= \sum_{n \in M} \int_{B} e^{-t} \frac{t^{n}}{n!} d\mu(t) < \infty.$$

The last inequality follows from the fact that $|e^{-t}\frac{t^n}{n!}| \leq 1$ and μ is a bounded measure. The uniqueness of π follows from a simple application of Theorem 5.7 (note that $[0,\infty)\times\{1,2,\ldots,k\}\nearrow[0,\infty)\times\mathbb{N}$ is an exhaustung sequence of finite π measure).