Measure and Integration 2006-Selected Solutions 13

1. (Exercise 13.6, p.131)

(i) Prove that $\int_{(0, \infty)} e^{-t x} d \lambda(t)=\frac{1}{x}$ for all $x>0$.
(ii) Use (i) and Fubini's Theorem to show that

$$
\lim _{n \rightarrow \infty} \int_{(0, n)} \frac{\sin x}{x} d \lambda(x)=\frac{\pi}{2}
$$

Proof(i): Since $e^{-t x}>0$ for all t and x, hence, for each fixed $x>0$ the sequence $e^{-t x} \mathbf{1}_{(0, n)}(t) \nearrow e^{-t x} \mathbf{1}_{(0, \infty)}$. Furthermore, for each n, the function $t \rightarrow e^{-t x}$ is Riemann integrable on $[0, n]$. Thus, by Beppo-Levi, and Theorem 11.8(i),

$$
\begin{aligned}
\int_{(0, \infty)} e^{-t x} d \lambda(t) & =\lim _{n \rightarrow \infty} \int_{(0, n)} e^{-t x} d \lambda(t) \\
& =\lim _{n \rightarrow \infty} \int_{[0, n]} e^{-t x} d \lambda(t) \\
& =\lim _{n \rightarrow \infty} \int_{0}^{n} e^{-t x} d t \\
& =\left.\lim _{n \rightarrow \infty} \frac{-1}{x} e^{-t x}\right|_{0} ^{n}=\frac{1}{x} .
\end{aligned}
$$

Proof(ii): Note first that the function $\frac{\sin x}{x}$ is not Lebesgue integrable on $(0, \infty)$ (see Remark 11.11 on p.97), so we have to be careful in the application of Fubini's Theorem.
Let $I=\lim _{n \rightarrow \infty} \int_{(0, n)} \frac{\sin x}{x} d \lambda(x)$, then by part (i),

$$
I=\lim _{n \rightarrow \infty} \int_{(0, n)} \lim _{k \rightarrow \infty} \int_{(0, k)} e^{-t x} \sin x d \lambda(t) d \lambda(x) .
$$

Since $\left|\int_{(0, k)} e^{-t x} \sin x d \lambda(t)\right| \leq\left|\frac{\sin x}{x}\right|$ which is Riemann and Lebesgue integrable on [$0, n$], hence by Lebesgue Dominated Convergence Therem,

$$
I=\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \int_{(0, n)} \int_{(0, k)} e^{-t x} \sin x d \lambda(t) d \lambda(x) .
$$

By Fubini's Theorem, and integration by parts (after replacing the Lebesgue integral by the Riemann integral), we get

$$
\begin{aligned}
I & =\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \int_{(0, k)} \int_{(0, n)} e^{-t x} \sin x d \lambda(x) d \lambda(t) \\
& =\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \int_{(0, k)} \frac{1}{t^{2}+1}\left(1-e^{-n t}(\cos n+t \sin n)\right) d \lambda(t)
\end{aligned}
$$

Now,

$$
\left|\mathbf{1}_{(0, k)} \frac{1}{t^{2}+1}\left(1-e^{-n t}(\cos n+t \sin n)\right)\right| \leq \frac{2}{t^{2}+1}+\frac{t e^{-n t}}{t^{2}+1} \in \mathcal{L}^{1}((0, \infty))
$$

Thus by Lebesgue Dominated Convergence Therem,

$$
I=\lim _{n \rightarrow \infty} \int_{(0, \infty)} \frac{1}{t^{2}+1}\left(1-e^{-n t}(\cos n+t \sin n)\right) d \lambda(t)
$$

Finally, on $(0, \infty)$,

$$
\left|\frac{1}{t^{2}+1}\left(1-e^{-n t}(\cos n+t \sin n)\right)\right| \leq \frac{2}{t^{2}+1}+\frac{t e^{-t}}{t^{2}+1}
$$

hence again by Lebesgue Dominated Convergence Therem, we get

$$
\begin{aligned}
I & =\int_{(0, \infty)} \lim _{n \rightarrow \infty} \frac{1}{t^{2}+1}\left(1-e^{-n t}(\cos n+t \sin n)\right) d \lambda(t) \\
& =\int_{(0, \infty)} \frac{1}{t^{2}+1} d \lambda(t) \\
& =\left.\arctan t\right|_{0} ^{\infty}=\frac{\pi}{2} .
\end{aligned}
$$

2. (Exercise 13.9, p.131) Let $u: \mathbb{R} \rightarrow[0, \infty)$ be a Borel measurable function (there is a misprint in the book in the definition of $u)$. Denote by $S[u]=\left\{(x, y) \in \mathbb{R}^{2}\right.$: $0 \leq y \leq u(x)\}$ and $\Gamma[u]=\{(x, u(x)): x \in \mathbb{R}\}$.
(i) Show that $S[u] \in \mathcal{B}\left(\mathbb{R}^{2}\right)$.
(ii) Is $\lambda^{2}(S[u])=\int u d \lambda$?
(iii) Show that $\Gamma[u] \in \mathcal{B}\left(\mathbb{R}^{2}\right)$ and that $\lambda^{2}(\Gamma[u])=0$.
$\operatorname{Proof}(\mathbf{i})$: Define $W: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $W(x, y)=(u(x), y)$. By Theorem $13.10(i i), W$ is $\mathcal{B}\left(\mathbb{R}^{2}\right) / \mathcal{B}\left(\mathbb{R}^{2}\right)$ measurable (or simply notice that $W^{-1}([a, b) \times[c, d))=u^{-1}([a, b)) \times$ $\left.[c, d) \in \mathcal{B}\left(\mathbb{R}^{2}\right)\right)$. Let $U: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $U(x, y)=x-y$, then U is $\mathcal{B}\left(\mathbb{R}^{2}\right) / \mathcal{B}(\mathbb{R})$ measurable, and hence the composition $U \circ W(x, y)=U(u(x), y)=u(x)-y$ is $\mathcal{B}\left(\mathbb{R}^{2}\right) / \mathcal{B}(\mathbb{R})$ measurable. Finally,

$$
S[u]=(\mathbb{R} \times[0, \infty)) \cap(U \circ W)^{-1}[0, \infty) \in \mathcal{B}\left(\mathbb{R}^{2}\right)
$$

Proof(ii): The answer is yes. To see that, notice that for each fixed $x \in \mathbb{R}$, one has

$$
\mathbf{1}_{S[u]}(x, y)=1 \Leftrightarrow y \in[0, u(x)] \Leftrightarrow \mathbf{1}_{[0, u(x)]}(y)=1 .
$$

Thus, by Tonelli's Theorem (or Theorem 13.5), we have

$$
\begin{aligned}
\lambda^{2}(S[u]) & =\int_{\mathbb{R}^{2}} \mathbf{1}_{S[u]}(x, y) d \lambda^{2}(x, y) \\
& =\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \mathbf{1}_{S[u]}(x, y) d \lambda(y) d \lambda(x) \\
& =\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \mathbf{1}_{[0, u(x)]}(y) d \lambda(y) d \lambda(x) \\
& =\int_{\mathbb{R}^{2}} \lambda([0, u(x)]) d \lambda(x) \\
& =\int_{\mathbb{R}^{2}} u(x) d \lambda(x) .
\end{aligned}
$$

$\operatorname{Proof}(\mathrm{iii})$: We use the same notation as in part (i).

$$
\Gamma[u]=(U \circ W)^{-1}(\{0\}) \in \mathcal{B}\left(\mathbb{R}^{2}\right) .
$$

Notice that for each fixed x,

$$
\mathbf{1}_{\Gamma[u]}(x, y)=1 \Leftrightarrow y=u(x) \Leftrightarrow \mathbf{1}_{\{u(x)\}}(y)=1
$$

Thus,

$$
\begin{aligned}
\lambda^{2}(S[u]) & =\int_{\mathbb{R}^{2}} \mathbf{1}_{\Gamma[u]}(x, y) d \lambda^{2}(x, y) \\
& =\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \mathbf{1}_{\Gamma[u]}(x, y) d \lambda(y) d \lambda(x) \\
& =\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \mathbf{1}_{\{u(x)\}}(y) d \lambda(y) d \lambda(x) \\
& =\int_{\mathbb{R}^{2}} \lambda(\{u(x)\}) d \lambda(x)=0 .
\end{aligned}
$$

3. (Exercise 13.11, p.131) Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be two σ-finite measure spaces such that $\mathcal{A} \neq \mathcal{P}(X)$, and such that \mathcal{B} contains non-empty null-sets.
(i) Show that the product space $(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu)$ is never complete even if (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are both complete.
(ii) Conclude that neither $\left(\mathbb{R}^{2}, \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}), \lambda \times \lambda\right)$ nor the product of the completed spaces $\left(\mathbb{R}^{2}, \mathcal{B}^{*}(\mathbb{R}) \otimes \mathcal{B}^{*}(\mathbb{R}), \bar{\lambda} \times \bar{\lambda}\right)$ are complete.
$\operatorname{Proof}(\mathbf{i})$: The proof is done by contradiction. Assume that $(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu)$ is complete. Let $Z \in \mathcal{P}(X) \backslash \mathcal{A}$ en $N \in \mathcal{B}$ a ν-null set. By exercise 13.2 (p. 130), the set $X \times N$ is a $\mu \times \nu$ null-set. Since $Z \times N \subset X \times N$ and $(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu)$ is complete, it follows that $Z \times N$ is also a $\mu \times \nu$ null-set and hence is $\mathcal{A} \otimes \mathcal{B}$ measurable. By Theorem 13.5, the mapping $x \longrightarrow \mathbf{1}_{Z \times N}(x, y)=\mathbf{1}_{Z}(x) \mathbf{1}_{N}(y)$ is \mathcal{A}-measurable (note that $\mathbf{1}_{N}(y)$ is a constant). This implies that $\mathbf{1}_{Z}$ is \mathcal{A}-measurable, and hence $Z \in \mathcal{A}$, which is a contradiction. Hence, $(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu)$ is not complete.

Proof(ii): This a direct consequence of part (i).
4. (Exercise 13.12, p.132) Let μ be a bounded measure on $([0, \infty), \mathcal{B}[0, \infty)$).
(i) Show that $A \in \mathcal{B}[0, \infty) \otimes \mathcal{P}(\mathbb{N})$ if and only if $A=\cup_{j \in \mathbb{N}} B_{j} \times\{j\}$, where $B_{j} \in \mathcal{B}[0, \infty)$.
(ii) Show that there exists a unique measure π on $\mathcal{B}[0, \infty) \otimes \mathcal{P}(\mathbb{N})$ satisfying

$$
\pi(B \times\{n\})=\int_{B} e^{-t} \frac{t^{n}}{n!} d \mu(t)
$$

$\operatorname{Proof}(\mathbf{i})$: Clearly any set of the form $A=\cup_{j \in \mathbb{N}} B_{j} \times\{j\}$, where $B_{j} \in \mathcal{B}[0, \infty)$ belongs to $\mathcal{B}[0, \infty) \otimes \mathcal{P}(\mathbb{N})$. Now suppose $A \in \mathcal{B}[0, \infty) \otimes \mathcal{P}(\mathbb{N})$. For each $k \in \mathbb{N}$, let $A_{k}=\{x \in[0, \infty):(x, k) \in A\}$. Notice that $\mathbf{1}_{A}(x, k)=\mathbf{1}_{A_{k}}(x)$. By Theorem 13.5, for any $k \in \mathbb{N}$, the function $x \rightarrow \mathbf{1}_{A}(x, k)=\mathbf{1}_{A_{k}}(x)$ is $\mathcal{B}[0, \infty)$-measurable, hence $A_{k} \in \mathcal{B}[0, \infty)$. Finally, notice that $A=\cup_{k \in \mathbb{N}} A_{k} \times\{k\}$.
$\operatorname{Proof}(\mathrm{ii})$: Let ν be counting measure on $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$. From example 9.10(ii), for any non-negative (measurable) function f on \mathbb{N}, and for any $M \subset \mathbb{N}$ one has,

$$
\int_{M} f d \nu=\sum_{n \in M} f(n) .
$$

Consider the product measure $\mu \times \nu$ (note that the underlying measure spaces are σ-finite). The function $f:[0, \infty) \times \mathbb{N} \rightarrow[0, \infty)$ given by $f(t, n)=e^{-t \frac{t}{n}} \frac{t^{n}}{n!}$ is non-negative and measurable (can you see why?). Furthermore, the set function $\pi: \mathcal{B}[0, \infty) \otimes \mathcal{P}(\mathbb{N}) \rightarrow[0, \infty]$ given by

$$
\pi(C)=\int_{C} e^{-t} \frac{t^{n}}{n!} d(\mu \times \nu)(t, n)=\int_{[0, \infty) \times \mathbb{N}} \mathbf{1}_{C} e^{-t} \frac{t^{n}}{n!} d(\mu \times \nu)(t, n),
$$

defines a measure on $\mathcal{B}[0, \infty) \otimes \mathcal{P}(\mathbb{N})$ (exercise 9.5 , p.74), and clearly

$$
\pi(B \times\{n\})=\int_{B} e^{-t} \frac{t^{n}}{n!} d \mu(t) .
$$

It remains to show that π is unique. Let $B \in \mathcal{B}[0, \infty)$ and $M \in \mathcal{P}(\mathbb{N})$, by Tonelli's Theorem,

$$
\begin{aligned}
\pi(B \times M) & =\int_{B} \int_{M} e^{-t \frac{t^{n}}{n!}} d \nu(n) d \mu(t) \\
& =\int_{B} \sum_{n \in M} e^{-t \frac{t^{n}}{n!}} d \mu(t) \\
& =\sum_{n \in M} \int_{B} e^{-t \frac{t^{n}}{n!}} d \mu(t)<\infty .
\end{aligned}
$$

The last inequality follows from the fact that $\left|e^{-t} \frac{t^{n}}{n!}\right| \leq 1$ and μ is a bounded measure. The uniqueness of π follows from a simple application of Theorem 5.7 (note that $[0, \infty) \times\{1,2, \ldots, k\} \nearrow[0, \infty) \times \mathbb{N}$ is an exhaustung sequence of finite π measure).

