## Measure and Integration 2007-Selected Solutions Chapter 5

1. (Exercise 5.8, p.39) Consider the Borel $\sigma$-algebra $\mathcal{B}\left(\mathbb{R}^{n}\right)$ over $\mathbb{R}^{n}$, and let $\lambda^{n}$ be the Lebesgue measure on $\mathcal{B}\left(\mathbb{R}^{n}\right)$. For $B \in \mathcal{B}\left(\mathbb{R}^{n}\right)$ and $t>0$, define $t \cdot B=\{t b=$ $\left.\left(t b_{1}, t b_{2}, \cdots t b_{n}\right): b=\left(b_{1}, \cdots, b_{n}\right) \in B\right\}$.
(i) Show that $t \cdot B \in \mathcal{B}\left(\mathbb{R}^{n}\right)$ for all $B \in \mathcal{B}\left(\mathbb{R}^{n}\right)$, and $t>0$.
(ii) Show that $\lambda^{n}(t \cdot B)=t^{n} \lambda^{n}(B)$.

Proof (i) Let $\mathcal{B}_{t}=\left\{B \in \mathcal{B}\left(\mathbb{R}^{n}\right): t \cdot B \in \mathcal{B}\left(\mathbb{R}^{n}\right)\right\}$. It is easy to check that $\mathcal{B}_{t}$ is a $\sigma$-algebra containing $\mathcal{I}$, the collection of all right-open rectangles. Since $\mathcal{B}\left(\mathbb{R}^{n}\right)=\sigma(\mathcal{I})$ is the smallest $\sigma$-algebra containing $\mathcal{I}$, then $\mathcal{B}\left(\mathbb{R}^{n}\right) \subset \mathcal{B}_{t}$ for all $t>0$. But by definition, $\mathcal{B}_{t} \subset \mathcal{B}\left(\mathbb{R}^{n}\right)$, thus $\mathcal{B}_{t}=\mathcal{B}\left(\mathbb{R}^{n}\right)$ for all $t>0$, i.e. $t \cdot B \in \mathcal{B}\left(\mathbb{R}^{n}\right)$.

Proof (ii) Define $\nu$ on $\mathcal{B}\left(\mathbb{R}^{n}\right)$ by $\nu(B)=\lambda^{n}(t \cdot B)$. Notice that $\nu(\emptyset)=0$ and if $B_{1}, B_{2}, \cdots$, is a disjoint sequence in $\mathcal{B}\left(\mathbb{R}^{n}\right)$, then $t \cdot B_{1}, t \cdot B_{2}, \cdots$, is also a disjoint sequence in $\mathcal{B}\left(\mathbb{R}^{n}\right)$. By $\sigma$ additivity of $\lambda^{n}$, we get

$$
\nu\left(\cup_{n} B_{n}\right)=\lambda^{n}\left(t \cdot \cup_{n} B_{n}\right)=\lambda^{n}\left(\cup_{n} t \cdot B_{n}\right)=\sum_{n} \lambda^{n}\left(t \cdot B_{n}\right)=\sum_{n} \nu\left(B_{n}\right) .
$$

The above shows that $\nu$ is a measure on $\mathcal{B}\left(\mathbb{R}^{n}\right)$. Now, let $I=\prod_{i=1}^{n}\left[a_{i}, b_{i}\right)$ be a right-open rectangle. Then,

$$
\nu(I)=\lambda^{n}\left(\prod_{i=1}^{n}\left[t a_{i}, t b_{i}\right)\right)=\prod_{i=1}^{n}\left(t b_{i}-t a_{i}\right)=t^{n} \prod_{i=1}^{n}\left(b_{i}-a_{i}\right)=t^{n} \lambda^{n}(I) .
$$

It is easy to see that the set function $\mu$ defined on $\mathcal{B}\left(\mathbb{R}^{n}\right)$ by $\mu(B)=t^{n} \lambda^{n}(B)$ is a measure that agrees with $\nu$ on $\mathcal{I}$. Furthermore, $\mathcal{I}$ is stable under finite intersections and $\prod_{i=1}^{n}[-k, k)^{n}$ is an exhausting sequence with finite $\nu$ (and hence $\mu$ ) measure. Thus, by Theorem 5.7 we see that $\nu=\mu$, i.e., $\lambda^{n}(t \cdot B)=t^{n} \lambda^{n}(B)$.
2. (Exercise 5.9, p.39) Let $(X, \mathcal{A}, \mu)$ be a finite measure space where $\mathcal{A}=\sigma(\mathcal{G})$ with $\mathcal{G}$ stable under finite intersections. Assume $\phi: X \rightarrow X$ is a map with the property that $\phi^{-1}(A) \in \mathcal{A}$ for all $A \in \mathcal{A}$. Prove

$$
\mu(G)=\mu\left(\phi^{-1}(G)\right) \forall G \in \mathcal{G} \Longrightarrow \mu(A)=\mu\left(\phi^{-1}(A)\right) \forall A \in \mathcal{A} .
$$

Proof Define $\nu$ on $\mathcal{A}$ by $\nu(A)=\mu\left(\phi^{-1}(A)\right)$. Then, $\nu(\emptyset)=0$ and if $A_{1}, A_{2}, \cdots$ is a disjoint sequence in $\mathcal{A}$, then $\phi^{-1}\left(A_{1}\right), \phi^{-1}\left(A_{2}\right), \cdots$ is also a disjoint sequence in $\mathcal{A}$. Hence,

$$
\nu\left(\cup_{n} A_{n}\right)=\mu\left(\phi^{-1}\left(\cup_{n} A_{n}\right)\right)=\mu\left(\cup_{n}\left(\phi^{-1}\left(A_{n}\right)\right)\right)=\sum_{n} \mu\left(\phi^{-1}\left(A_{n}\right)\right)=\sum_{n} \nu\left(A_{n}\right) .
$$

Hence, $\nu$ is a measure. Since $\phi^{-1}(X)=X$, it follows that $\nu(X)=\mu(X)<\infty$, and by assumption $\mu(G)=\nu(G)$ for all $G \in \mathcal{G}$. Now, let $\mathcal{G}^{\prime}=\mathcal{G} \cup\{X\}$. Then, $\mathcal{G}^{\prime}$ is stable under finite intersections, $\mu(G)=\nu(G)$ for all $G \in \mathcal{G}^{\prime}$, and $X, X, \cdots$ is an exhaustung sequence in $\mathcal{G}^{\prime}$ of finite $\mu$ and $\nu$ measure. Hence, by Theorem 5.7, we have $\mu=\nu$, i.e., $\mu(A)=\mu\left(\phi^{-1}(A)\right)$ for all $A \in \mathcal{A}$.
3. (Exercise 5.10, p.39) Let $(\Omega, \mathcal{A}, P)$ be a probability space, and suppose $\mathcal{G}, \mathcal{H} \subset \mathcal{A}$ are stable under finite intersections. Let $\mathcal{B}=\sigma(\mathcal{G})$, and $\mathcal{C}=\sigma(\mathcal{H})$. Prove
$P(B \cap C)=P(B) P(C) \forall B \in \mathcal{B}, C \in \mathcal{C} \Leftrightarrow P(B \cap C)=P(B) P(C) \forall B \in \mathcal{G}, C \in \mathcal{H}$

Proof The necessity of the condition is trivial since $\mathcal{G} \subset \mathcal{B}$ and $\mathcal{H} \subset \mathcal{C}$. Conversely, suppose $P(B \cap C)=P(B) P(C) \forall B \in \mathcal{G}, C \in \mathcal{H}$. Fix any $C \in \mathcal{H}$. Define $\mu$ and $\nu$ on $\mathcal{B}$ by $\mu(B)=P(B \cap C)$ and $\nu(B)=P(B) P(C)$. It is easy to check that $\mu$ and $\nu$ are finite measures on $\mathcal{B}$ agreeing on $\mathcal{G} \cup\{X\}$ and admiiting an axhausting sequence, namely $X, X, \cdots$, of finite $\mu$ and $\nu$ measure. Hence by Theorem 5.7, we have $\mu=\nu$ on $\mathcal{B}$, i.e. $P(B \cap C)=P(B) P(C)$ for all $B \in \mathcal{B}$. Similarly, if we fix $B \in \mathcal{B}$ and define $\rho, \tau$ on $\mathcal{C}$ by $\rho(C)=P(B \cap C)$ and $\tau(C)=P(B) P(C)$, then the same argument as above shows that $\rho$ and $\tau$ are equal measures, so that $P(B \cap C)=P(B) P(C)$ for all $C \in \mathcal{C}$. Together with the above we see that $P(B \cap C)=P(B) P(C)$ for all $B \in \mathcal{G}$ and $C \in \mathcal{H}$.

