Measure and Integration 2007-Selected Solutions Chapter 6

1. (Exercise 6.5(iv), p.46) Let P be a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Prove that P can be written as $P=\mu+\nu$, where μ is a non-atomic measure $(\mu(\{x\})=0$ for all $x \in \mathbb{R}$), and ν is purely atomic, i.e., there exist positive real numbers ϵ_{j} and points $x_{j} \in \mathbb{R}$ such that for all $A \in \mathcal{B}$, one has $\nu(A)=\sum_{j \in \mathbb{N}} \epsilon_{j} \delta_{x_{j}}(A)$, where $\delta_{x_{j}}$ is Dirac measure concentrated at the point x_{j}.

Proof If P has no atoms, then $P=\mu$ and $\nu=0$. Assume P has atoms, and let $A=\{x \in \mathbb{R}: P(\{x\})>0\}$ be the set of all atoms of P. For each $n \in \mathbb{N}$, let $A_{n}=\{x \in A: P(\{x\}) \geq 1 / n\}$. Then, $A=\cup_{k \in \mathbb{N}} A_{n}$. Furthermore, since P is a probability measure, then A_{n} can have atmost n elements (otherwise A would have measure greater than 1), hence A is countable. Write $A=\left\{x_{1}, x_{2}, \ldots,\right\}$. Define ν on $\mathcal{B}(\mathbb{R})$ by

$$
\nu(B)=\sum_{j} P\left(\left\{x_{j}\right\}\right) \delta_{x_{j}}(B)=\sum_{x_{j} \in B} P\left(\left\{x_{j}\right\}\right)=P(B \cap A) .
$$

Then, ν is a measure (see Example 4.7(iv), p.27), and $\nu(B) \leq P(B)$. Now define μ on $\mathcal{B}(\mathbb{R})$ by $\mu(A)=P(A)-\nu(A)$. Then, it is easy to see that μ is a measure, and μ is non-atomic since if $x=x_{j}$, then $P\left(\left\{x_{j}\right\}=\nu\left(\left\{x_{j}\right\}\right)\right.$, and if $x \neq x_{j}$ for all j, then $\nu(\{x\})=0=P(\{x\})$.
2. (Exercise 6.7, p.46) Let $\lambda=\lambda^{1}$ be Lebesgue measure on ($[0,1], \mathcal{B}[0,1]$). Show that for every $\epsilon>0$ there is a dense open set $U \subset[0,1]$ with $\lambda(U) \leq \epsilon$.

Proof Let $\epsilon>0$ and let $\left\{q_{j}\right\}$ be an enumeration of $\mathbb{Q} \cap[0,1]$. Define the set

$$
U=\cup_{j}\left(q_{j}-\epsilon 2^{-j-1}, q_{j}+\epsilon 2^{-j-1}\right) \cap[0,1] .
$$

Then, U is open and dense in $[0,1]$ (notice that U contains all the rationals in the unit interval and these are dense in $[0,1]$). Furthermore by σ-subadditivity and monotonicity, one has

$$
\lambda(U) \leq \sum_{j} \lambda\left(\left(q_{j}-\epsilon 2^{-j-1}, q_{j}+\epsilon 2^{-j-1}\right)\right)=\sum_{j} \epsilon / 2^{j}=\epsilon .
$$

3. (Exercise 6.8, p.46) Let $\lambda=\lambda^{1}$ be Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R})$. Show that $N \in \mathcal{B}(\mathbb{R})$) is a null-set (i.e. $\lambda(N)=0$) if and only if for every $\epsilon>0$ there is an open set U_{ϵ} such that $N \subset U_{\epsilon}$ and $\lambda\left(U_{\epsilon}\right)<\epsilon$.

Proof If for every $\epsilon>0$ there is an open set U_{ϵ} such that $N \subset U_{\epsilon}$ and $\lambda\left(U_{\epsilon}\right)<\epsilon$, then $\lambda(N) \leq \epsilon$ for all $\epsilon>0$, hence $\lambda(N)=0$.
Before we prove the converse, we will prove the following general fact. Let $B \subset \mathbb{R}$, in the proof of Caratheodory, the outer (Lebesgue) measure of B was defined by $\lambda^{*}(B)=\inf \left\{\sum_{n} \lambda\left(I_{n}\right):\left(I_{n}\right) \subset \mathcal{I}, B \subset \cup_{n} I_{n}\right\}$, where \mathcal{I} is the collection of halfopen intervals. We will show that $\lambda^{*}(B)=\inf \left\{\lambda^{*}(G): B \subset G, G\right.$ open $\}$. By monotonicity of λ^{*}, it is clear that $\lambda^{*}(B) \leq \lambda^{*}(G)$ for any G open with $B \subset G$. Hence, $\lambda^{*}(B) \leq \inf \left\{\lambda^{*}(G): B \subset G, G\right.$ open $\}$. To prove the other inequality, we first assume that $\lambda^{*}(B)<\infty$ (otherwise there is nothing to prove). Now, let $\epsilon>0$. By the definition of the infimum, there exist a cover $\left(I_{n}\right) \subset \mathcal{I}$ such that $B \subset \cup_{n} I_{n}$ and $\sum_{n} \lambda\left(I_{n}\right) \leq \lambda^{*}(B)+\epsilon / 2$. Each I_{n} is a right-open interval, it is easy to see that one can find an open interval I_{n}^{\prime} containing I_{n} and such that $\lambda\left(I_{n}^{\prime}\right) \leq \lambda\left(I_{n}\right)+\epsilon / 2^{n}$. Let $G=\cup_{n} I_{n}^{\prime}$, then G is open and $B \subset G$. Furthermore,

$$
\lambda^{*}(G) \leq \sum_{n} \lambda\left(I_{n}^{\prime}\right) \leq \sum_{n} \lambda\left(I_{n}\right)+\epsilon / 2 \leq \lambda^{*}(B)+\epsilon
$$

Thus, $\inf \left\{\lambda^{*}(G): B \subset G, G\right.$ open $\} \leq \lambda^{*}(B)+\epsilon$. Since $\epsilon>0$ is arbitrary, it follows that $\inf \left\{\lambda^{*}(G): B \subset G, G\right.$ open $\} \leq \lambda^{*}(B)$. Thus, $\lambda^{*}(B)=\inf \left\{\lambda^{*}(G): B \subset\right.$ G, G open $\}$.
Note also that if B is a Borel set, then $\lambda(B)=\lambda^{*}(B)$. In particular, $\lambda^{*}(G)=\lambda(G)$ for all open sets G. We apply the above result to our situation. Suppose $N \in \mathcal{B}(\mathbb{R})$ is a null-set. Then,

$$
0=\lambda(N)=\lambda^{*}(N)=\inf \{\lambda(G): N \subset G, G \text { open }\} .
$$

From the definition of the infimum, we see that for every $\epsilon>0$, there is an open set U_{ϵ} containing N such that $\lambda\left(U_{\epsilon}\right)<\epsilon$.
4. (Exercise 6.9, p.46) (Borel-Cantelli Lemma) Let (Ω, \mathcal{A}, P) be a probability space. Prove that if $\left(A_{j}\right) \subset \mathcal{A}$ is a sequence of measurable sets with $\sum_{n} P\left(A_{n}\right)<\infty$, then $P\left(\cap_{n=1}^{\infty} \cup_{j=n}^{\infty} A_{j}\right)=0$.

Proof Let $B_{n}=\cup_{j=n}^{\infty} A_{j}$, then clearly B_{n} is a decreasing sequence in \mathcal{A}. Since P is a probability measure, then $P(A) \leq 1<\infty$ for all $A \in \mathcal{A}$. Hence by Theorem 4.4(iii)', we have

$$
P\left(\cap_{n=1}^{\infty} \cup_{j=n}^{\infty} A_{j}\right)=P\left(\cap_{n=1}^{\infty} B_{n}\right)=\lim _{n \rightarrow \infty} P\left(B_{n}\right) .
$$

Since P is σ-subadditive, we have $P\left(B_{n}\right) \leq \sum_{j=n}^{\infty} P\left(A_{j}\right)$. But $\sum_{j=n}^{\infty} P\left(A_{j}\right)$ is the tail of a convergent series, hence

$$
P\left(\cap_{n=1}^{\infty} \cup_{j=n}^{\infty} A_{j}\right)=\lim _{n \rightarrow \infty} P\left(B_{n}\right)=\lim _{n \rightarrow \infty} \sum_{j=n}^{\infty} P\left(A_{j}\right)=0 .
$$

