Universiteit Utrecht Mathematisch Instituut

Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

Measure and Integration 2006-Selected Solutions Chapter 7/8

1. (Exercise 7.7, p.54). Use image measures to give a new proof that $\lambda^n(t \cdot B) = t^n \lambda^n(B)$ for all $B \in \mathcal{B}(\mathbb{R}^n)$ and for all t > 0.

Proof: Let t > 0, define $T_t : \mathbb{R}^n \to \mathbb{R}^n$ by $T_t(x) = \frac{1}{t}x$, i.e. $T_t(x_1, \dots, x_n) = (tx_1, \dots, tx_n)$. Clearly T_t is continuous and hence measurable. Notice that $T_t^{-1}B = t \cdot B$, hence $T_t(\lambda^n)(B) = \lambda^n(T_t^{-1}(B)) = \lambda^n(t \cdot B)$ for all $B \in \mathcal{B}(\mathbb{R}^n)$. Since T_t^{-1} is a linear transformation, we have

$$T_t(\lambda^n)(B+x) = \lambda^n(T_t^{-1}(B) + T^{-1}x) = \lambda^n(T_t^{-1}(B)) = T_t(\lambda^n)(B).$$

Thus, the measure $T_t(\lambda^n)$ is translation invariant. Further, if $I = \prod_{i=1}^n [0, 1)$, then

$$T_f(\lambda^n)(I) = \lambda^n (t \cdot \prod_{i=1}^n [0,1)) = \lambda^n \prod_{i=1}^n [0,t)) = t^n$$

By Theorem 5.8(ii), we have that $T_f(\lambda^n) = t^n \lambda^n$. Hence, $T_f(\lambda^n)(B) = \lambda^n (t \cdot B) = t^n \lambda^n(B)$ for all $B \in \mathcal{B}(\mathbb{R}^n)$ and for all t > 0.

2. (Exercise 8.2, p.65) Define

$$\mathcal{B}(\overline{\mathbb{R}}) = \{ B \cup C : B \in \mathcal{B}(\mathbb{R}), \ C \in \{\emptyset, \{-\infty\}, \{+\infty\}, \{-\infty, +\infty\} \}.$$

Show that $\mathcal{B}(\overline{\mathbb{R}})$ is a σ -algebra over $\overline{\mathbb{R}}$. Moreover prove that $\mathcal{B}(\mathbb{R}) = \mathbb{R} \cap \mathcal{B}(\overline{\mathbb{R}})$, and $\mathcal{O}(\mathbb{R}) = \mathcal{O}(\overline{\mathbb{R}}) \cap \mathbb{R}$ where $\mathcal{O}(\overline{\mathbb{R}})$ is the usual topology on $\overline{\mathbb{R}}$.

Proof: Clearly $\emptyset \in \mathcal{B}(\overline{\mathbb{R}})$ since $\emptyset = \emptyset \cup \emptyset$ and $\emptyset \in \mathcal{B}(\mathbb{R})$. Suppose $\overline{B} \in \mathcal{B}(\overline{\mathbb{R}})$, then $\overline{B} = B \cup C$ with $B \in \mathcal{B}(\mathbb{R})$ and $C \in \{\emptyset, \{-\infty\}, \{+\infty\}, \{-\infty, +\infty\}\}$. Now, $\overline{B}^c = \overline{\mathbb{R}} \setminus \overline{B} = (\overline{\mathbb{R}} \setminus B) \cap (\overline{\mathbb{R}} \setminus C)$. Since $B \subset \mathbb{R}$, then $\overline{\mathbb{R}} \setminus B$ contains $\{-\infty, +\infty\}$, so that $\overline{\mathbb{R}} \setminus B = (\mathbb{R} \setminus B) \cup \{-\infty, +\infty\}$. Furthermore, $\mathbb{R} \subset \overline{\mathbb{R}} \setminus C$, hence

$$\overline{B}^c = [(\mathbb{R} \setminus B) \cup \{-\infty, +\infty\}] \cap (\overline{\mathbb{R}} \setminus C) \\ = [(\mathbb{R} \setminus B) \cap (\overline{\mathbb{R}} \setminus C)] \cup [\{-\infty, +\infty\} \cap (\overline{\mathbb{R}} \setminus C)] \\ = (\mathbb{R} \setminus B) \cup [\{-\infty, +\infty\} \cap (\overline{\mathbb{R}} \setminus C)].$$

Since $\mathbb{R} \setminus B \in \mathcal{B}(\mathbb{R})$ and $\{-\infty, +\infty\} \cap (\overline{\mathbb{R}} \setminus C) \in \{\emptyset, \{-\infty\}, \{+\infty\}, \{-\infty, +\infty\}\},$ it follows that $\overline{B}^c \in \mathcal{B}(\overline{\mathbb{R}})$. Finally, let $\overline{B}_n \in \mathcal{B}(\overline{\mathbb{R}})$. Then, $\overline{B}_n = B_n \cup C_n$ with $B_n \in \mathcal{B}(\mathbb{R})$ and $C_n \in \{\emptyset, \{-\infty\}, \{+\infty\}, \{-\infty, +\infty\}\}$. Now,

$$\bigcup_{n} \overline{B}_{n} = (\bigcup_{n} B_{n}) \cup (\bigcup_{n} C_{n}) \in \mathcal{B}(\overline{\mathbb{R}}),$$

since $\bigcup_n B_n \in \mathcal{B}(\mathbb{R})$ and $\bigcup_n C_n \in \{\emptyset, \{-\infty\}, \{+\infty\}, \{-\infty, +\infty\}\}.$

We now show that $\mathcal{B}(\mathbb{R}) = \mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R}$. Clearly, $\mathcal{B}(\mathbb{R}) \subset \mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R}$. Now let $D \in \mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R}$, then $D = \overline{B} \cap \mathbb{R}$ where $\overline{B} = B \cup C$ with $B \in \mathcal{B}(\mathbb{R})$ and $C \in \{\emptyset, \{-\infty\}, \{+\infty\}, \{-\infty, +\infty\}\}$. Hence, $D = B \in \mathcal{B}(\mathbb{R})$. This shows that $\mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R} \subset \mathcal{B}(\mathbb{R})$, and therefore $\mathcal{B}(\mathbb{R}) = \mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R}$.

Finally, we need to prove that $\mathcal{O}(\mathbb{R}) = \mathcal{O}(\overline{\mathbb{R}}) \cap \mathbb{R}$ where $\mathcal{O}(\overline{\mathbb{R}})$ is the usual topology on $\overline{\mathbb{R}}$. To see this note that a set $\overline{U} \in \overline{\mathbb{R}}$ is open if for each point $x \in \overline{U}$ there is an open neighborhood containing x and is contained in \overline{U} . If x is real, then an open neighborhood is an open interval in the usual sense. If $x = -\infty$, then an open neighborhood is an interval of the for $[-\infty, a)$, and if $x = +\infty$, then an open neighborhood is an interval of the form $(a, +\infty]$. In otherwords, a set $\overline{U} \subset \overline{\mathbb{R}}$ is open if it is of the form $\overline{U} = U \cup C$, where U is open in \mathbb{R} and C of the form $[-\infty, a)$ or $(a, +\infty]$ or \emptyset or $\overline{\mathbb{R}}$ or union of those. Therefore, $\mathcal{O}(\mathbb{R}) = \mathbb{R} \cap \mathcal{O}(\overline{\mathbb{R}})$.

3. (Exercise 8.9, p.65) Show that the functions $f, g : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \max\{x, 0\}$ and $g(x) = \min\{x, 0\}$ are continuous and hence $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$ measurable. Conclude that if (X, \mathcal{A}) is a measure space and $u : X \to \mathbb{R}$ is an $\mathcal{A}/\mathcal{B}(\mathbb{R})$ measurable function, then the positive part u^+ and the negative part u^- are also $\mathcal{A}/\mathcal{B}(\mathbb{R})$ measurable.

Proof: Notice that the functions $i, k : \mathbb{R} \to \mathbb{R}$ given by i(x) = x and k(x) = |x| are continuous. Now, $f(x) = \frac{1}{2}(i(x) + k(x))$ and $g(x) = \frac{1}{2}(-i(x) + k(x))$ are linear combinations of continuous functions, hence continuous and therefore, $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$ measurable. Finally, if $u : X \to \mathbb{R}$ is an $\mathcal{A}/\mathcal{B}(\mathbb{R})$ measurable function, then $u^+ = f \circ u$ and $u^- = g \circ u$ are compositions of measurable functions, hence measurable.

4. (Exercise 8.15, p.65) Let λ be the one-dimensional Lebesgue measure and u: $\mathbb{R} \to \mathbb{R}$ given by u(x) = |x|. Determine the measure $u(\lambda) = \lambda \circ u^{-1}$.

Proof: Notice that $u(\mathbb{R}) = [0, \infty)$. Hence for all Borel sets $B \subset (-\infty, 0)$, one has $u(\lambda)(B) = \lambda(u^{-1}(B)) = \lambda(\emptyset) = 0$. We therefore need to determine $\lambda \circ u^{-1}$ on $\mathcal{B}(\mathbb{R}) \cap [0, \infty)$. Suppose $(a, b) \subset [0, \infty)$ is an interval, then

$$\begin{aligned} u(\lambda)(a,b) &= \lambda(u^{-1}((a,b))) = \lambda((-b,-a) \cup (a,b)) \\ &= (-a-(-b)) + (b-a) = 2(b-a) = 2\lambda((a,b)). \end{aligned}$$

Since $\{[0,k)\}$ is an exhaustung sequence of finite $u(\lambda)$, by Theorem 5.7, we see that $u(\lambda) = 2\lambda$.