Measure and Integration 2006-Selected Solutions Chapter 7/8

1. (Exercise 7.7, p.54). Use image measures to give a new proof that $\lambda^{n}(t \cdot B)=$ $t^{n} \lambda^{n}(B)$ for all $B \in \mathcal{B}\left(\mathbb{R}^{n}\right)$ and for all $t>0$.

Proof: Let $t>0$, define $T_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $T_{t}(x)=\frac{1}{t} x$, i.e. $T_{t}\left(x_{1}, \cdots, x_{n}\right)=$ $\left(t x_{1}, \cdots, t x_{n}\right)$. Clearly T_{t} is continuous and hence measurable. Notice that $T_{t}^{-1} B=$ $t \cdot B$, hence $T_{t}\left(\lambda^{n}\right)(B)=\lambda^{n}\left(T_{t}^{-1}(B)\right)=\lambda^{n}(t \cdot B)$ for all $B \in \mathcal{B}\left(\mathbb{R}^{n}\right)$. Since T_{t}^{-1} is a linear transformation, we have

$$
T_{t}\left(\lambda^{n}\right)(B+x)=\lambda^{n}\left(T_{t}^{-1}(B)+T^{-1} x\right)=\lambda^{n}\left(T_{t}^{-1}(B)\right)=T_{t}\left(\lambda^{n}\right)(B)
$$

Thus, the measure $T_{t}\left(\lambda^{n}\right)$ is translation invariant. Further, if $I=\prod_{i=1}^{n}[0,1)$, then

$$
\left.T_{f}\left(\lambda^{n}\right)(I)=\lambda^{n}\left(t \cdot \prod_{i=1}^{n}[0,1)\right)=\lambda^{n} \prod_{i=1}^{n}[0, t)\right)=t^{n}
$$

By Theorem 5.8(ii), we have that $T_{f}\left(\lambda^{n}\right)=t^{n} \lambda^{n}$. Hence, $T_{f}\left(\lambda^{n}\right)(B)=\lambda^{n}(t \cdot B)=$ $t^{n} \lambda^{n}(B)$ for all $B \in \mathcal{B}\left(\mathbb{R}^{n}\right)$ and for all $t>0$.
2. (Exercise 8.2, p.65) Define

$$
\mathcal{B}(\overline{\mathbb{R}})=\{B \cup C: B \in \mathcal{B}(\mathbb{R}), C \in\{\emptyset,\{-\infty\},\{+\infty\},\{-\infty,+\infty\}\}
$$

Show that $\mathcal{B}(\overline{\mathbb{R}})$ is a σ-algebra over $\overline{\mathbb{R}}$. Moreover prove that $\mathcal{B}(\mathbb{R})=\mathbb{R} \cap \mathcal{B}(\overline{\mathbb{R}})$, and $\mathcal{O}(\mathbb{R})=\mathcal{O}(\overline{\mathbb{R}}) \cap \mathbb{R}$ where $\mathcal{O}(\overline{\mathbb{R}})$ is the usual topology on $\overline{\mathbb{R}}$.

Proof: Clearly $\emptyset \in \mathcal{B}(\overline{\mathbb{R}})$ since $\emptyset=\emptyset \cup \emptyset$ and $\emptyset \in \mathcal{B}(\mathbb{R})$. Suppose $\bar{B} \in \mathcal{B}(\overline{\mathbb{R}})$, then $\bar{B}=B \cup C$ with $B \in \mathcal{B}(\mathbb{R})$ and $C \in\{\emptyset,\{-\infty\},\{+\infty\},\{-\infty,+\infty\}$. Now, $\bar{B}^{c}=\overline{\mathbb{R}} \backslash \bar{B}=(\overline{\mathbb{R}} \backslash B) \cap(\overline{\mathbb{R}} \backslash C)$. Since $B \subset \mathbb{R}$, then $\overline{\mathbb{R}} \backslash B$ contains $\{-\infty,+\infty\}$, so that $\overline{\mathbb{R}} \backslash B=(\mathbb{R} \backslash B) \cup\{-\infty,+\infty\}$. Furthermore, $\mathbb{R} \subset \overline{\mathbb{R}} \backslash C$, hence

$$
\begin{aligned}
\bar{B}^{c} & =[(\mathbb{R} \backslash B) \cup\{-\infty,+\infty\}] \cap(\overline{\mathbb{R}} \backslash C) \\
& =[(\mathbb{R} \backslash B) \cap(\overline{\mathbb{R}} \backslash C)] \cup[\{-\infty,+\infty\} \cap(\overline{\mathbb{R}} \backslash C)] \\
& =(\mathbb{R} \backslash B) \cup[\{-\infty,+\infty\} \cap(\overline{\mathbb{R}} \backslash C)] .
\end{aligned}
$$

Since $\mathbb{R} \backslash B \in \mathcal{B}(\mathbb{R})$ and $\{-\infty,+\infty\} \cap(\overline{\mathbb{R}} \backslash C) \in\{\emptyset,\{-\infty\},\{+\infty\},\{-\infty,+\infty\}\}$, it follows that $\bar{B}^{c} \in \mathcal{B}(\overline{\mathbb{R}})$. Finally, let $\bar{B}_{n} \in \mathcal{B}(\overline{\mathbb{R}})$. Then, $\bar{B}_{n}=B_{n} \cup C_{n}$ with $B_{n} \in \mathcal{B}(\mathbb{R})$ and $C_{n} \in\{\emptyset,\{-\infty\},\{+\infty\},\{-\infty,+\infty\}\}$. Now,

$$
\bigcup_{n} \bar{B}_{n}=\left(\bigcup_{n} B_{n}\right) \cup\left(\bigcup_{n} C_{n}\right) \in \mathcal{B}(\overline{\mathbb{R}}),
$$

since $\bigcup_{n} B_{n} \in \mathcal{B}(\overline{\mathbb{R}})$ and $\bigcup_{n} C_{n} \in\{\emptyset,\{-\infty\},\{+\infty\},\{-\infty,+\infty\}\}$.
We now show that $\mathcal{B}(\mathbb{R})=\mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R}$. Clearly, $\mathcal{B}(\mathbb{R}) \subset \mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R}$. Now let $D \in \mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R}$, then $D=\bar{B} \cap \mathbb{R}$ where $\bar{B}=B \cup C$ with $B \in \mathcal{B}(\mathbb{R})$ and $C \in$ $\{\emptyset,\{-\infty\},\{+\infty\},\{-\infty,+\infty\}$. Hence, $D=B \in \mathcal{B}(\mathbb{R})$. This shows that $\mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R} \subset$ $\mathcal{B}(\mathbb{R})$, and therefore $\mathcal{B}(\mathbb{R})=\mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R}$.
Finally, we need to prove that $\mathcal{O}(\mathbb{R})=\mathcal{O}(\overline{\mathbb{R}}) \cap \mathbb{R}$ where $\mathcal{O}(\overline{\mathbb{R}})$ is the usual topology on $\overline{\mathbb{R}}$. To see this note that a set $\bar{U} \in \overline{\mathbb{R}}$ is open if for each point $x \in \bar{U}$ there is an open neighborhood containing x and is contained in \bar{U}. If x is real, then an open neighboorhood is an open interval in the usual sense. If $x=-\infty$, then an open neighborhood is an interval of the for $[-\infty, a)$, and if $x=+\infty$, then an open neighborhood is an interval of the form $(a,+\infty]$. In otherwords, a set $\bar{U} \subset \overline{\mathbb{R}}$ is open if it is of the form $\bar{U}=U \cup C$, where U is open in \mathbb{R} and C of the form $[-\infty, a)$ or $(a,+\infty]$ or \emptyset or $\overline{\mathbb{R}}$ or union of those. Therefore, $\mathcal{O}(\mathbb{R})=\mathbb{R} \cap \mathcal{O}(\overline{\mathbb{R}})$.
3. (Exercise 8.9, p.65) Show that the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=$ $\max \{x, 0\}$ and $g(x)=\min \{x, 0\}$ are continuous and hence $\mathcal{B}(\mathbb{R}) / \mathcal{B}(\mathbb{R})$ measurable. Conclude that if (X, \mathcal{A}) is a measure space and $u: X \rightarrow \mathbb{R}$ is an $\mathcal{A} / \mathcal{B}(\mathbb{R})$ measurable function, then the positive part u^{+}and the negative part u^{-}are also $\mathcal{A} / \mathcal{B}(\mathbb{R})$ measurable.

Proof: Notice that the functions $i, k: \mathbb{R} \rightarrow \mathbb{R}$ given by $i(x)=x$ and $k(x)=|x|$ are continuous. Now, $f(x)=\frac{1}{2}(i(x)+k(x))$ and $g(x)=\frac{1}{2}(-i(x)+k(x))$ are linear combinations of continuous functions, hence continuous and therefore, $\mathcal{B}(\mathbb{R}) / \mathcal{B}(\mathbb{R})$ measurable. Finally, if $u: X \rightarrow \mathbb{R}$ is an $\mathcal{A} / \mathcal{B}(\mathbb{R})$ measurable function, then $u^{+}=$ $f \circ u$ and $u^{-}=g \circ u$ are compositions of measurable functions, hence measurable.
4. (Exercise 8.15, p.65) Let λ be the one-dimensional Lebesgue measure and u : $\mathbb{R} \rightarrow \mathbb{R}$ given by $u(x)=|x|$. Determine the measure $u(\lambda)=\lambda \circ u^{-1}$.

Proof: Notice that $u(\mathbb{R})=[0, \infty)$. Hence for all Borel sets $B \subset(-\infty, 0)$, one has $u(\lambda)(B)=\lambda\left(u^{-1}(B)\right)=\lambda(\emptyset)=0$. We therefore need to determine $\lambda \circ u^{-1}$ on $\mathcal{B}(\mathbb{R}) \cap[0, \infty)$. Suppose $(a, b) \subset[0, \infty)$ is an interval, then

$$
\begin{aligned}
u(\lambda)(a, b) & =\lambda\left(u^{-1}((a, b))\right)=\lambda((-b,-a) \cup(a, b)) \\
& =(-a-(-b))+(b-a)=2(b-a)=2 \lambda((a, b)) .
\end{aligned}
$$

Since $\{[0, k)\}$ is an exhaustung sequence of finite $u(\lambda)$, by Theorem 5.7, we see that $u(\lambda)=2 \lambda$.

