Universiteit Utrecht

Mathematisch Instituut



Universiteit Utrecht

## Measure and Integration 2007-Selected Solutions Chapter 8

## 1. (Exercise 8.2, p.65) Define

$$\mathcal{B}(\overline{\mathbb{R}}) = \{ B \cup C : B \in \mathcal{B}(\mathbb{R}), \ C \in \{ \emptyset, \{-\infty\}, \{+\infty\}, \{-\infty, +\infty\} \}.$$

Show that  $\mathcal{B}(\overline{\mathbb{R}})$  is a  $\sigma$ -algebra over  $\overline{\mathbb{R}}$ . Moreover prove that  $\mathcal{B}(\mathbb{R}) = \mathbb{R} \cap \mathcal{B}(\overline{\mathbb{R}})$ .

**Proof:** Clearly  $\emptyset \in \mathcal{B}(\overline{\mathbb{R}})$  since  $\emptyset = \emptyset \cup \emptyset$  and  $\emptyset \in \mathcal{B}(\mathbb{R})$ . Suppose  $\overline{B} \in \mathcal{B}(\overline{\mathbb{R}})$ , then  $\overline{B} = B \cup C$  with  $B \in \mathcal{B}(\mathbb{R})$  and  $C \in \{\emptyset, \{-\infty\}, \{+\infty\}, \{-\infty, +\infty\}\}$ . Now,  $\overline{B}^c = \overline{\mathbb{R}} \setminus \overline{B} = (\overline{\mathbb{R}} \setminus B) \cap (\overline{\mathbb{R}} \setminus C)$ . Since  $B \subset \mathbb{R}$ , then  $\overline{\mathbb{R}} \setminus B$  contains  $\{-\infty, +\infty\}$ , so that  $\overline{\mathbb{R}} \setminus B = (\mathbb{R} \setminus B) \cup \{-\infty, +\infty\}$ . Furthermore,  $\mathbb{R} \subset \overline{\mathbb{R}} \setminus C$ , hence

$$\overline{B}^c = [(\mathbb{R} \setminus B) \cup \{-\infty, +\infty\}] \cap (\overline{\mathbb{R}} \setminus C) \\ = [(\mathbb{R} \setminus B) \cap (\overline{\mathbb{R}} \setminus C)] \cup [\{-\infty, +\infty\} \cap (\overline{\mathbb{R}} \setminus C)] \\ = (\mathbb{R} \setminus B) \cup [\{-\infty, +\infty\} \cap (\overline{\mathbb{R}} \setminus C)].$$

Since  $\mathbb{R} \setminus B \in \mathcal{B}(\mathbb{R})$  and  $\{-\infty, +\infty\} \cap (\overline{\mathbb{R}} \setminus C) \in \{\emptyset, \{-\infty\}, \{+\infty\}, \{-\infty, +\infty\}\}$ , it follows that  $\overline{B}^c \in \mathcal{B}(\overline{\mathbb{R}})$ . Finally, let  $\overline{B}_n \in \mathcal{B}(\overline{\mathbb{R}})$ . Then,  $\overline{B}_n = B_n \cup C_n$  with  $B_n \in \mathcal{B}(\mathbb{R})$  and  $C_n \in \{\emptyset, \{-\infty\}, \{+\infty\}, \{-\infty, +\infty\}\}$ . Now,

$$\bigcup_{n} \overline{B}_{n} = (\bigcup_{n} B_{n}) \cup (\bigcup_{n} C_{n}) \in \mathcal{B}(\overline{\mathbb{R}}),$$

since  $\bigcup_n B_n \in \mathcal{B}(\overline{\mathbb{R}})$  and  $\bigcup_n C_n \in \{\emptyset, \{-\infty\}, \{+\infty\}, \{-\infty, +\infty\}\}$ .

We now show that  $\mathcal{B}(\mathbb{R}) = \mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R}$ . Clearly,  $\mathcal{B}(\mathbb{R}) \subset \mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R}$ . Now let  $D \in \mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R}$ , then  $D = \overline{B} \cap \mathbb{R}$  where  $\overline{B} = B \cup C$  with  $B \in \mathcal{B}(\mathbb{R})$  and  $C \in \{\emptyset, \{-\infty\}, \{+\infty\}, \{-\infty, +\infty\}\}$ . Hence,  $D = B \in \mathcal{B}(\mathbb{R})$ . This shows that  $\mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R} \subset \mathcal{B}(\mathbb{R})$ , and therefore  $\mathcal{B}(\mathbb{R}) = \mathcal{B}(\overline{\mathbb{R}}) \cap \mathbb{R}$ .

- 2. (p. 65 exercise 8.3) Let  $(X, \mathcal{A})$  be a measurable space.
  - (a) Let  $f, g : X \to \mathbb{R}$  be measurable functions and let  $A \in \mathcal{A}$ . Show that the function  $h: X \to R$  defined by h(x) = f(x) if  $x \in A$ , and h(x) = g(x) if  $x \notin A$  is measurable.
  - (b) Let  $(f_j)_j$  be a sequence of measurable functions and let  $(A_j)_j \subset \mathcal{A}$  be such that  $X = \bigcup_j A_j$  and  $f_j = f_k$  on  $A_j \cap A_k$ . Define  $f : X \to \mathbb{R}$  by  $f(x) = f_j$  if  $x \in A_j$ . Show that f is measurable.

**Proof(a)**: Notice that since  $A, A^c \in \mathcal{A}$ , then the indicator functions  $1_A$  and  $1_{A^c}$  are measurable. Furthermore,  $h(x) = f(x) \cdot 1_A(x) + g(x) \cdot 1_{A^c}$ , hence measurable (we used the fact the sums and products of measurable functions are measurable).

**Proof(b)**: Notice that the condition  $f_j = f_k$  on  $A_j \cap A_k$  implies that f is well-defined. Let  $B \in \mathcal{B}(\mathbb{R})$ , then

$$f^{-1}(B) = f^{-1}(B) \cap \bigcup_{j} A_{j} = \bigcup_{j} (f^{-1}(B) \cap A_{j}) = \bigcup_{j} (f^{-1}_{j}(B) \cap A_{j}) \in \mathcal{A}.$$

Therefore, f is meaurable.

3. (Exercise 8.9, p.65) Show that the functions  $f, g : \mathbb{R} \to \mathbb{R}$  given by  $f(x) = \max\{x, 0\}$  and  $g(x) = \min\{x, 0\}$  are continuous and hence  $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$  measurable. Conclude that if  $(X, \mathcal{A})$  is a measure space and  $u : X \to \mathbb{R}$  is an  $\mathcal{A}/\mathcal{B}(\mathbb{R})$  measurable function, then the positive part  $u^+$  and the negative part  $u^-$  are also  $\mathcal{A}/\mathcal{B}(\mathbb{R})$  measurable.

**Proof:** Notice that the functions  $i, k : \mathbb{R} \to \mathbb{R}$  given by i(x) = x and k(x) = |x| are continuous. Now,  $f(x) = \frac{1}{2}(i(x) + k(x))$  and  $g(x) = \frac{1}{2}(-i(x) + k(x))$  are linear combinations of continuous functions, hence continuous and therefore,  $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$  measurable. Finally, if  $u : X \to \mathbb{R}$  is an  $\mathcal{A}/\mathcal{B}(\mathbb{R})$  measurable function, then  $u^+ = f \circ u$  and  $u^- = g \circ u$  are compositions of measurable functions, hence measurable.

4. (p.65 exercise 8.12) Let  $u : \mathbb{R} \to \mathbb{R}$  be differentiable. Explain why u and u' = du/dx are measurable.

**Proof**: Since u is differentiable, then u is continuous and hence measurable. Define  $u_n : \mathbb{R} \to \mathbb{R}$  by  $u_n = n (u(x + 1/n) - u(x))$ . Notice that  $u_n$  is a linear combination of measurable functions, hence measurable. Also  $u'(x) = \lim_{n \to \infty} u_n(x)$  for all  $x \in \mathbb{R}$ . Therefore by Corollary 8.9, u' is measurable.

5. (Exercise 8.15, p.65) Let  $\lambda$  be the one-dimensional Lebesgue measure and u:  $\mathbb{R} \to \mathbb{R}$  given by u(x) = |x|. Determine the measure  $u(\lambda) = \lambda \circ u^{-1}$ .

**Proof:** Notice that  $u(\mathbb{R}) = [0, \infty)$ . Hence for all Borel sets  $B \subset (-\infty, 0)$ , one has  $u(\lambda)(B) = \lambda(u^{-1}(B)) = \lambda(\emptyset) = 0$ . We therefore need to determine  $\lambda \circ u^{-1}$  on  $\mathcal{B}(\mathbb{R}) \cap [0, \infty)$ . Suppose  $(a, b) \subset [0, \infty)$  is an interval, then

$$u(\lambda)(a,b) = \lambda(u^{-1}((a,b))) = \lambda((-b,-a) \cup (a,b))$$
  
=  $(-a - (-b)) + (b - a) = 2(b - a) = 2\lambda((a,b)).$ 

Since  $\{[0,k)\}$  is an exhaustung sequence of finite  $u(\lambda)$ , by Theorem 5.7, we see that  $u(\lambda) = 2\lambda$ .