Universiteit Utrecht Mathematisch Instituut

Boedapestlaan 6 3584 CD Utrecht

Measure and Integration 2006-Selected Solutions Chapter 9

1. (p.73, exercise 9.1) Let (X, \mathcal{A}, μ) be a measure space and f a non-negative simple function such that $f(x) = \sum_{j=1}^{m} y_j 1_{A_j}(x)$, where $y_i \ge 0$ and $A_j \in \mathcal{A}$ are not necessarily disjoint. Show that $I_{\mu}(f) = \sum_{j=1}^{m} y_j \mu(A_j)$.

Proof: The function f can be seen as a sum of m simple functions. Hence by Properties 9.3((i) and (ii)), we have

$$I_{\mu}(f) = I_{\mu}(\sum_{j=1}^{m} y_j 1_{A_j}) = \sum_{j=1}^{m} I_{\mu}(y_j 1_{A_j}) = \sum_{j=1}^{m} y_j I_{\mu}(1_{A_j}) = \sum_{j=1}^{m} y_j \mu(A_j).$$

2. (p.73, exercise 9.7) Let (X, \mathcal{A}) be a measurable space, and $(\mu_j)_{j \in \mathbb{N}}$ a sequence of measures on (X, \mathcal{A}) . Let $\mu = \sum_{j \in \mathbb{N}} \mu_j$ (by problem 4.6, μ is a measure). Show that for every $u \in \mathcal{M}^+(\mathcal{A})$, one has

$$\int u\,\mu = \sum_{j\in\mathbb{N}}\int u\,\mu_j.$$

Proof: Suppose first that $u = 1_A$, where $A \in \mathcal{A}$. Then,

$$\int u \, d\mu = \mu(A) = \sum_{n=1}^{\infty} \mu_n(A) = \sum_{n=1}^{\infty} \int u \, d\mu_n.$$

Suppose now that $u = \sum_{k=1}^{m} a_k \mathbf{1}_{A_k}$ is a non-negative simple function in standard form, note that A_1, \dots, A_m are measurable and disjoint. Then,

$$\int f \, d\mu = \sum_{k=1}^m a_k \mu(A_k) = \sum_{k=1}^m a_k \sum_{n=1}^\infty \mu_n(A_k) = \sum_{n=1}^\infty \sum_{k=1}^m a_k \mu_n(A_k) = \sum_{n=1}^\infty \int f \, d\mu_n.$$

Finally, let $u \ge 0$ be measurable. There exists an increasing sequence of non-negative simple functions f_m converging to f. By Theorem 9.6 (Beppo-Levi), $\int u \, d\mu_j = \lim_{m\to\infty} \int f_m \, d\mu_j$ for all $j \in \mathbb{N}$. Consider the double sequence $a_{m,n} = \sum_{j=1}^n \int f_m \, d\mu_j$. It is easy to see that $(a_{m,n})$ is increasing in m and in n, hence by exercise 4.6, $\lim_{m\to\infty} \lim_{n\to\infty} a_{m,n} = \lim_{n\to\infty} \lim_{m\to\infty} a_{m,n}$. Now,

$$u d\mu = \lim_{m \to \infty} \int f_m d\mu$$

=
$$\lim_{m \to \infty} \sum_{j=1}^{\infty} \int f_m d\mu_j$$

=
$$\lim_{m \to \infty} \lim_{n \to \infty} \sum_{j=1}^n \int f_m d\mu_j$$

=
$$\lim_{n \to \infty} \lim_{m \to \infty} \sum_{j=1}^n \int f_m d\mu_j$$

=
$$\lim_{n \to \infty} \sum_{j=1}^n \lim_{m \to \infty} \int f_m d\mu_j$$

=
$$\lim_{n \to \infty} \sum_{j=1}^n \int u d\mu_j$$

=
$$\sum_{j=1}^{\infty} \int u d\mu_j.$$

3. (**p.73, exercise 9.9**) Let (X, \mathcal{A}, μ) be a measure space, and let $(A_j)_{j \in N}$ be a sequence of measurable sets. Set

$$\liminf_{j \to \infty} A_j = \bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} A_j, \text{ and } \limsup_{j \to \infty} A_j = \bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} A_j.$$

- (i) Prove that $\mathbf{1}_{\liminf_{j\to\infty}A_j} = \liminf_{j\to\infty}\mathbf{1}_{A_j}$, and $\mathbf{1}_{\limsup_{j\to\infty}A_j} = \limsup_{j\to\infty}\mathbf{1}_{A_j}$.
- (ii) Prove that $\mu(\liminf_{j\to\infty} A_j) \leq \liminf_{j\to\infty} \mu(A_j)$.

ſ

- (iii) Prove that if μ is a finite measure, then $\limsup_{j\to\infty} \mu(A_j) \le \mu(\limsup_{j\to\infty} A_j)$.
- (iv) Provide an example showing that (iii) fails if μ is not finite.

Proof (i): We first begin by proving two general facts, namely if $E = \bigcap_{j=1}^{\infty} E_j$ and

if $F = \bigcup_{j=1}^{\infty} F_j$, then $\mathbf{1}_{\mathbf{E}} = \inf_{n \ge 1} \mathbf{1}_{E_j}$ and $\mathbf{1}_{\mathbf{F}} = \sup_{n \ge 1} \mathbf{1}_{F_j}$. We prove the first, the second is proved in a similar way. We need to investigate when both sides are equal to 1. To this end, consider

$$\mathbf{1}_{\mathbf{E}}(x) = 1 \iff x \in E_j \text{ for all } j \ge 1$$
$$\iff \mathbf{1}_{E_j}(x) = 1 \text{ for all } j \ge 1$$
$$\iff \inf_{j \ge 1} \mathbf{1}_{E_j}(x) = 1.$$

This proves that $\mathbf{1}_{\mathbf{E}} = \inf_{n \ge 1} \mathbf{1}_{E_j}$, and similarly $\mathbf{1}_{\mathbf{F}} = \sup_{n \ge 1} \mathbf{1}_{F_j}$. Going back to the proof of the exercise...we set $B_n = \bigcap_{j=n}^{\infty} A_j$ and $C_n = \bigcup_{j=n}^{\infty} A_j$. Then, $\liminf_{j \to \infty} A_j = \bigcup_{n=1}^{\infty} B_n$ and

 $\limsup_{j \to \infty} A_j = \bigcap_{n=1}^{\infty} C_n.$ By the above we have

$$\mathbf{1}_{\liminf_{j\to\infty}A_j} = \mathbf{1}_{\bigcup_{n=1}^{\infty}B_n} = \sup_{n\geq 1}\mathbf{1}_{B_n} = \sup_{n\geq 1}\mathbf{1}_{\bigcap_{j=n}^{\infty}A_j} = \sup_{n\geq 1}\inf_{j\geq n}\mathbf{1}_{A_j} = \liminf_{n\to\infty}\mathbf{1}_{A_j},$$

and

$$\mathbf{1}_{\limsup_{j\to\infty}A_j} = \mathbf{1}_{\bigcap_{n=1}^{\infty}C_n} = \inf_{n\geq 1}\mathbf{1}_{C_n} = \inf_{n\geq 1}\mathbf{1}_{\cup_{j=n}^{\infty}A_j} = \inf_{n\geq 1}\sup_{j\geq n}\mathbf{1}_{A_j} = \limsup_{n\to\infty}\mathbf{1}_{A_j}.$$

Proof (ii): Applying Fatou's Lemma to the sequence $(\mathbf{1}_{A_j})$ and using part (i), we get

$$\mu(\liminf_{j\to\infty} A_j) = \int \mathbf{1}_{\liminf_{j\to\infty} A_j} \, d\mu = \int \liminf_{j\to\infty} \mathbf{1}_{A_j} \, d\mu \le \liminf_{j\to\infty} \int \mathbf{1}_{A_j} \, d\mu = \liminf_{j\to\infty} \mu(A_j).$$

Proof (iii): Notice that $\mathbf{1}_{A_J} \leq 1$ and $\int 1 d\mu = \mu(X) < \infty$. Hence, by exercise 9.8 (reverse of Fatou's Lemma) we have

$$\limsup_{j \to \infty} \mu(A_j) = \limsup_{j \to \infty} \int \mathbf{1}_{A_j} \, d\mu \le \int \limsup_{j \to \infty} \mathbf{1}_{A_j} \, d\mu = \int \mathbf{1}_{\limsup_{j \to \infty} A_j} \, d\mu = \mu(\limsup_{j \to \infty} A_j)$$

Proof (iv): Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra, and λ is Lebesgue measure. Notice that $\lambda(\mathbb{R}) = \infty$. For $j \geq 1$, let $A_j = [j, 2j]$. Then,

$$\limsup_{j \to \infty} \mu(A_j) = \inf_{n \to \infty} \sup_{j \ge n} \mu(A_j) = \inf_{n \to \infty} \sup_{j \ge n} j = \infty.$$

On the other hand,

$$\mu(\limsup_{j \to \infty} A_j) = \mu(\bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} [j, 2j]) = \mu(\bigcap_{n=1}^{\infty} [n, \infty)) = \mu(\emptyset) = 0.$$

Hence, (iii) fails in this case.

- 4. (**p.73, exercise 9.10**) Let (X, \mathcal{A}, μ) be a measure space and (A_j) a sequence of disjoint measurable sets such that $X = \bigcup_{j \in \mathbb{N}} A_j$.
 - (i) Show that for every $u \in \mathcal{M}^+(\mathcal{A})$ (i.e. u is a non-negative measurable functions with values in $[0, \infty]$) one has

$$\int u \, d\mu = \sum_{j=1}^{\infty} \int \mathbf{1}_{A_j} u \, d\mu.$$

(ii) Assume (X, \mathcal{A}, μ) is σ -finite. Use part (i) to construct a measurable function w > 0 such that $\int w \, d\mu < \infty$.

Proof (i): From $X = \bigcup_{j \in \mathbb{N}} A_j$ (disjoint union), it is easy to see that $1 = \mathbf{1}_X = \sum_{j=1}^{\infty} \mathbf{1}_{A_j}$. By Corollary 9.9, for any $u \in \mathcal{M}^+(\mathcal{A})$ one has

$$\int u \, d\mu = \int \sum_{j=1}^{\infty} \mathbf{1}_{A_j} u \, d\mu = \sum_{j=1}^{\infty} \int \mathbf{1}_{A_j} u \, d\mu.$$

Proof (ii): Suppose μ is σ -finite, then there exists an increasing sequence (E_n) of measurable sets such that $X = \bigcup_{n \in \mathbb{N}} E_n$, and $\mu(E_n) < \infty$ for all $n \in \mathbb{N}$. Define $A_1 = E_1$, and for $n \ge 2$, $A_n = E_n \setminus E_{n-1}$. Then the sequence (A_n) is disjoint, $X = \bigcup_{j \in \mathbb{N}} A_j$ and $\mu(A_n) = \mu(E_n) - \mu(E_{n-1}) < \infty$. Define w on X by

$$w(x) = \sum_{n=1}^{\infty} \frac{2^{-n}}{\mu(A_n) + 1} \mathbf{1}_{A_n}.$$

Then, clearly, w(x) > 0 for all $x \in X$, and by Corollary 9.9,

$$\int w \, d\mu = \int \sum_{n=1}^{\infty} \frac{2^{-n}}{\mu(A_n) + 1} \mathbf{1}_{A_n} \, d\mu = \sum_{n=1}^{\infty} \frac{2^{-n}}{\mu(A_n) + 1} \int \mathbf{1}_{A_n} \, d\mu$$
$$= \sum_{n=1}^{\infty} \frac{2^{-n}}{\mu(A_n) + 1} \mu(A_n) \le \sum_{n=1}^{\infty} 2^{-n} = 1 < \infty.$$