Measure and Integration solutions of extra problems

1. Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ-algebra over \mathbb{R} and λ is Lebesgue measure on $\mathcal{B}(\mathbb{R})$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}0 & \text { if } x<0 \\ 2^{-k} & \text { if } x \in[k, k+1), k \in \mathbb{Z}, k \geq 0\end{cases}
$$

(a) Show that f is measurable, i.e. $f^{-1}(B) \in \mathcal{B}(\mathbb{R})$ for all $B \in \mathcal{B}(\mathbb{R})$.
(b) Determine the values of $\lambda(\{f>1\}), \lambda(\{f<1\}$ and $\lambda(\{1 / 4 \leq f<1\}$.
$\operatorname{Proof}(\mathbf{a}):$ It is enough to show that $f^{-1}((-\infty, a]) \in \mathcal{B}_{\mathbb{R}}$ for all $a \in \mathbb{R}$. Now,

$$
f^{-1}((-\infty, a])= \begin{cases}\emptyset & \text { if } a<0 \\ (-\infty, 0] \cup[k+1, \infty) & \text { if } \frac{1}{2^{k+1}} \leq a<\frac{1}{2^{k}}, k \geq 0 \\ \mathbb{R} & \text { if } a \geq 1\end{cases}
$$

In all cases one sees that $f^{-1}((-\infty, a]) \in \mathcal{B}_{\mathbb{R}}$. Thus, f is measurable.

Proof(b):

$$
\begin{gathered}
\lambda(\{f>1\})=\lambda(\emptyset)=0 . \\
\lambda\left(\{f<1\}=\sum_{k=1}^{\infty} \lambda\left(\left\{f=2^{-k}\right\}\right)=\sum_{k=1}^{\infty} \lambda([k, k+1))=\infty .\right. \\
\lambda(\{1 / 4 \leq f<1\})=\lambda(\{f=1 / 2\})+\lambda(\{f=1 / 4\})=2 .
\end{gathered}
$$

2. Let (X, \mathcal{B}, μ) be a measure space, and $\left(G_{n}\right)_{n} \subset \mathcal{B}$ such that $\mu\left(G_{n} \cap G_{m}\right)=0$ for $m \neq n$. Show that $\mu\left(\bigcup_{n} G_{n}\right)=\sum_{n} \mu\left(G_{n}\right)$.

Proof: Let $A_{1}=G_{1}, B_{1}=\emptyset$. For $n \geq 2$, set $A_{n}=G_{n} \backslash \bigcup_{m=1}^{n-1} G_{m}$ and $B_{n}=$ $G_{n} \cap \bigcup_{m=1}^{n-1} G_{m}=\bigcup_{m=1}^{n-1}\left(G_{n} \cap G_{m}\right)$. Then,

- $G_{n}=A_{n} \cup B_{n}$ for all $n \geq 1$,
$-A_{n} \cap A_{m}=\emptyset$ for $m \neq n$,
$-\mu\left(B_{n}\right)=0$ for all $n \geq 1$ (since $\mu\left(G_{n} \cap G_{m}\right)=0$ for $n \neq m$), hence $\mu\left(G_{n}\right)=\mu\left(A_{n}\right)$ for all $n \geq 1$,
- $\bigcup_{n=1}^{\infty} A_{n}=\bigcup_{n=1}^{\infty} G_{n}$: clearly the left handside is a subset of the right handside. Now, let $x \in \bigcup_{n=1}^{\infty} G_{n}$, then $x \in G_{n}$ for some n. Let n_{0} be the smallest positive integer such that $x \in G_{n_{0}}$, then $x \in A_{n_{0}} \subseteq \bigcup_{n=1}^{\infty} A_{n}$.
Hence,

$$
\mu\left(\bigcup_{n=1}^{\infty} G_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(G_{n}\right) .
$$

3. Let (X, \mathcal{B}, ν) be a measure space, and suppose $X=\bigcup_{n=1}^{\infty} E_{n}$, where $\left\{E_{n}\right\}$ is a collection of pairwise disjoint measurable sets such that $\nu\left(E_{n}\right)<\infty$ for all $n \geq 1$. Define μ on \mathcal{B} by $\mu(B)=\sum_{n=1}^{\infty} 2^{-n} \nu\left(B \cap E_{n}\right) /\left(\nu\left(E_{n}\right)+1\right)$.
(a) Prove that μ is a finite measure on (X, \mathcal{B}).
(b) Let $B \in \mathcal{B}$. Prove that $\mu(B)=0$ if and only if $\nu(B)=0$.

Proof (a): Clearly $\mu(\emptyset)=0$, and

$$
\mu(X)=\sum_{n=1}^{\infty} 2^{-n} \nu\left(E_{n}\right) /\left(\nu\left(E_{n}\right)+1\right) \leq \sum_{n=1}^{\infty} 2^{-n}=1<\infty .
$$

Now, let $\left(C_{n}\right)$ be a disjoint sequence in \mathcal{B}. Then,

$$
\begin{aligned}
\mu\left(\bigcup_{m=1}^{\infty} C_{m}\right) & =\sum_{n=1}^{\infty} 2^{-n} \nu\left(\left(\bigcup_{m=1}^{\infty} C_{m}\right) \cap E_{n}\right) /\left(\nu\left(E_{n}\right)+1\right) \\
& =\sum_{n=1}^{\infty} 2^{-n} \sum_{m=1}^{\infty} \nu\left(C_{m} \cap E_{n}\right) /\left(\nu\left(E_{n}\right)+1\right) \\
& =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} 2^{-n} \nu\left(C_{m} \cap E_{n}\right) /\left(\nu\left(E_{n}\right)+1\right) \\
& =\sum_{m=1}^{\infty} \mu\left(C_{m}\right) .
\end{aligned}
$$

Thus, μ is a finite measure.
Proof (b): Suppose that $\nu(B)=0$, then $\nu\left(B \cap E_{n}\right)=0$ for all n, hence $\mu(B)=0$. Conversely, suppose $\mu(B)=0$, then $\nu\left(B \cap E_{n}\right)=0$ for all n. Since $X=\bigcup_{n=1}^{\infty} E_{n}$ (disjoint union), then

$$
\nu(B)=\nu\left(B \cap \bigcup_{n=1}^{\infty} E_{n}\right)=\nu\left(\bigcup_{n=1}^{\infty}\left(B \cap E_{n}\right)\right)=\sum_{n=1}^{\infty} \nu\left(B \cap E_{n}\right)=0 .
$$

4. Let (E, \mathcal{B}, μ) be a measure space, and $\overline{\mathcal{B}}^{\mu}$ be the completion of the σ-algebra \mathcal{B} with respect to the measure μ (see exercise 4.13, p.29). We denote by $\bar{\mu}$ the extension
of the measure μ to the σ-algebra $\overline{\mathcal{B}}^{\mu}$. Suppose $f: E \rightarrow E$ is a function such that $f^{-1}(B) \in \mathcal{B}$ and $\mu\left(f^{-1}(B)\right)=\mu(B)$ for each $B \in \mathcal{B}$. Show that $f^{-1}(\bar{B}) \in \overline{\mathcal{B}}^{\mu}$ and $\bar{\mu}\left(f^{-1}(\bar{B})\right)=\bar{\mu}(\bar{B})$ for all $\bar{B} \in \overline{\mathcal{B}}^{\mu}$.

Proof: Let $\bar{B} \in \overline{\mathcal{B}}^{\mu}$, then there exist $A, B \in \mathcal{B}$ such that $A \subseteq \bar{B} \subseteq B, \mu(B \backslash A)=0$ and $\bar{\mu}(\bar{B})=\mu(A)$. Then, $f^{-1}(A), f^{-1}(B) \in \mathcal{B}$ satisfy $f^{-1}(\bar{A}) \subseteq f^{-1}(\bar{B}) \subseteq f^{-1}(B)$ and $\mu\left(f^{-1}(B) \backslash f^{-1}(A)\right)=\mu\left(f^{-1}(B \backslash A)\right)=\mu(B \backslash A)=0$. Thus, $f^{-1}(\bar{B}) \in \overline{\mathcal{B}}^{\mu}$ and $\bar{\mu}\left(f^{-1}(\bar{B})\right)=\mu\left(f^{-1}(A)=\mu(A)=\bar{\mu}(\bar{B})\right.$.
5. Let X be a set, and $\mathcal{C} \subseteq \mathcal{P}(X)$. Consider $\sigma(\mathcal{C})$, the smallest σ-algebra over X containing \mathcal{C}, and let \mathcal{D} be the collection of sets $A \in \sigma(\mathcal{C})$ with the property that there exists a countable collection $\mathcal{C}_{0} \subseteq \mathcal{C}$ (depending on A) such that $A \in \sigma\left(\mathcal{C}_{0}\right)$.
(a) Show that \mathcal{D} is a σ-algebra over X.
(b) Show that $\mathcal{D}=\sigma(\mathcal{C})$.

Proof (a): Clearly $\emptyset \in \mathcal{D}$ since \emptyset belongs to every σ-algebra. Let $A \in \mathcal{D}$, then there is a countable collection $\mathcal{C}_{0} \subseteq \mathcal{C}$ such that $A \in \sigma\left(\mathcal{C}_{0}\right)$. But then $A^{c} \in \sigma\left(\mathcal{C}_{0}\right)$, hence $A^{c} \in \mathcal{D}$. Finally, let $\left\{A_{n}\right\}$ be in \mathcal{D}, then for each n there exists a countable collection $\mathcal{C}_{n} \subseteq \mathcal{C}$ such that $A_{n} \in \sigma\left(\mathcal{C}_{n}\right)$. Let $\mathcal{C}_{0}=\bigcup_{n} \mathcal{C}_{n}$, then $\mathcal{C}_{0} \subseteq \mathcal{C}$, and \mathcal{C}_{0} is countable. Furthermore, $\sigma\left(\mathcal{C}_{n}\right) \subseteq \sigma\left(\mathcal{C}_{0}\right)$, and hence $A_{n} \in \sigma\left(\mathcal{C}_{0}\right)$ for each n which implies that $\bigcup_{n} A_{n} \in \sigma\left(\mathcal{C}_{0}\right)$. Therefore, $\bigcup_{n} A_{n} \in \mathcal{D}$ and \mathcal{D} is a σ-algebra.

Proof (b): By definition $\mathcal{D} \subseteq \sigma(\mathcal{C})$. Also, $\mathcal{C} \subseteq \mathcal{D}$ since $C \in \sigma(\{C\})$ for every $C \in \mathcal{C}$. Since $\sigma(\mathcal{C})$ is the smallest σ-algebra over X containg \mathcal{C}, then by part (a) $\sigma(\mathcal{C}) \subseteq \mathcal{D}$. Thus, $\mathcal{D}=\sigma(\mathcal{C})$.
6. Let E be a set, and \mathcal{A} an algebra over E, i.e. \mathcal{A} contains the empty set, is closed under complements and finite unions. Let $\mu: \mathcal{A} \rightarrow[0,1]$ be a probability measure \mathcal{A}, i.e. a function satisfying
(I) $\mu(E)=1=1-\mu(\emptyset)$,
(II) if $A_{1}, A_{2}, \cdots, \in \mathcal{A}$ are pairwise disjoint and $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{A}$, then

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right) .
$$

(a) Show that if $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are increasing sequences in \mathcal{A} such that $\bigcup_{n=1}^{\infty} A_{n} \subseteq$ $\bigcup_{n=1}^{\infty} B_{n}$, then $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) \leq \lim _{n \rightarrow \infty} \mu\left(B_{n}\right)$.
(b) Let \mathcal{G} be the collection of all subsets G of E such that there exists an increasing sequence $\left\{A_{n}\right\}$ in \mathcal{A} with $G=\bigcup_{n=1}^{\infty} A_{n}$. Define $\bar{\mu}$ on \mathcal{G} by

$$
\bar{\mu}(G)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right),
$$

where $\left\{A_{n}\right\}$ is an increasing sequence in \mathcal{A} such that $G=\bigcup_{n=1}^{\infty} A_{n}$. Show the following.
(i) $\bar{\mu}$ is well defined.
(ii) If $G_{1}, G_{2} \in \mathcal{G}$, then $G_{1} \cup G_{2}, G_{1} \cap G_{2} \in \mathcal{G}$ and

$$
\bar{\mu}\left(G_{1} \cup G_{2}\right)+\bar{\mu}\left(G_{1} \cap G_{2}\right)=\bar{\mu}\left(G_{1}\right)+\bar{\mu}\left(G_{2}\right)
$$

Proof (a): By Theorem 4.4, one has that if $\left\{D_{n}\right\}$ is an increasing sequence in \mathcal{A} such that $\bigcup_{n} D_{n} \in \mathcal{A}$, then $\mu\left(\bigcup_{n} D_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(D_{n}\right)$. Suppose that $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are increasing sequences in \mathcal{A} such that $\bigcup_{n=1}^{\infty} A_{n} \subseteq \bigcup_{n=1}^{\infty} B_{n}$. For each $m \geq 1$, $\left\{A_{m} \cap B_{n}: n \geq 1\right\}$ is an increasing sequence in \mathcal{A} and $A_{m}=A_{m} \cap \bigcup_{n=1}^{\infty} B_{n}=$ $\bigcup_{n=1}^{\infty}\left(A_{m} \cap B_{n}\right) \in \mathcal{A}$. Thus, for each $m \geq 1$,

$$
\mu\left(A_{m}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{m} \cap B_{n}\right) \leq \lim _{n \rightarrow \infty} \mu\left(B_{n}\right) .
$$

Taking the limit as $m \rightarrow \infty$, we get $\lim _{m \rightarrow \infty} \mu\left(A_{m}\right) \leq \lim _{n \rightarrow \infty} \mu\left(B_{n}\right)$.
Proof (b)(i): Let $G \in \mathcal{G}$. If $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are two increasing sequences in \mathcal{A} such that $G=\bigcup_{n=1}^{\infty} A_{n}=\bigcup_{n=1}^{\infty} B_{n}$. Then, by part (a) $\lim _{m \rightarrow \infty} \mu\left(A_{m}\right)=\lim _{n \rightarrow \infty} \mu\left(B_{n}\right)$. This shows that $\bar{\mu}$ is well defined on \mathcal{G}.

Proof (b)(ii): Let $G_{1}, G_{2} \in \mathcal{G}$, there exist increasing sequences $\left\{A_{n}\right\},\left\{B_{n}\right\}$ in \mathcal{A} such that $G_{1}=\bigcup_{n=1}^{\infty} A_{n}$ and $G_{1}=\bigcup_{n=1}^{\infty} B_{n}$. Then, $\left\{A_{n} \cup B_{n}\right\},\left\{A_{n} \cap B_{n}\right\}$ are increasing sequences in \mathcal{G} such that $G_{1} \cup G_{2}=\bigcup_{n=1}^{\infty}\left(A_{n} \cup B_{n}\right)$ and $G_{1} \cap G_{2}=$ $\bigcup_{n=1}^{\infty}\left(A_{n} \cap B_{n}\right)$. Thus, $G_{1} \cup G_{2}, G_{1} \cap G_{2} \in \mathcal{G}$. By definition of $\bar{\mu}$,

$$
\begin{aligned}
\bar{\mu}\left(G_{1} \cup G_{2}\right) & =\lim _{n \rightarrow \infty} \mu\left(A_{n} \cup B_{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\mu\left(A_{n}\right)+\mu\left(B_{n}\right)-\mu\left(A_{n} \cap B_{n}\right)\right) \\
& =\bar{\mu}\left(G_{1}\right)+\bar{\mu}\left(G_{2}\right)-\bar{\mu}\left(G_{1} \cap G_{2}\right) .
\end{aligned}
$$

