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Mathematisch Instituut 3584 CD Utrecht

Measure and Integration solutions of extra problems

1. Consider the measure space (R,B(R), λ), where B(R) is the Borel σ-algebra over R

and λ is Lebesgue measure on B(R). Let f : R → R be given by

f(x) =







0 if x < 0

2−k if x ∈ [k, k + 1), k ∈ Z, k ≥ 0.

(a) Show that f is measurable, i.e. f−1(B) ∈ B(R) for all B ∈ B(R).

(b) Determine the values of λ({f > 1}), λ({f < 1} and λ({1/4 ≤ f < 1}.

Proof(a): It is enough to show that f−1 ((−∞, a]) ∈ BR for all a ∈ R. Now,

f−1 ((−∞, a]) =























∅ if a < 0

(−∞, 0] ∪ [k + 1,∞) if 1

2k+1 ≤ a < 1

2k , k ≥ 0

R if a ≥ 1.

In all cases one sees that f−1 ((−∞, a]) ∈ BR. Thus, f is measurable.

Proof(b):
λ({f > 1}) = λ(∅) = 0.

λ({f < 1} =

∞
∑

k=1

λ({f = 2−k}) =

∞
∑

k=1

λ([k, k + 1)) = ∞.

λ({1/4 ≤ f < 1}) = λ({f = 1/2}) + λ({f = 1/4}) = 2.

2. Let (X,B, µ) be a measure space, and (Gn)n ⊂ B such that µ(Gn ∩ Gm) = 0 for

m 6= n. Show that µ(
⋃

n

Gn) =
∑

n

µ(Gn).

Proof: Let A1 = G1, B1 = ∅. For n ≥ 2, set An = Gn \
⋃n−1

m=1
Gm and Bn =

Gn ∩
⋃n−1

m=1
Gm =

⋃n−1

m=1
(Gn ∩ Gm). Then,

– Gn = An ∪ Bn for all n ≥ 1,

– An ∩ Am = ∅ for m 6= n,

– µ(Bn) = 0 for all n ≥ 1 (since µ(Gn ∩ Gm) = 0 for n 6= m), hence µ(Gn) = µ(An)
for all n ≥ 1,
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–
⋃

∞

n=1
An =

⋃

∞

n=1
Gn: clearly the left handside is a subset of the right handside.

Now, let x ∈
⋃

∞

n=1
Gn, then x ∈ Gn for some n. Let n0 be the smallest positive

integer such that x ∈ Gn0
, then x ∈ An0

⊆
⋃

∞

n=1
An.

Hence,

µ(
∞
⋃

n=1

Gn) = µ(
∞
⋃

n=1

An) =
∞

∑

n=1

µ(An) =
∞

∑

n=1

µ(Gn).

3. Let (X,B, ν) be a measure space, and suppose X =

∞
⋃

n=1

En, where {En} is a collec-

tion of pairwise disjoint measurable sets such that ν(En) < ∞ for all n ≥ 1. Define

µ on B by µ(B) =

∞
∑

n=1

2−nν(B ∩ En)/(ν(En) + 1).

(a) Prove that µ is a finite measure on (X,B).

(b) Let B ∈ B. Prove that µ(B) = 0 if and only if ν(B) = 0.

Proof (a): Clearly µ(∅) = 0, and

µ(X) =

∞
∑

n=1

2−nν(En)/(ν(En) + 1) ≤
∞

∑

n=1

2−n = 1 < ∞.

Now, let (Cn) be a disjoint sequence in B. Then,

µ(
⋃

∞

m=1
Cm) =

∞
∑

n=1

2−nν((
∞
⋃

m=1

Cm) ∩ En)/(ν(En) + 1)

=

∞
∑

n=1

2−n

∞
∑

m=1

ν(Cm ∩ En)/(ν(En) + 1)

=
∞

∑

m=1

∞
∑

n=1

2−nν(Cm ∩ En)/(ν(En) + 1)

=
∞

∑

m=1

µ(Cm).

Thus, µ is a finite measure.

Proof (b): Suppose that ν(B) = 0, then ν(B ∩ En) = 0 for all n, hence µ(B) = 0.

Conversely, suppose µ(B) = 0, then ν(B ∩ En) = 0 for all n. Since X =
∞
⋃

n=1

En

(disjoint union), then

ν(B) = ν(B ∩
∞
⋃

n=1

En) = ν(

∞
⋃

n=1

(B ∩ En)) =

∞
∑

n=1

ν(B ∩ En) = 0.

4. Let (E,B, µ) be a measure space, and B
µ

be the completion of the σ-algebra B with
respect to the measure µ (see exercise 4.13, p.29). We denote by µ the extension
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of the measure µ to the σ-algebra B
µ
. Suppose f : E → E is a function such that

f−1(B) ∈ B and µ(f−1(B)) = µ(B) for each B ∈ B. Show that f−1(B) ∈ B
µ

and
µ(f−1(B)) = µ(B) for all B ∈ B

µ
.

Proof: Let B ∈ B
µ
, then there exist A, B ∈ B such that A ⊆ B ⊆ B, µ(B \A) = 0

and µ(B) = µ(A). Then, f−1(A), f−1(B) ∈ B satisfy f−1(A) ⊆ f−1(B) ⊆ f−1(B)
and µ(f−1(B) \ f−1(A)) = µ(f−1(B \ A)) = µ(B \ A) = 0. Thus, f−1(B) ∈ B

µ
and

µ(f−1(B)) = µ(f−1(A) = µ(A) = µ(B).

5. Let X be a set, and C ⊆ P(X). Consider σ(C), the smallest σ-algebra over X
containing C, and let D be the collection of sets A ∈ σ(C) with the property that
there exists a countable collection C0 ⊆ C (depending on A) such that A ∈ σ(C0).

(a) Show that D is a σ-algebra over X.

(b) Show that D = σ(C).

Proof (a): Clearly ∅ ∈ D since ∅ belongs to every σ-algebra. Let A ∈ D, then
there is a countable collection C0 ⊆ C such that A ∈ σ(C0). But then Ac ∈ σ(C0),
hence Ac ∈ D. Finally, let {An} be in D, then for each n there exists a countable
collection Cn ⊆ C such that An ∈ σ(Cn). Let C0 =

⋃

n Cn, then C0 ⊆ C, and C0 is
countable. Furthermore, σ(Cn) ⊆ σ(C0), and hence An ∈ σ(C0) for each n which
implies that

⋃

n An ∈ σ(C0). Therefore,
⋃

n An ∈ D and D is a σ-algebra.

Proof (b): By definition D ⊆ σ(C). Also, C ⊆ D since C ∈ σ({C}) for every C ∈ C.
Since σ(C) is the smallest σ-algebra over X containg C, then by part (a) σ(C) ⊆ D.
Thus, D = σ(C).

6. Let E be a set, and A an algebra over E, i.e. A contains the empty set, is closed
under complements and finite unions. Let µ : A → [0, 1] be a probability measure
A, i.e. a function satisfying

(I) µ(E) = 1 = 1 − µ(∅),

(II) if A1, A2, · · · ,∈ A are pairwise disjoint and
⋃

∞

n=1
An ∈ A, then

µ(

∞
⋃

n=1

An) =

∞
∑

n=1

µ(An).

(a) Show that if {An} and {Bn} are increasing sequences in A such that
⋃

∞

n=1
An ⊆

⋃

∞

n=1
Bn, then limn→∞

µ(An) ≤ limn→∞
µ(Bn).

(b) Let G be the collection of all subsets G of E such that there exists an increasing
sequence {An} in A with G =

⋃

∞

n=1
An. Define µ on G by

µ(G) = lim
n→∞

µ(An),

where {An} is an increasing sequence in A such that G =
⋃

∞

n=1
An. Show the

following.

(i) µ is well defined.

3



(ii) If G1, G2 ∈ G, then G1 ∪ G2, G1 ∩ G2 ∈ G and

µ(G1 ∪ G2) + µ(G1 ∩ G2) = µ(G1) + µ(G2).

Proof (a): By Theorem 4.4, one has that if {Dn} is an increasing sequence in A
such that

⋃

n Dn ∈ A, then µ(
⋃

n Dn) = limn→∞
µ(Dn). Suppose that {An} and

{Bn} are increasing sequences in A such that
⋃

∞

n=1
An ⊆

⋃

∞

n=1
Bn. For each m ≥ 1,

{Am ∩ Bn : n ≥ 1} is an increasing sequence in A and Am = Am ∩
⋃

∞

n=1
Bn =

⋃

∞

n=1
(Am ∩ Bn) ∈ A. Thus, for each m ≥ 1,

µ(Am) = lim
n→∞

µ(Am ∩ Bn) ≤ lim
n→∞

µ(Bn).

Taking the limit as m → ∞, we get limm→∞
µ(Am) ≤ limn→∞

µ(Bn).

Proof (b)(i): Let G ∈ G. If {An} and {Bn} are two increasing sequences in A such
that G =

⋃

∞

n=1
An =

⋃

∞

n=1
Bn. Then, by part (a) limm→∞

µ(Am) = limn→∞
µ(Bn).

This shows that µ is well defined on G.

Proof (b)(ii): Let G1, G2 ∈ G, there exist increasing sequences {An}, {Bn} in
A such that G1 =

⋃

∞

n=1
An and G1 =

⋃

∞

n=1
Bn. Then, {An ∪ Bn}, {An ∩ Bn} are

increasing sequences in G such that G1 ∪ G2 =
⋃

∞

n=1
(An ∪ Bn) and G1 ∩ G2 =

⋃

∞

n=1
(An ∩ Bn). Thus, G1 ∪ G2, G1 ∩ G2 ∈ G. By definition of µ,

µ(G1 ∪ G2) = lim
n→∞

µ(An ∪ Bn)

= lim
n→∞

(µ(An) + µ(Bn) − µ(An ∩ Bn))

= µ(G1) + µ(G2) − µ(G1 ∩ G2).
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