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ABSTRACT

As a measure for the resemblance of curves in arbitrary dimensions we consider
the so-called Fréchet-distance, which is compatible with parametrizations of the curves.
For polygonal chains P and Q consisting of p and ¢ edges an algorithm of runtime
O(pqlog(pg)) measuring the Fréchet-distance between P and Q is developed. Then
some important variants are considered, namely the Fréchet-distance for closed curves,
the nonmonotone Fréchet-distance and a distance function derived from the Fréchet-
distance measuring whether P resembles some part of the curve Q.

Keywords: Fréchet-distance, shape analysis, resemblance of curves, Computational Mor-
phology.

1. Introduction, Definitions

In many applications, two-dimensional shapes are given by the planar curves
forming their boundaries. Consequently, a natural problem in shape comparison
and recognition is to measure, how much two given curves “resemble each other”.
Naturally, the first question to be answered, is what distance measure between
curves should be used to reflect the intuitive notion of “resemblance”.

One possibility is the so-called Hausdorff-metric 65, which for arbitrary bounded
sets A, B C R? is defined as follows:

8§g(A, B) = max|sup inf d(a,b),sup inf d(a,d
(4, B) (aggbgB( )begagA( ))

where d is the underlying metric in the plane, for example the Euclidean metric.
Algorithms were developed for determining the Hausdorff-distance between polygo-
nal curves (even for arbitrary finite sets of line segments), also for the case that one

*This research was supported by Deutache Forschungsgemeinschaft under Grant No. Al 253/1-
3, SPP “Datenstrukturen und effiziente Algorithmen"”
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of the curves can be moved by some rigid motion to “match” the other one as closely
as possible.! While in many applications the Hausdorff-distance is an appropriate
measure, Figure 1 shows an example, where it is not. The two curves have a small
Hausdorff-distance, but do not “resemble” each other at all.

I[:L—
/n/l/I////
Vv

Fig. 1. Two curves with Hausdorfl-distance 6.

The reason for this discrepancy is that the Hausdorff-distance only takes into
account the sets of points on both curves and does not reflect the course of the
curves. In many applications, however, the course of curves is important. One
example are curves which are input by a digitizer such as handwriting, where a
parametrization of the curve is already given by the input device. Also if curves
are to be approximated by simpler ones like, for example, curves representing rivers
or borderlines in cartography, the course is significant and should be reflected by
the metric measuring the quality of the approximation. In order to overcome this
discrepancy we will here consider an alternative metric, the definition of which is
compatible with orientation-preserving reparametrizations of the curves. It was first
defined by Fréchet,?3 and is known as the Fréchet-melric bp.

A popular illustration of the Fréchet-metric is the following: Suppose a man
is walking his dog, he is walking on the one curve the dog on the other. Both
are allowed to control their speed but are not allowed to go backwards. Then the
Fréchet-distance of the curves is the minimal length of a leash that is necedsary.

The concept of 2-dimensional space is neither important for the following defi-

nition nor for the algorithms described by us, in fact they will work for polygonal
curves in arbitrary dimensions. Therefore let V denote in the following an arbitrary
Fuclidean vector space.
Definition 1 A curve is a continuous mapping f : [a,b] = V with a,b € IR and
a < b. A polygonal curve is a curve P: [0,n] =V withn € N, such that for all
i€{0,1,..,n— 1} each Pii,i+1) 18 affine, ie. P(i+A) = (1= N\)P(i) + AP(i + 1)
for all X € [0,1]. n is called the length of P.

Definition 2 Let f: [a,a'] — V and g : [b,¥'] — V be curves. Then Sr(f,9)
denotes their Fréchet-distance, defined as

br(fig)i= inf o maxlf(a(t)) - (B
sloaf=fipf e

where a, 8 range over continuous and increasing functions with a(0) = a, a(1) = o’,
B(0) = b and B(1) = ¥’ only.
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§p is obviously symmetric and it can be shown that the triangle inequality
holds.3 Moreover 6p is invariant under orientation-preserving reparametrizations.
By calling two curves equivalent iff their distance is zero then regarding the equiv-
alence classes as the “true” curves — the so-called Fréchet-curves — and defining
6p appropriately we can realize ép as a metric.

This paper whose results already appeared in preliminary form 4,5.6 jg concerned
with computing the Fréchet-distance for given polygonal curves P and Q. In Sec-
tion 2 we will first consider an easier variant of the problem, namely the following
decision problem:

Given: polygonal curves P and Q and some € 2 0.
Decide, whether §p(P,Q) < €.

An algorithm of runtime O(pq) where p and ¢ are the lengths of P and @Q, respec-
tively, solving this decision problem will be given in Section 2.

The problem of actually computing 6p(P, Q) for given polygonal curves P, Q will
be solved by an algorithm of runtime O(pglog pq) which makes use of the decision
algorithm and the technique of parametric search and which improves upon the
O((pq? + p*q) log(pq)) algorithm from one of our previous papers.*

In Section 3 we will investigate variants of the Fréchet-metric. One is obtained
by dropping the monotonicity condition, the other one by allowing arbitrary starting
points in the case of closed curves. Algorithms for both variants will be developed.
Additionally, we obtain an algorithm for solving the partial matching problem, i.e.
given curves P and Q, find that part of @ to which P has the smallest Fréchet-
distance.

Our model of computation is a random access machine doing arithmetic op-
erations +, —, X,/ and square roots in constant time. Although we describe and
illustrate all problems and algorithms for polygonal curves in JR? with Euclidean
distance, all algorithms work for polygonal curves in R™ for arbitrary but fixed
n and for the L;- and Lo-metrics, as well. For L; and Lo it even suffices that
our model of computation can do integer operations +, —, X in constant time, if we
assume that the input consists of rational numbers and rationals are represented
as fractions. (In principle our algorithm also works for Lx, k # 1,2, 00, but then
the model of computation must be able to solve algebraic equations of some higher
(but fixed) degree in constant time). In the sequel we will denote the underlying
space by V, meaning R" for some n 2 2, and the metric by d(.,.) meaning Ly, L,
or Leo.

It should be mentioned, that Natarajan considers the same problems on
both Hausdorff- and Fréchet-metric (there called “parametric distance”) with re-
spect to the Lo,-metric.” Our algorithms improve upon the runtime of the ones
given there, which are O ([min(p, )]’ max(p, g)) for the decision problem and
O ([min(p, ¢)]? max(p, g) log(1/6)) for the computation problem where & is the pre-
cision to which ¢ (P, Q) is computed.

A problem that we do not address here, but which is important in connection
with the Fréchet-metric is the approzimation of curves by simpler ones. More pre-
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cisely, given a polygonal curve P and a tolerance bound ¢ > 0, find a minimum

link chain @ with ép(P,Q) < e. This approximation problem has already been
investigated.®8

2. Computing the Fréchet-distance

Throughout the rest of this paper let P: [0,p] — V and Q: [0,¢] — V be polyg-
onal curves. Therefore p and ¢ are the numbers of edges of P and Q, respectively.
In order to solve the decision problem let us first consider the case that p =
¢ =1,ie P and Q are just simple line segments. Define F := {(s,1) € [0,1)* |
d(P(s),Q(t)) < €}. F. describes all pairs of points, one on P, one on Q, whose
distance is at most €. Figure 2 shows line segments P, Q, a distance ¢ > 0, and F.
being the white area within the unit square; subsequently called the “free space”.
P

€ pP—————-
Fig. 2. P,Q,c and F,

Lemma 3 In the case of line segments P,Q, the free space F, is the intersection
of the unit square with an ellipse (possibly degenerated to the space between two
parallel lines) for Ly (see Figure 2) and with a parallelogram for Ly or Lo,. In any
case, F, is convez. |

Proof: Extend P and Q from affine mappings over [0, 1] to affine mappings
P’, Q" over R. Then the mapping f : R? — IR? defined by f(s,t) = P'(s) — Q'(t)
is affine, too. Thus, F, = f~1(D,) N[0, 1)?, where D, is the set of all points with
norm £ €. In the case of the Ls-norm D, is a disk, in the cases of the Li- or the
Loo-norm it is a square, so its inverse image under an affine mapping is an ellipse
or a parallelogram respectively. 0O

We extend F; to arbitrary polygonal curves P,Q of lengths p, q respectively:

Fe:={(s,t) € [0,p] x [0, ] | d(P(s), Q) < €}.

Consider [0, p] x [0, ¢] as composed of the pq cells C;; := [i — 1,i] x [j — 1, j] with
1<i<p, 1<j<q. Clearly, F.NC;j corresponds to the free space with respect to
the edge P(i—1)P(7) and the edge Q(j —1)Q(j) according to the original definition.
Figure 3 shows polygonal curves P, Q, a distance € and the corresponding diagram
of cells Cj; with the free space F..

Our algorithms are based on the following straightforward observation:

[N
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Er—

Fig. 3. Diagram for polygonal chains P, Q@ and the given ¢

Lemma 4 For polygonal curves P and Q we have 6r(P,Q) < €, exactly if there
exists a curve within the corresponding F. from (0,0) to (p,q) which is monotone
in both coordinates.

Figure 3 shows such a curve proving that for that example 6r(P, Q) < €. Observe
that the curve as a continuous mapping from [0,1] to [0, p] X [0, q] directly gives
feasible reparametrizations «, 8 according to Definition 2.

For (i,) € {1,...,p} x {1,...,q} let Lj (or B;;) be the left (or bottom) line
segment bounding cell Cjj. Lp41,j is the right line segment bounding Cpj and B; 441
the upper line segment bounding Cj,;. Let Lg := Lij N F, and B,-Fj' = Bij; N Fe.
Because of the convexity of F, within a cell each LS is a line segment of the form
{i = 1} x [aij, bi;]. Likewise B,-F; is of the form [c;j, di;] x {j — 1} (see Figure 4).

Cij4+1 $,j+1
{

g

= biy1,j

Ait1,j

dij
J
Fig. 4. Intervals of free space on the boundary of a cell.

Furthermore we define:
R, = {(s,t) € F: I there exists a monotone curve within F; from (0,0) to (s,t)},
the set of points in the free space “reachable” from (0,0).

Let Lf; = L;; N R, and B,-}} = B;; N R, for all feasible , j. By definition we have



80 H. Alt & M. Godau

Sr(P, Q) < ¢, exactly if (p,q) € Lf+1,q- It easily can be seen by induction that all

nonempty L7, B,-’}- are line segments. Also, given Lf}, B,-’}, L{-'H,j’ and B,FJ +1 then
LR, ; and Bf ., can easily be constructed in (1) time. These considerations lead

to the following algorithm for the decision problem:

Algorithm 1:

for each feasible pair (7, j) do compute L,-IJ: and B,-FJ-' ;
for i := 1 to p do determine Bf,;
for j :=1 to ¢ do determine Ly j;
fori:=1topdo
for j:=1to ¢ do
construct Lﬁ_l'j and ijﬂ from Lf}, B{}, Lﬂ_l’j, B,{'Hl;
answer “yes” if (p,q) € Lfﬂ,q “no” otherwise.

It follows:

Theorem 5 For given polygonal curves P,Q and ¢ 2 0 Algorithm 1 decides in
O(pq) time, whether §p(P,Q) < €.

Next, let us consider the problem of really computing § := ép(P, Q). Assume
that we start with ¢ = 0 and continuously increase €. Then the free space F,
becomes larger and larger and we want to determine the smallest € such that it

contains a monotone curve from (0,0) to (p,¢). Observe that this can occur only
in one of the following cases:

a) ¢ is minimal with (0,0) € F, and (p,q) € F:.
b) € is minimal with Lf} or Bg becomes nonempty for some pair (i, 7). (A new
passage opens between two neighboring cells.)

¢) ¢ is minimal with a;; = bgj or ¢;j = dji for some i,j, k (possibly, a new
horizontal or vertical passage opens within the diagram, see Figure 5).

Fig. 5. A new horizontal passage in the j-th row of the diagram.

Figure 6 shows the geometric meaning of € in cases a), b), ¢).

There are O(p?q+ pq?) such “critical values” of ¢, namely, the distances between
starting points and endpoints of P and @ ( case a) ), the distances between vertices
of one curve and edges of the other ( case b) ), and the common distance of two
vertices of one curve to the intersection point of their bisector with some edge of
the other ( case ¢) ). Each one of these values can be computed in O(1) time. So
we obtain the following simple algorithm for computing §7(P, Q):

AR el i G s

———

\ b .
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<)

Fig. 6. Critical values of €. Ap, A1,... , Ap denote the vertices of P;f1,..., fq
the edges of Q.

Algorithm 2:
1. Determine all critical values of €.

2. Sort them.

3. Do a binary search on the sorted sequence in each search step solving the
decision problem, continuing with the half containing smaller critical values
if it has a positive answer and with the half containing larger critical values
otherwise.

Observe that the runtime is majorized by the one of Step 2, which is
O ((p°q + ¢°p) log(pg))-

We can obtain an asymptotically faster algorithm applying Meggido’s technique
of parametric search® on the critical values of type ¢). In order to do so, usu-
ally a parallel algorithm for the decision problem is used to direct the parametric
search algorithm. However, as easily can be seen, it is sufficient to use any par-
allel algorithm whose critical values include the ones of the decision algorithm.
Therefore, any parallel comparison-based sorting algorithm sorting all O(pq) values
aij, bij, cij, dij (which depend on ¢) will work. In fact, since a critical £ of type c)
occurs if a;; = byj or ¢;j = di for some i,j,k, it is a critical value of the sorting
algorithm, too. Furthermore, since a;;, bij, ¢ij, dij are algebraic functions in ¢ of
constant degree, a comparison between two of them has only a constant number
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of critical values. * Under these circumstances parametric search based on sorting
can be further improved asymptotically using a technique presented by Cole.!! In
general, this technique yields an algorithm of runtime O((k + Tuec)logk) . Here
Tgec i8 the (sequential) time for the decision problem and k denotes the number of
values to be sorted which is O(pq) in our case.

Altogether, we have the following algorithm for computing § = ér(P, @):

Algorithm 3:

1. Determine all critical values of £ of types a) and b) and apply onto them the
technique of Algorithm 2. This gives two values &, €2 with § € [e1,€3] and
€ & [€1,€2) for any critical value € of type a) or b) other than ¢; or &3.

2. Let A be the set of endpoints a;j, bij, ¢i;,dij of intervals Lf; or B,-Fj' that are
nonempty for € € [€1,€3] (A is determined by the critical values € of Step 1
with € < €;). Use Cole’s variant of parametric search based on sorting the
values in A to find the actual value of 6.

Since there are O(pq) critical values of type a) or b), Step 1 takes O(pg log(pg)) time.
As was mentioned before Step 2 takes time O((k+Tgec) log k) which is O(pq log(pq))
using Algorithm 1 as the decision algorithm.

We summarize:

Theorem 6 For given polygonal curves P,@Q Algorithm 8 computes the Fréchet-
distance 6p(P, Q) in time O(pqlog(pq)).

It should be mentioned here that Algorithm 3, although it has a low asymptotic
complexity, is not really applicable in practice. In fact, Cole’s parametric searching
technique makes use of the Ajtai-Komlos-Szemeredi (AKS) sorting network'? which
involves enormous constants. One of the authors has implemented a method which
determines & bit by bit using Algorithm 1 in each step. A possibly practically
realistic alternative would be to use Megiddo’s original parametric search together
with a simple parallel sorting algorithm like odd-even merge. This method would
have an asymptotic runtime of O(pglog®(pq))

3. Variants of the Fréchet-metric

8.1. The nonmonotone Fréchet-metric

Let us define the nonmonotone Fréchet-metric 6y between curves Cy,Cs as in
Definition 2, except that a;, @ are allowed to be non-monotone. It can be shown®
that 6 is a pseudo-metric (i.e. two objects with distance 0 may be distinct).

oIt is not obvious that a model of computation involving only arithmetic operations and square
roots can determine the critical values of these comparisons. One possibility would be to extend
the model involving the computation of roots of low-degree polynomial equations as well, but a
detailed consideration® shows that, in fact, square roots suffice.
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It follows directly from the definitions that for any two curves C1,Ch
61 (C1,C2) € 88 (Cy, C2) < 6p(Ch, Ca).

Figure 1 shows that there can be an arbitrary large ratio between &y and by,
Figure 7 shows that the same is true between 6y and 6F, also giving some indication
of the drawbacks of 65 for some problem instances.

Fig. 7. Polygonal chains with small § ~ but large 6 p-distance

The problem of computing the nonmonotone Fréchet-distance is closely related
to a problem from Robotics, the so-called ring-width problem, which was stated and
solved by Goodman, Pach, and Yap!3: Suppose a closed polygon P in IR? is given
with two handles (rays) sticking out from two points on its boundary. What is the
minimal width of a ring through which P can be moved starting at one handle and
ending at the other? The authors showed that the ring width equals the elastic ring-
width which is the maximal width of the ring during the motion if it is allowed to
expand and shrink. From this it easily follows that the ring-width equals Sn(P1, Pa)
where Py, P, are the two parts of P on either side of the handles. Although in the
ring-width problem both curves have the same starting and the same endpoint, the
algorithm given by Goodman, Pach and Yap can easily be modified to compute §y
for arbitrary polygonal curves. In fact, it uses similar techniques and considerations
as ours and has the same runtime, so that this section is not much more than an
alternative and possibly simpler formulatign once the reader is familiar with the
terminology of this paper. ’

In order to solve the decision and computation problems for 6y (P, Q) where
P, Q are polygonal curves, we consider the same p x ¢-diagram as in Section 2. Now
the decision problem has a positive answer exactly if there is an arbitrary path in
the free space F. from (0,0) to (p,g). So the only important information is, for
which values of ¢ we have passages between cells C;; and their neighbors, i.e. the
sets Lf;- and B,-Fj‘ are nonempty. In other words, the critical values of ¢ are the ones
of types a) or b).

Consider now the undirected graph G = (V, E) where V = {Cj; | 1<ig<p 1K
j < q}U{s,t}. E consists of all edges between neighboring cells, i.e. all edges of the
form {Cij,Cit1,;}, {Cij, Cij41}. In addition, we have edges {s,C11} and {Cpq,t}.
Furthermore, the edges are labeled with critical values of €. In fact, at the edges
between two neighboring cells we have the minimal ¢ for which there is a possible
direct transition between the two cells within F,. The edge {s, C11} is labeled with
the minimal ¢ for which (0,0) € F, {Cp,,t} with the one for which (p,¢) € Fe. We
define the “weight” of a path within G as the largest weight of its edges.
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Clearly, now the decision problem has a positive answer, exactly if there is a
path of weight at most ¢ between s and t. After having constructed the labeled
graph G this question can be answered by removing all edges with weight > ¢, and
testing whether s and t are in the same connected component by, say, breadth first
search. The runtime of this algorithm is O(pq).

The computation problem consists of determining the minimum weight path
from s to t. This can be solved for example by using Prim’s minimum spanning
tree algorithm!* starting from s and running it until the minimum spanning tree
containing s and ¢ is found. Another possibility is Algorithm 2, where now only
O(pq) critical values occur. Both algorithms have runtime O(pglogpg). We sum-
marize:

Theorem 7 Let P,Q be polygonal curves of length p,q, respectively. Then
a) it can be decided in O(pq) time whether §n(P,Q) < € for a given .

b) 6n(P,Q) can be computed in time O(pqlog(pg)).

3.2. The Fréchet-metric for closed curves

Closed curves are curves with common starting and ending points. Consider
for example the parametrized curve (cos ¢, sinp), where ¢ € [0,2x]. The common
starting and ending point is (1,0) but there is no reason to distinguish this point
from any other one on the circle, e.g. ¢ € [7, 37] will do essentially the same. We say
that the latter curve is the former curve shified by +# and would like to identify such
shifted curves with each other. In this context Definition 2 is not suitable. Since
closed curves are important in practice, we will in this section modify Definition 2
accordingly and develop algorithms for the corresponding decision and computation
problem. '

Definition 8 Let C; and C; be closed curves in V with given orientations. Then
we define

8c(C1,C,) = N i‘I:fe'Rép(Cl shifted by s,,C; shifted by s3)

Coming back to our previous man-dog illustration of the Fréchet-metric, this
definition now means that both are not only allowed to control their speed but also
to choose optimal starting points on the closed curves to minimize the length of the
leash.

For the decision problem, whether §c(P, Q) < ¢ for polygonal curves P and @,
we consider the diagram D for P,Q,e . Let D be the 2p x g-diagram obtained by
concatenating two copies of D occupying the interval [0,2p] x [0,¢] € R?. The
following lemma can easily be verified:

Lemma 9 6c(P,Q) < € ezactly if there ezist a t € [0,p] and a monotone curve
from (1,0) to (t + p,q) in the free space F, of D.
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In order to test this property, we will describe a data structure which allows
us for given points on the boundary of a diagram to check very fast (and in our
application in fact in only constant time) whether there exists a monotone curve in
the free space of the diagram between them.

Suppose, a diagram D is given and let B,T, L and R be the bottom, top, left
and right side of it, respectively. In the data structure these sides are partioned
into finitely many intervals with the property, that for any interval on L there is
an interval on R at the same height and vice versa. An analogous property holds
between B and T. L U B is partitioned into intervals of 3 types:

-type n: a connected subset I C LU B so that from no point on I any point on
RUT can be reached by a monotone path in F.

-type r: a connected subset I C LU B so that from any two points in I the same
set of points on RUT can be reached.

-type s: (“see-through”) a connected subset I C L (or B) so that from any point
in I the horizontal (or vertical) line segment connecting it with R (or T) lies
completely within F.

For an example see Figure 8.

type n
n— type r
(LTI T type S

Fig. 8. Partition of the boundary of the diagram.

To each r-interval I of LU B we attach pointers h to the highest point on RUT
(or leftmost, if there is more than one highest, namely on T') that can be reached
from I, and £ to the lowest reachable point on RUT (or rightmost if there is more
than one lowest, namely on T'). In addition, each s-interval on L has an h- and
each s-interval on B an {-pointer.

Likewise, RU T is partitioned into n-, s-, and r-intervals depending on their
reachability from LU B. Analogously, there are pointers from these intervals to the
lowest (or rightmost) (for s-intervals on R and r-intervals) and to the highest (or
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.................. > e—pointer
—————— h-pointer
type n
n— type r
[LITTTL T type s

Fig. 9. Two diagrams for merging

leftmost) (for s-intervals on T and r-intervals) point on LU B from which they can
be reached.

It will be shown later (in Lemma 10) that once this data structure has been
constructed it is easy to check for given points on the boundary of the diagram
whether there exists the desired curve between them. Now we are showing how to
construct the structure recursively:

Clearly, for 1 x 1-diagrams the partitioning and the pointers can be determined
in constant time.

For larger diagrams we apply a divide-and-conquer strategy by splitting the
diagram in half at its longer side. So a p x g-diagram D, p > ¢ is split into a
|p/2) x ¢ diagram D; on the right and a [p/2] x g-diagram D; on the left.l For
Dy, Dy the problem is solved recursively.

In order to merge the two solutions into one for D, first the intervals in the
partition of the right side Ry of D, are merged with the ones of the left side Lo of
D,. This causes a refinement of the partitions of R; and L2 which is transferred to
L, and Ra, as well. Each new interval gets the same type and the same pointers as
the old interval from which it is a subset. For an example see Figures 9 and 10.

Then the types and pointers of the intervals on Ly U B, and on Ry UT;, are
updated. (Notice, that intervals and pointers on T, and B; do not change.) We
will describe here the updating of the intervals on Ly U B;, the ones on Ry UT; are
updated analogously:

In a first scan we mark as nonpassable all intervals of La (or R;) which are
type-n themselves or where there is a type-n interval on Ry (or Ly) at the same
height. Any h-pointer of an interval K C B; U L, into a nonpassable R;-interval is
set to the nearest passable point below. Likewise, the £-pointers into nonpassable
intervals are set to the nearest passable point above. If for some s-interval K C Ly
the corresponding interval K’ of Ry is nonpassable, set the type of K to r and {(K)

Computing

q

o) N\, \
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-
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JE— » {-pointer
———————+ h-pointer
type n
—— LypE T
smseussms  type &

Fig. 10. Two diagrams after refinement for merging

e K'. If in this process the h-pointer of some

to the nearest passable point abov
pointer, the pointers are removed

interval K € By U L; becomes lower than its £

and K is set to type-n.
Next we scan through the intervals on By U Ly.

update type and pointers as follows:

For each r- or s-interval K we

1. If h(K) exists and points into some 7- OF s-interval I of Lz, then h(K) := h(I).

9. If {(K) exists and points into some interval I C Lo then:

9.1 1f I is type-r, then £(K) := (1.
9.9 If I is type-s, then set LK) to tihe point on R opposite of the lower
endpoint of I.

3. If K is type-s and K'is the corresponding interval at the same height on Lo,

then:
3.1 If K' is type-r then set K to type-r and UK) = £(K").

For an example see Figures 10 and 11.
It is not hard to verify that the total time of the merging is proportional to

the number of intervals in the partitionings of D; and D;. Since any interval
boundary is one of the values aj, bij, €ij» d;; as defined in Section 2, their number
is at most O(pg). Consequently, the runtime of the merging step is O(pq) and that
of the whole divide- and- conquer-algorithm O(pglog pg)- Once the partition of the
boundary of D and the pointers are known, the decision problem can easily been
solved according to Lemma 9 and by the following

Lemma 10 Let D be a diagram with the data structure ezplained above. Further-
more let P be a point in an interval I on B and Q a point in an interval J on T.
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................. » {-pointer
~——» h-pointer
type n
s type 7
sassnenes type s

Fig. 11. Diagram merged from the ones above

Then there erisls a monotone path from P to () within the free space F. of D iff
the following two conditions are true:

1. I is type-r and Q lies between h(I) and €(I) or I is type-s and Q lies to the
right of P and to the left of £(I).

2. J is type-r or type-s

Proof: Clearly 1. and 2. hold if there exists such a path. Conversely let 1. and
2. be true, see Figure 12. By 2. it follows that there exists a monotone path from
a point P/ € LU B to (. So this path must intersect either the path from P to
h(I) or, as shown in the figure, the one from P to £(I). Let S be the intersection
point. So the desired path from P to @ is the one obtained by concatepating the
path from P to S and the one from S to . O

In order to use Lemma 9 we scan the intervals on the bottom and the top of
the diagram simultaneously from left to right. Observe that we have to compare
the boundaries of the intervals in the following way: Let for example u be the z-
coordinate of the interval boundary at the bottom currently considered and v be
the one at the top of the diagram. Then we have to compare u + p with v. So we
have to consider a new type of critical values in addition to types a), b), ¢). Observe
furthermore that the values u and v have appeared somewhere in the diagram as
some boundaries of the free space in some cells. Thus we can characterize these
critical values as follows:

d) ¢ is minimal with ¢;; + p = ciypr or cij +p = digpx 01 dij + P = Ciyp,k OF
d;j +p = diypx for some i, j k.

Now we can solve the computation problem by parametric search just as in
section 2, where we now have to add the values ¢;; + p, d;j + p to the set of values
a@;j, bij, c;j, di; to which the parallel sorting algorithm is applied.
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h(I) Q «n

Fig. 12. Nlustrating Lemma 10

Altogether, we have:

Theorem 11 For the closed Fréchet-metric 6c the decision problem, whether
6c(P,Q) < € can be solved in time O(pqlog pq), the problem of computing 6¢c(P, Q)
in time O(pq log?(pg))-

We conclude this section considering some further variants of the problem:

The idea of the divide-and-conquer algorithm can also be used to design parallel
algorithms. In fact, for the decision problem it is possible to obtain an algorithm
of runtime O(log®(pq)) using pq processors.® A parallelization of the parametric
search by Meggido® then leads to a runtime of O(log*(pg)) with pq processors for
the computation problem.®

For completeness, it should be mentioned, that the problem becomes much easier
for convez polygons in the plane. In fact!, it can be shown!® that 6c(C1,C3) =
61 (C1, Cy) for curves C; and C; describing the boundary of convex sets in the same
orientation. The Hausdorff-distance between polygons P and Q can be computed
in time O((p + ¢) log(p + ¢)).!

It seems natural to combine both variants of the Fréchet-metric considered in
this paper, i.e. define the nonmonotone Fréchet-metric for closed curves. However,
it turns out that several definitions are possible. For the most suitable one examples
can be found showing that the distance function obtained does not even satisfy the
triangle inequality any more,’ i.e. it is not a pseudo-metric. Therefore it seemed
not appropriate to us to consider this generalization, although the ideas from this
paper may be applicable.

3.8. The partial maiching problem

Certainly, there are applications, where one wants to know whether a given
curve ¢ resembles some part of a larger curve f. Therefore we consider the following
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(asymmetric) distance measure for curves f and g:

6p(f,9) := inf{ér(h,g) | h is a subcurve of f}

The computation of §p is a simple application of the data structure and tech-
niques from the last section. First we consider the decision problem again. Given
two polygonal curves P and Q and an ¢ > 0. Is there a subcurve R of P with
6r(R,Q) < €7

‘This is obviously the case iff in the corresponding diagram there exists a mono-
tone curve from the bottom side to the top side. Once we have constructed the data
structure from the last section we only have to check the types of the intervals on
the bottom of the diagram. If all intervals are of type n, then the answer is “no”,
otherwise it is “yes”.

The computation problem can be solved by parametric search again. Altogether
we get algorithms with the same running times as in Section 3.2:

Corollary 12 For the partial matching distance §p the decision problem, — namely
to decide whether §p(P,Q) €< € — can be solved in time O(pqlogpq). The problem
of computing 6p(P, Q) can be solved in time O(pqlog(pq)).

Acknowledgement

The authors would like to thank Kurt Mehlhorn for contributing some useful
ideas to the divide-and-conquer algorithm in Section 3.2.

References

1. H. Alt, B. Behrends, J. Blomer, “Approximate Matching of Polygonal Shapes”,
Proccedings of the Tth ACM Symposium on Computational Geometry (1991) 186~
193.

2. M. Fréchet, “Sur quelques points du calcul fonctionnel”, Rendiconti del Circolo
Mathematico di Palermo, 22 (1906) 1-74.

3. G.M. Ewing, Calculus of Variations with Applications (Dover Publ,, New York,
1985).

4. M. Godau, “A Natural Metric for Curves-Computing the Distance for Polygonal
Chains and Approximation Algorithms”, Proceedings Symposium on Theoretical As-
pects of Computer Science, STACS, Springer Lecture Notes in Computer Science
480 (1991) 127-136.

5. M. Godau, Die Fréchet-Metrik fiir Polygonziige — Algorithmen zur Abstandsmes-
sung und Approximation, Diplomarbeit, Fachbereich Mathematik, FU Berlin 1991.

6. H. Alt, M. Godau, “Measuring the Resemblance of Polygonal Curves”, Proccedings
of the 8th ACM Symposium on Computational Geomelry (1992) 102-109.

7. B.K. Natarajan, “On Piecewise Linear Appproximations to Curves”, Hewlett-
Packard Laboratories, Technical Report, HPL-91-36, Palo Alto, USA, 1991.

8. L.J. Guibas, J.E. Hershberger, J.S.B. Mitchell, J.S. Snoeyink, “Minimum link ap-
proximation of polygons and subdivisions”, In ISA ‘91 Algorithms, eds. W.L. Hsu
and R.C.T. Lee, in Lecture Notes in Computer Science 587 (Springer-Verlag, 1991)
151-162.

9. N. Megiddo, “Applying Parallel Computation Algorithms in the Design of Serial
Algorithms®, J. of the Assoc. for Comp. Machinery 30 (1983) 852-866.

b e e s i

Comput

10. R. Cole, “Parallel Merge Sc

11.

12.

13.

14.

15.

R. Cole, “Slowing Down S
Journal of the Association
M. Ajtaj, J. Komlos, E. Sze
3, (1993) 1-19.

1.E. Goodman, J. Pach, C
Ring-Width of a Polygon”,
T.H. Cormen, C.E. Leisers:
1990).

H. Alt, J. Blomer, M. God

Proceedings ICALP, Inten
gramming (Warwick, Engls



he data structure and tech-
ision problem again. Given
re a subcurve R of P with

jagram there exists a mono-
ve have constructed the data
he types of the intervals on
n, then the answer is “no”,

ric search again. Altogether
ection 3.2:

decision problem, — namely
e O(pglogpq). The problem
(pg))-

or contributing some useful
2.

atching of Polygonal Shapes”,
ational Geometry (1991) 186-

nnel”, Rendiconti del Circolo
ons (Dover Publ.,, New York,

ng the Distance for Polygonal
Symposium on Theoretical As-
re Notes in Computer Science

\lgorithmen zur Abstandsmes-
Mathematik, FU Berlin 1991.
Yolygonal Curves”, Proccedings
etry (1992) 102-109.

1ations to Curves”, Hewlett-
Palo Alto, USA, 1991.
Snoeyink, “Minimum link ap-
91 Algorithms, eds. W.L. Hsu
e 557 (Springer-Verlag, 1991)

‘ithms in the Design of Serial
30 (1983) 852-866.

10.
11.

12.

13.

14.

15.

Computing the Fréchet Distance between Two Polygonal Curves 91

R. Cole, “Parallel Merge Sort®, SIAM J. on Computing 17 (1988) 770-785.

R. Cole, “Slowing Down Sorting Networks to Obtain faster Sorting Algorithms”,
Journal of the Association for Computing Machinery 34 (1987, Number 1) 200-208
M. Ajtaj, J. Komlos, E. Szemeredi, “An O(nlog n) sorting network®. Combinatorica
3, (1993) 1-19.

1.E. Goodman, J. Pach, C.K. Yap, “Mountain Climbing, Ladder Moving, and the
Ring-Width of a Polygon®, American Math. Monthly 96 (1989) 494-510.

T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms (MIT-Press,
1990).

H. Alt, J. Blomer, M. Godau, H. Wagener “Approximation of Convex Polygons”,
Proceedings ICALP, International Colloguium on Automata, Languages and Pro-
gramming (Warwick, England, 1990) 703-716.



