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1.1 Introduction

Large image databases are used in an extraordinary number of multimedia
applications in �elds such as entertainment, business, art, engineering, and
science. Retrieving images by their content, as opposed to external features,
has become an important operation. A fundamental ingredient for content-
based image retrieval is the technique used for comparing images. There
are two general methods for image comparison: intensity-based (color and
texture) and geometry-based (shape). A recent user survey about cognition
aspects of image retrieval shows that users are more interested in retrieval by
shape than by color and texture [SdLV99]. However, retrieval by shape is still
considered one of the most diÆcult aspects of content-based search. Indeed,
systems such as IBM's QBIC, Query By Image Content [QBI], perhaps one
of the most advanced image retrieval systems to date, is relatively successful
in retrieving by color and texture, but performs poorly when searching on
shape. A similar behavior shows the new Alta Vista photo �nder [AVP].

Shape matching is a central problem in visual information systems, com-
puter vision, pattern recognition, and robotics. Applications of shape match-
ing include industrial inspection, �ngerprint matching, and content-based
image retrieval. Figures 1.1, 1.2, and 1.3 illustrate a few typical problems
that need to be solved:

1. Figure 1.1 illustrates an application in agricultural inspection. A typi-
cal problem here is to �nd a matching transformation. Based on shape
characteristics, we can �nd the transformation that matches one piece of
fruit with another.

2. Figure 1.2 shows a point set matching application in �ngerprint iden-
ti�cation. After extraction of featuring points, two point sets must be
matched. The diÆculty here is that there is typically no one to one cor-
respondence between the two point sets. The matching technique should
be robust against noise and occlusion.

3. Figure 1.3 shows an application in multimedia retrieval. Given the query
shape at the left, the task is to �nd all pictures that contain similar
shapes. The typical problem is that only pieces of the query shape appear
in only parts of some of the database pictures.
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Fig. 1.1. Shape matching in fruit inspection.

This paper deals with the matching of geometric shapes, with an emphasis
on techniques from computational geometry. We are concerned with geomet-
ric patterns such as �nite point sets, curves, and regions. For an overview of
more general shape analysis, see [Lon98].

Matching deals with transforming a pattern, and measuring the resem-
blance with another pattern using some dissimilarity measure. Pattern match-
ing and shape matching are commonly used interchangeably. However, more
formally, the shape of a pattern is the pattern under all transformations in
a transformation group. The matching problem is studied in various forms.
Given two patterns and a dissimilarity measure:

{ (computation problem) compute the dissimilarity between the two pat-
terns,

{ (decision problem) for a given threshold, decide whether the dissimilarity
between two patterns is smaller than the threshold,

{ (decision problem) for a given threshold, decide whether there exists a
transformation such that the dissimilarity between the transformed pattern
and the other pattern is smaller than the threshold,

{ (optimization problem) �nd the transformation that minimizes the dissim-
ilarity between the transformed pattern and the other pattern.

Fig. 1.2. Fingerprint matching.
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Fig. 1.3. Query hieroglyph (left), and hieroglyphs retrieved from database, from
[VV99].

Sometimes the time complexities to solve these problems are rather high,
so that it makes sense to devise approximation algorithms that �nd an ap-
proximation:

{ Given two patterns, �nd a transformation that gives a dissimilarity be-
tween the two patterns that is within a speci�ed factor from the minimum
dissimilarity.

There are several variations on these problems. A pattern can be com-
pared to a single pattern or to many other patterns, in which case an indexing
structure is needed to speed up the comparisons. Another variation is to take
artefacts such as noise into account, or to perform partial matching, i.e. �nd-
ing a �nding within a larger pattern.

There are various ways to approach the shape matching problem. In this
article we focus on methods from computational geometry. Computational
geometry is the subarea of algorithms design that deals with the design and
analysis of algorithms for geometric problems involving objects like points,
lines, polygons, and polyhedra. The standard approach taken in computa-
tional geometry is the development of exact, provably correct and eÆcient
solutions to geometric problems. Aspects that play a crucial role in the algo-
rithmic solutions to matching are the representation of patterns, the trans-
formation group, and the dissimilarity measure.

1.2 Approaches

Matching has been approached in a number of ways, including tree pruning
[Ume93], the generalized Hough transform or pose clustering [Bal81] [Sto87],
geometric hashing [WR97], the alignment method [HU87], statistics [Sma96],
deformable templates [SP95], relaxation labeling [RR80], Fourier descriptors
[Lon98], wavelet transform [JFS95], curvature scale space [MAK96], and neu-
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ral networks [Gol95]. Without being complete, in the following subsections
we will describe and group a number of these methods together.

1.2.1 Global image transforms

There is a number of techniques that transform the image from color infor-
mation in the spatial domain to color variation information in the frequency
domain. Although such approaches do not explicitly encode shape for match-
ing and retrieval, they represent color or intensity transitions in the image,
which typically occurs at object boundaries.

A speci�c class of image transformations are wavelet-based transforms.
Wavelets are functions that decompose signals (here two-dimensional color
signals) into di�erent frequency components. Each component is then ana-
lyzed at a resolution corresponding its scale. Because the original image can
be represented as a linear combination of wavelet functions, similar to the
Fourier transform, we can process the images by the wavelet coeÆcients. By
truncating the coeÆcients below a threshold, image data can be sparsely rep-
resented, at the cost of loss of detail. A set of such coeÆcients can be used
as a feature vector for image matching.

The wavelet transform can be done with di�erent basis functions. The
Haar basis functions, used by Jacobs et al. [JFS95], do not perform well
when the query image consist of a small translation of the target image.
This problem is less in the approach of Wang et al. using Daubechies basis
functions [WWFW97].

For the purpose of shape matching, a drawback of global image trans-
forms is that shape information is not explicitly represented, and that the
whole image is encoded, including color and texture information that need
not indicate object transitions. As a result, it is not possible to measure how
much two di�erent images are similar in terms of shape. Also, due to the
global nature, it is not possible to match a query shape with only a part of
an image.

1.2.2 Global Object Methods

Below, we mention a few methods that work on an object as a whole, i.e. a
complete object area or contour. An important drawback of all these methods
is that complete objects in images must be clearly segmented, which is in
itself an ill-posed problem. Typically the result of a segmentation process
is a partitioning into regions that need not correspond to whole objects.
However, the global object methods work only for whole objects. In general,
such methods are not robust against noise and occlusions.

Moments. When a complete object in an image has been identi�ed, it can be
described by a set of moments mp;q . The (p; q)-moment of an object O � R2
is given by
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mp;q =

Z
(x;y)2O

xpyq dx dy

or, in terms of pixels in a binary [1; n]� [1;m] image f :

nX
x=1

mX
y=1

xpyqf(x; y)

where the background pixels have value zero, and the object pixels have value
one. The in�nite sequence of moments, p; q = 0; 1; : : : , uniquely determines
the shape, and vice verse. Variations are described in [KH90] and [Che93].

Based on such moments, a number of functions, moment invariants, can
be de�ned that are invariant under certain transformations such as transla-
tion, scaling, and rotation. Using only a limited number of low order moment
invariants, the less critical and noisy high order moments are discarded. A
number of such moment invariants can be put into a feature vector, which
can be used for matching. Global object features such as area, circularity,
eccentricity, compactness, major axis orientation, Euler number, concavity
tree, shape numbers, and algebraic moments can all be used for shape de-
scription [BB82], [PR92]. A number of such features are for example used by
the QBIC system [NBE+93].

Modal matching. Rather than working with the area of an object, the
boundary can be used instead. Samples of the boundary can be described
with Fourier descriptors, the coeÆcients of the discrete Fourier transform
[vO92].

Another form of shape decomposition is the decomposition into an ordered
set of eigenvectors, also called principal components. Again, the noisy high
order components can be discarded, using only the most robust components.
The idea is to consider n points on the boundary of an object, and to de�ne
a matrix D such that element Dij determines how boundary points i and j
of the object interact, typically involving the distance between points i and
j.

The eigenvectors ei ofD, satisfyingDei = �ei, i = 1; : : : ; n, are themodes

of D, also called eigenshapes. To match two shapes, take the eigenvectors ei of
the query object, and the eigenvectors e0j of the target object, and compute a
mismatch value m(ei; e

0

j). For simplicity, let us assume that the eigenvectors
have the same length. For a �xed i = i0, determine the value j0 of j for which
m(ei0 ; e

0

j) is minimal. If the value of i for which m(ei; e
0

j0
) is minimal is equal

to i0, then point i of the query and point j of the target match each other.
See for example [GT98] and [Scl97] for variations on this basic technique of
modal matching.

Curvature scale space. Another approach is the use of a scale space rep-
resentation of the curvature of the contour of objects. Let the contour C be
parameterized by arc-length s: C(s) = (x(s); y(s)). The coordinate functions
of C are convolved with a Gaussian kernel �� of width �:
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x�(s) =

Z
x(s)��(t� s) dt ��(t) =

1p
2��2

e�
t2

2�2

and the same for y(s). With increasing value of �, the resulting contour gets
smoother, see �gure 1.2.2, and the number of zero crossings of the curvature
along it decreases, until �nally the contour is convex and the curvature is
positive.

Fig. 1.4. Contour evolution reducing curvature changes, see
http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html.

For continuously increasing �, the positions of the curvature zero-crossings
continuously move along the contour, until two such positions meet and an-
nihilate. Matching of two objects can be done by matching points of annihi-
lation in the s; � plane [MAK96].

Another way of reducing curvature changes is based on the turning angle
function (see Section 1.4.1), or tangent space representation [LL99].
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1.2.3 Voting schemes

The voting schemes discussed here generally work on so-called interest points.
For the purpose of visual information systems, such points are for example
corner points detected in images.

Geometric hashing [LW88, WR97] is a method that determines if there is
a transformed subset of the query point set that matches a subset of a target
point set. The method �rst constructs a single hash table for all target point
sets together. Each point is represented as e0 + �(e1 � e0) + �(e2 � e0), for
some �xed choice of points e0; e1; e2, and the (�; �)-plane is quantized into a
two-dimensional table, mapping each real coordinate pair (�; �) to an integer
index pair (k; `).

Let there be N target point sets Bi. For each target point set, the follow-
ing is done. For each three non-collinear points e0; e1; e2 from the point set,
express the other points as e0+�(e1� e0)+�(e2� e0), and append the tuple
(i; e0; e1; e2) to entry (k; `). If there are O(m) points in each target point set,
the construction of the hash table is of complexity O(Nm4).

Now, given a query point set A, choose three noncollinear points e00; e
0

1; e
0

2

from the point set, and express each other point as e00+�(e01�e00)+�(e02�e00),
and tally a vote for each tuple (i; e0; e1; e2) in entry (k; `) of the table. The tu-
ple (i; e0; e1; e2) that receives most votes indicates the target point set Ti con-
taining the query point set. The aÆne transformation that maps (e00; e

0

1; e
0

2)
to the winner (e0; e1; e2) is assumed to be the transformation between the
query and the target. The complexity of matching a single query set of n
points is O(n). There are several variations of this basic method, such as
balancing the hashing table, or avoiding taking all possible O(n3) 3-tuples.

The generalized Hough transform [Bal81], or pose clustering [Sto87], is
also a voting scheme. Here, aÆne transformations are represented by six
coeÆcients. The quantized transformation space is represented as a six-
dimensional table. Now for each triplet of points in the query set, and each
triplet of points from the target set, compute the transformation between
the two triples, and tally a vote in the corresponding entry of the table. This
must be done for all target point sets. The entry with the highest score is
assumed to be the transformation between the query and the target. The
complexity of matching a single query set is O(Nm3n3).

In the alignment method [HU87, Ull96], for each triplet of points from
the query set, and each triplet from the target set, we compute the transfor-
mation between them. With each such transformation, all the other points
from the target set are transformed. If they match with query points, the
transformation receives a vote, and if the number of votes is above a chosen
threshold, the transformation is assumed to be the matching transformation
between the query and the target. The complexity of matching a single query
set is O(Nm4n3).

Variations of these methods also work for geometric features other than
points, and for other transformations than aÆne transformations. A compar-
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ison between geometric hashing, pose clustering, and the alignment method
is made in [Wol90]. Other voting schemes exist, for example taking a proba-
bilistic approach [Ols97].

1.2.4 Computational Geometry

Computational geometry is the subarea of algorithms design that deals with
geometric problems involving operations on objects like points, lines, poly-
gons, and polyhedra. Over the past twenty years the area has grown into a
main-stream world-wide research activity. The success of the �eld as a re-
search discipline can be explained by the beauty of the problems and their
solutions, and by the many applications in which geometric problems and
algorithms play a fundamental role. The standard approach taken in compu-
tational geometry is the development of exact, provably correct and eÆcient
solutions to geometric problems. See for example the text books [Mul93]
[O'R94] [dBvKOS97] [BY98] and the handbook [GO97].

The impact of computational geometry on application domains was mi-
nor up to a few years ago. On one hand, the research community has been
developing more interest in application problems and real world conditions,
and develops more software implementations of the most eÆcient algorithms
available. On the other hand, there is more interest from the application do-
mains in computational geometry techniques, and companies even start to
speci�cally require computational geometry expertise.

Aspects that play an important role in the algorithmic solutions to match-
ing are the representation, decomposition, approximation, and deformation
of shapes, the transformation of one shape to another, the measurement of
shape similarity, and the organization of shapes into search structures. In
the following we give an overview of the state of the art in geometric shape
matching from the computational geometry point of view. It should be noted
though that the boundary of the �eld of computational geometry is not sharp,
and considering a method a computational geometry method or not is some-
what arbitrary.

First we consider properties of dissimilarity measures, then we list a num-
ber of problems in shape matching, together with the best known result to
solve them. We are primarily concerned with patterns de�ned by �nite point
sets, curves, and regions. Unless otherwise stated, patterns are a subset of
R
2 , and the underlying distances are Euclidean.

Dissimilarity Measures

Many pattern matching and recognition techniques are based on a similar-
ity measure between patterns. A similarity measure is a function de�ned on
pairs of patterns indicating the degree of resemblance of the patterns. It is
desirable that such a similarity measure is a metric. Furthermore, a simi-
larity measure should be invariant for the geometrical transformation group
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that corresponds to the matching problem. Below, we discuss a number of
properties of metrics, such as invariance for transformation groups.

Let S be any set of objects. A metric on S is a function d : S � S ! R

satisfying the following three conditions for all x; y; z 2 S [Cop68]:

(i) d(x; x) = 0;
(ii) d(x; y) = 0 implies x = y;
(iii) (strong triangle inequality) d(x; y) + d(x; z) � d(y; z).

If a function satis�es only (i) and (iii), then it is called a pseudometric, or
sometimes semimetric. Symmetry follows from (i) and (iii): d(y; z) � d(z; y)+
d(z; z) = d(z; y), and d(z; y) � d(y; z) + d(y; y) = d(y; z), so d(y; z) = d(z; y).
An alternative triangle inequality is the following:

(iii0) (triangle inequality) d(x; y) + d(y + z) � d(x; z),

but (i) and (iii0) do not imply symmetry:

(iv0) d(x; y) = d(y; x)

So only if d satis�es (iv0) in addition to (i) and (iii0), it is a pseudometric.
Any (pseudo)metric is nonnegative: d(x; y)+d(y; x) � d(x; x), so d(x; y) � 0.

A set S with a �xed metric d is called a metric space. Given two elements
x and y of S, the value d(x; y) is called the distance between x and y. By
identifying elements of S with zero distance, any pseudometric induces a
metric on the resulting partition.

A set of bijections G in S is a transformation group if g�1h 2 G for
all g; h 2 G. A (pseudo)metric d on a set S is said to be invariant for the
transformation group G acting on S if d(g(x); g(y)) = d(x; y) for all g 2 G
and x; y 2 S.

The orbit of G passing through x 2 S is the set of images of x under G:

G(x) = fg(x) j g 2 Gg:

The orbits form a partition of S. The collection of all orbits is called the orbit
set, denoted by S=G.

The following theorem shows that a pseudometric invariant under a trans-
formation group results in a natural pseudometric on the orbit set. Ruck-
lidge [Ruc96] used this principle to de�ne a shape distance based on the
Hausdor� distance.

Theorem 1.2.1. Let G be a transformation group for a set S; let d be a

pseudometric on S invariant for G. Then ~d : S=G� S=G! R de�ned by

~d(G(x); G(y)) = inffd(g(x); y) j g 2 Gg

is a pseudometric.
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A B

g(A)

g(B)

Fig. 1.5. AÆne invariance: d(A;B) = d(g(A); g(B)).

Let P be a �xed collection of subsets of R2 . Any element of P is called
a pattern. We call the collection P with a �xed metric d a metric pattern

space. A collection of patterns P and a transformation group G determine a
family of shapes P=G. For a pattern A 2 P , the corresponding shape equals
the orbit

G(A) = fg(A) j g 2 Gg:

The collection of all these orbits forms a shape space. If d is invariant for G,
then Theorem 1.2.1 gives a pseudometric ~d on the shape space P=G.

Shape matching often involves computing the similarity between two pat-
terns, independent of transformation. This is exactly what the shape met-
ric ~d is good for. Given two patterns A and B, it determines the greatest
lower bound of all d(g(A); B) under transformations g 2 G, resulting in a
transformation-independent distance between the corresponding shapesG(A)
and G(B).

A collection of patterns P uniquely determines a maximal subgroup T of
the homeomorphisms under which P is closed. (Homeomorphims are continu-
ous, bijective functions having a continuous inverse.) The subgroup T consists
of all homeomorphism t such that both the image t(A) and the inverse image
t�1(A) are members of P for all patterns A 2 P .

The metric pattern space (X;P ; d) is invariant for a transformation g 2 T
if d(g(A); g(B)) equals d(A;B) for all A and B in P . The invariance group
G of a metric pattern space consists of all transformations in T for which it
is invariant. AÆne invariance is often desired in many pattern matching and
shape recognition tasks. Figure 1.5 shows patterns A and B in the Euclidean
plane, and image patterns g(A) and g(B) under an aÆne transformation g.
Invariance for aÆne transformations makes the distance between two patterns
independent of the choice of coordinate system.

Finding an aÆne invariant metric for patterns is not so diÆcult. Indeed,
a metric that is invariant not only for aÆne transformations, but for general
homeomorphisms is the discrete metric:

d(A;B) =

(
0 if A equals B

1 otherwise
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However, this metric lacks useful properties. For example, if a pattern A is
only slightly distorted to form a pattern A0, the discrete distance d(A;A0) is
already maximal.

Therefore it makes sense to devise metrics with speci�c properties. A fre-
quently used dissimilarity measure is the Hausdor� distance, which is de�ned
for arbitrary non-empty bounded and closed sets A and B as the in�mum of
the distance of the points in A to B and the points in B to A. This can be
formulated as follows:

d(A;B) = inff� > 0 j A � B� and B � A�g

where A� denotes the union of all disks with radius � centered at a point in
A. The Hausdor� distance is a metric. The invariance group for the Haus-
dor� distance consists of isomorphisms (rigid motions and re
ections). The
Hausdor� distance is robust against small deformations, but it is sensitive
to noise: a single outlier, a far away noise point, drastically increases the
Hausdor� distance, see Figure 1.6.

A

B

d(A;B)

Fig. 1.6. Hausdor� distance.

In the next few sections, we give an overview of dissimilarity measures
for more restricted patterns: �nite point sets, curves, and regions. Then, in
Section 1.6 we will list a number of robustness properties for these measures.

1.3 Finite point sets

Let A and B be point sets of sizes n and m resp. Matching the point sets
means �nding a correspondence between points of A and points of B. An
optimal matching minimizes some dissimilarity measure between the point
sets. The correspondence can be many-to-many, but also one-to-one, both
have their applications. Matching has been studied extensively in a graph
theory setting, where the problem is to �nd a matching in a graph (V;E)
with vertices V = A [ B, and given edges E with weights. Exploiting the
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geometric nature if the vertices are points and the weights are distances
between points, results in more eÆcient algorithms, see [Vai89] for example.

For the purpose of multimedia retrieval, exact point set matching and
congruence matching is less important. This topic is not treated here, the
reader is refered to [AMWW88] and [BK00].

1.3.1 Bottleneck matching

Let A and B be two point sets of size n, and d(a; b) a distance between two
points. The bottleneck distance is the minimum over all 1�1 correspondences
f between A and B of the maximum distance d(a; f(a)). The results on
bottleneck distance mentioned in this section are due to [EI96].

If d(a; b) is the Euclidean distance, the bottleneck distance between A and
B can be computed in time O(n1:5 logn). It is computed using a technique
called parametric search. This is usually considered an impractical method,
although it has been implemented for other problems [SSS97].

An alternative is to compute an approximation d to the bottleneck dis-
tance d�. An approximate matching between A and B with d the furthest
matched pair, such that d� < d < (1 + �)d�, can be computed in time
O(n1:5 logn). This algorithm makes use of an optimal approximate nearest
neighbor algorithm [AMN+94].

So far we have considered only the computation problem, computing the
distance between two point sets. The decision problem for translations, de-
ciding whether there exists a translation ` such that d(A+ `; B) < �, can be
done in O(n5 logn) time.

Because of the high degree in the complexity, it is interesting to look at
approximations with a factor �: d(A + `; B) < (1 + �)d(A + `�; B). Finding
such a translation can be done in O(n2:5) time [Sch92].

The optimization problem considers the computation of the minimum dis-
tance under a group of transformations. It �nds the optimal transformation
f� such that d(f(A); B) is minimized. For rigid motions (translations plus ro-
tations, sometimes called congruences), this can be found in time O(n6 logn)
[AMWW88]. For translations only, it can be computed in time O(n5 log2 n)
[EI96].

An approximation translation ` within factor two, d(A+ `; B) � 2d(A +
`�; B), can be obtained by translating A such that the lower left corner of
the axis parallel bounding box (called reference point) coincides with the
one of B. An approximation with factor 1 + � < 2 can be obtained in time
O(C(�; d)n1:5 logn) time, with C(�; d) a constant depending on � and dimen-
sion d: C(�; d) = ( 1+��2 )d log(1=�).

Some variations on computing the bottleneck distance between point sets
are the following. If A is a set of points, and B a set of segments, computing
the bottleneck distance can be done in O(n1:5+�) time. When the point are
in Rd and the distance is L1, it can be computed in time O(n1:5 logd�1 n).
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Let A and B be two point sets of size m and n, and k a number not larger
than m and n. The problem of �nding the smallest bottleneck distance over
all one-to-one matchings between k points in A and k points in B can be
computed in O(m logm+ n1:5 logm) time. Typical application of this result
is in situations where we search a query pattern A in a larger target pattern
B and have to deal with noise points.

1.3.2 Minimum weight matching

The minimum total distance (weight) is the minimum over all 1 � 1 corre-
spondences f between A and B of the sum of the distances d(a; f(a)). It
can be computed in O(n2+�) time [AES95]. Here, the constant � stands for a
positive constant which can be chosen arbitrarily small with an appropriate
choice of other constants of the algorithm. For the L1 distance, it can be
computed in time O(n2 log3 n) [Vai89].

1.3.3 Uniform matching

The `most uniform' distance is the minimum over all 1�1 correspondences f
between A and B of the di�erence between the maximum and the minimum
d(a; f(a)). The most uniform matching is also called balanced or fair match-
ing. The distance can be computed in time O(n10=3 logn) [EK96]. It is based
on batched range searching, where the ranges are congruent annuli.

The problem of �nding the smallest uniform distance over all one-to-one
matchings beteen k points in A and k points in B can be computed with the
same time complexity.

1.3.4 Minimum deviation matching

The minimum deviation distance is the minimum over all 1 � 1 correspon-
dences f between A and B of the di�erence between the maximum and av-
erage distance d(a; f(a)). This can be computed in time O(n10=3+�) [EK96].

1.3.5 Hausdor� distance

In many application, for example stereo matching, not all points from A need
to have a corresponding point in B, due to occlusion and noise. Typically, the
two point sets are of di�erent size, so that no one-to-one correspondence exists
between all points. In that case, a dissimilarity measure that is often used is
the Hausdor� distance. The Hausdor� distance was de�ned in Section 1.2.4
for general sets. For �nite point sets, it can equivalently be de�ned as follows.

The directed Hausdor� distance ~d(A;B) is de�ned as the maximum over
all points in A of the distances to a point from B. The Hausdor� distance
d(A;B) is the maximum of ~d(A;B) and ~d(A;B):
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d(A;B) = maxf~d(A;B); ~d(B;A)g; ~d(A;B) = max
a2A

min
b2B

d(a; b)

with d(a; b) the underlying (Euclidean, say) distance.
It can be computed using Voronoi diagrams in time O((m+n) log(m+n))

[ABB95]. The use of Voronoi diagrams for computing the Hausdor� distance
is explained in Section 1.5.3 for matching polygons.

Given two point sets A and B, the translation `� that minimizes the
Hausdor� distance d(A + `; B) can be determined in time O(mn(logmn)2)
when the underlying metric is L1 or L1 [CK92]. This is done using a search
structure called segments tree. For other Lp metrics, p = 2; 3; : : : it can be
computed in time O(mn(m + n)�(mn) log(m + n)) [HKS93]. (�(n) is the
inverse Ackermann function, a very slowly increasing function.) This is done
using the upper envelopes of Voronoi surfaces.

Computing the optimal rigid motion r (translation plus rotation), mini-
mizing H(r(A); B) can be done in O((m+ n)6 log(mn)) time [HKK92]. This
is done using dynamic Voronoi diagrams. Given a real value �, deciding
if there is a rigid motion such that H(r(A); B) < � can be done in time
O((m + n)m2n2 logmn) [CGH+97].

Given the high complexities of these problems, it makes sense to look
at approximations. Computing an approximate optimal Hausdor� distance
under translation and rigid motion can be done in time O((m+n) log(m+n))
[AAR97].

1.3.6 Transformation space subdivision

Matching of �nite points, from images, under homotheties (translation and
scaling) is done by subdividing the transformation space by [HKR93]. Rather
than the Hausdor� distance itself, the partial Hausdor� distance is used,
which is the maximum of the two directed partial Hausdor� distances
~dk(A;B) and ~dk(B;A):

dk(A;B) = maxf~dk(A;B); ~dk(B;A)g; ~dk(A;B) =
kth

a 2 A
min
b2B

d(a; b)

The partial Hausdor� distance is not a metric since it fails the triangle in-
equality. The running time depends on the depth of subdivision of transfor-
mation space.

The subdivision of transformation space is generalized to a general frame-
work by [HV99b]. Here the matching can be done with respect to other
transformations as well, for example, similarity (translation, rotation, and
scaling), or aÆne transformation (translation, rotation, scaling, and shear).
The method works for many dissimilarity measures, but we used a technique
for constructing metrics using functions fA; fB : R2 ! R de�ned on patterns
A and B, and the aÆne invariant metric de�ned by integrating the abso-
lute di�erence of fA en fB . Figure 1.7 illustrates matching with this metric,
compared to the partial Hausdor� distance.
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Fig. 1.7. Original images (top), extracted points (second row), matching with
partial Hausdor� distance (third row), and matching with the aÆne invariant metric
from [HV99b] (bottom).

1.4 Curves

The most direct way of representing curves is by their position function,
de�ning all the positions of the curve. A parametric curve A is de�ned in
terms of a parameter: A(t) = (x(t); y(t)). In general, many parameterizations
result in the same shape of the curve, but have di�erent derivative vectors
along the curve [Vel92]. A standard parameterization is by arc length along
the curve; the arc length is usually denoted by s. Polygonal curves (polylines)
are usually represented by their sequence of vertices. An implicit de�nition
of the curve, A : f(x; y) = 0, is less often used in matching.
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Polylines from real world applications often contain many spurious ver-
tices, which can be removed by approximating the polygon. There are many
heuristics for approximating polygonal curves, see e.g. [Ros97] for a compar-
ison. Two methods of optimal approximation are the following:

{ Given a polyline A and a number k, construct an approximation poly-
line Ak of k vertices, minimizing the approximation error, or dissimilarity,
d(A;Ak).

{ Given a polyline and an error bound �, construct an approximation polyline
A� with dissimilarity d(A;A�) < �, minimizing the number of vertices.

Both approximations can be computed in O(n2 logn) time for various error
measures [II88]. However, these optimal approximations are not suitable for
constructing a hierarchy of approximations, in the sense that each segment at
one level may be re�ned at the next level of approximation. Approximating
polygons at various levels allows the hierarchical processing of curves [Vel98].

1.4.1 Turning function

Representations other than the position function are also useful in matching.
From the position function, other representations can be derived, such as the
tangent, acceleration, tangent angle, cumulative angle, periodic cumulative
angle, and the curvature functions [vO92].

The cumulative angle function, or turning function, �A(s) of a polygon
A gives the angle between the counterclockwise tangent and the x-axis as
a function of the arc length s. �A(s) keeps track of the turning that takes
place, increasing with left hand turns, and decreasing with right hand turns.
Clearly, this function is invariant under translation of the polyline. Rotating
a polyline over an angle � results in a vertical shift of the function with an
amount �.

For polylines, the turning function is a piecewise constant function, in-
creasing or decreasing at the vertices, and constant between two consecutive
vertices, see �gure 1.8.

�

�

Fig. 1.8. Polygonal curve and turning function.

Matching polylines based on the turning functions can be done as follows.
For simplicity, �rst assume that the two curves have the same length. The
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Lp metric on function spaces, applied to �A and �B , gives a dissimilarity
measure on A and B:

dA;B =

�Z
j�A(s)��B(s)jp ds

�1=p

Minimizing this dissimilarity under rotation �, amounts to minimizing d(A;B)
=
R j�A(s) � �B(s) + �jp ds. For p = 2, the minimum is obtained for

� =
R
�B(s) ds�

R
�A(s) ds.

In [VV99], for the purpose of retrieving hieroglyphic shapes, the polygo-
nal curves do not have the same length, so that partial matching can be per-
formed. In that case we can move the starting point of the shorter one along
the longer one, and consider only the turning function where the arc lengths
overlap. This is a variation of the algorithms for matching closed polygons
with respect to the turning function, which can be done in O(mn log(mn))
time [ACH+91], see Section 1.5.

Partial matching under scaling, in addition to translation and rotation, is
more involved. This can be done in time O(m2n2), see [CG97]. The dissim-
ilarity balances the length of a match against the squared error. Given two
matches with the same squared error, the match involving the longer part of
the polylines has a better dissimilarity. The dissimilarity measure is a func-
tion of the scale, rotation, and the shift of one polyline along the other. An
analytic formula of the dissimilarity in terms of scale and shift yields a search
problem in scale-shift plane. This space is divided into regions. A minimum
of the dissimilarity is found by a line sweep over the plane.

1.4.2 Signature function

A less discriminative function is the so-called signature function. At every
point along the curve, the signature function � value is the arc length of the
curve to the left or on the tangent line at that point, see Figure 1.9. It is
invariant under similarity: combinations of translation, rotation, and scaling.
For convex curves, the signature function is one everywhere, because at every
point, the whole curve lies to the left of the tangent. For a single polyline
curve, the signature function can be computed in time O(n2) [O'R85].

For polylines, dissimilarity measures can be used that are based on `time
warps' of sequences of elements (vertices or segments), pairing elements of A
to elements of B. The pairing need not be one-to-one: the pairing of element
i of A to element j of B, may be followed by a pairing of i to j + 1, i + 1
to j, or i+ 1 to j + 1. Using dynamic programming, this takes time O(nm)
[Kru83].

1.4.3 AÆne arc-length

Instead of turning functions, aÆne invariant representations of curves may
be used as a basis for shape matching. An example of such a representation is
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Fig. 1.9. A curve and its signature function.

aÆne arc-length. While turning functions are invariant only under similarity
transformations the normalized aÆne arc-length is invariant for all aÆne
transformations. Huttenlocher and Kedem [HK90] use the one-dimensional
Hausdor� distance to compare aÆne arc-length descriptions of curves.

Let A : [0; 1] ! R be a two times continuously di�erentiable curve, and
let A0 and A00 denote the �rst and second order derivates, respectively. The
aÆne arc length is the function � : R ! R given by

�(t) =

Z t

0

jdet(A0(x); A00(x))j 13 dx:

The normalised arc-length is de�ned as follows:

��(t) =
�(t)

�(1)
:

Instead of these de�nitions, Huttenlocher and Kedem use a discretized
version of aÆne arc-length to represent the boundary of a simple polygon.
This discretized representation is a �nite set of numbers between 0 and 1,
one number for each boundary vertex. Two simple polygons are equal if the
respective discretized arc-lengths are equal up to translation modulo 1. This
problem can be solved in a perturbation-robust manner by minimising the
Hausdor� distance between the two representations (seen as one-dimensional
�nite point sets). The latter problem can be solved in O(mn log(mn)) time.

1.4.4 Re
ection metric

AÆne-arc length can be used to de�ne aÆne invariant similarity measures on
curves. However, there is no straightforward generalization of it to patterns
that consist of more than one connected component. The re
ection metric

([HV99a]) is an aÆne-invariant metric that is de�ned on �nite unions of
curves in the plane.

The re
ection metric is de�ned as follows. First, unions of curves are
converted into real-valued functions on the plane. Then, these functions are



1. State-of-the-Art in Shape Matching 19

compared using integration, resulting in a similarity measure for the corre-
sponding patterns.

The functions are formed as follows, for each �nite union of curves A.
For each x 2 Rn , the visibility star V x

A is de�ned as the union of open line
segments connecting points of A that are visible from x:

V x
A =

[
fxa j a 2 A and A \ xa = ? g:

The re
ection star Rx
A is de�ned by intersecting V x

A with its re
ection in x:

Rx
A = fx+ v 2 R2 j x� v 2 V x

A and x+ v 2 V x
A g:

The function �A : R2 ! R is the area of the re
ection star in each point:

�A(x) = area(Rx
A):

Observe that for points x outside the convex hull of A, this area is always
zero. The re
ection metric between patterns A and B de�nes a normalised
di�erence of the corresponding functions �A and �B :

d(A;B) =

R
R2 j�A(x)� �B(x)j dxR

R2max(�A(x); �B(x)) dx
:

From the de�nition follows that the re
ection metric is invariant under
all aÆne transformations. In contrast with single-curve patterns, this metric
is de�ned also for patterns consisting of multiple curves. In addition, the
re
ection metric is deformation, blur, crack, and noise robust.

Here, we focus at the computation of the re
ection metric for �nite unions
of line segments in the plane. First, compute partitions of the plane in which
the combinatorial structure of the re
ection star is constant. Using the latter
partition, the re
ection distance can be computed in O(rI(m + n)) time for
two separate collections of segments with m and n segments, where r is the
complexity of the overlay of two partitions, and I(k) denotes the time needed
to integrate the absolute value of quotients of polynomials with at most degree
k over a triangle. Assuming I(k) is linear in k, the overall complexity amounts
to O(r(m + n)). The complexity of the overlay, r, is O(m4 + n4).

The re
ection metric can be generalised to �nite unions of (d � 1)-
dimensional hyper-surfaces in d dimensions. The generalisation consists of
replacing the two-dimensional area by the d-dimensional volume.

1.4.5 Hausdor� distance

The Hausdor� distance is not only de�ned for �nite point sets, but for any
two compact sets. Special cases are sets of polylines. The results for polylines
are the same as for polygons, see Section 1.5.3.
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1.4.6 Fr�echet distance

The Hausdor� distance is often not appropriate to measure the dissimilarity
between curves. For all points onA, the distance to the closest point on B may
be small, but if we walk forward along curves A and B simultaneously, and
measure the distance between corresponding points, the maximum of these
distances may be larger, see Figure 1.10. This is what is called the Fr�echet
distance. More formerly, let A and B be two parameterized curves A(�(t))
and B(�(t)), and let their parameterizations � and � be continuous functions
of the same parameter t 2 [0; 1], such that �(0) = �(0) = 0, and �(1) =
�(1) = 1. The Fr�echet distance is the minimum over all monotone increasing
parameterizations �(t) and �(t) of the maximal distance d(A(�(t)); B(�(t))),
t 2 [0; 1].

H

F

Fig. 1.10. Hausdor� (H) and Fr�echet (F) distance between two curves.

[AG95] considers the computation of the Fr�echet distance for the spe-
cial case of polylines. Deciding whether the Fr�echet distance is smaller than
a given constant, can be done in time O(mn). Based on this result, and
the `parametric search' technique, it is derived that the computation of the
Fr�echet distance can be done in time O(mn log(mn)). Although the algo-
rithm has low asymptotic complexity, it is not really practical. The paramet-
ric search technique used here makes use of a sorting network with very high
constants in the running time. A simpler sorting algorithm leads to an asymp-
totic running time of O(mn(logmn)3). Still, the parametric search is not easy
to implement. A simpler algorithm, which runs in timeO(mn(m+n) log(mn))
is given in [God91].

A variation of the Fr�echet distance is obtained by dropping the monoticity
condition of the parameterization. The resulting Fr�echet distance d(A;B) is a
pseudometric: zero distance need not mean that the objects are the same, see
Section 1.2.4. For this the decision problem, deciding whether d(A;B) < �
for a given �, can be decided in time O(mn). The actual distance can be
computed in time O(mn log(mn)).

Another variation is to consider partial matching: �nding the part of one
curve to which the other has the smallest Fr�echet distance. The corresponding
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decision problem can be solved in time O(mn log(mn)), the computation
problem in time O(mn(log(mn))2).

1.4.7 Size function

Relatively new are so-called size functions [VU96]. Size functions can be de-
�ned for arbitrary planar graphs and a `measuring function' D. An example
of such a measuring function is the distance from each pattern point to the
center of mass. The size function sD(x; y) is then de�ned as the number of
connected components of the set of points with D � y that have at least
one point with D � x. Size functions do not uniquely represent a shape, but
classes of shapes, depending on the measuring function.

1.4.8 Pixel chains

Given two sets of pixel chains, the root mean square of the distances from
one set of pixels to the other, can be computed with the relatively eÆcient
hierarchical chamfer matching algorithm, which works on the basis of the
distance transform and the chamfer distance [Bor88].

1.5 Regions

As mentioned in Section 1.2.2, normalization of regions, �lled contours, is
often done using algebraic moments. For the special case of polygons, this
can be done in time linear in the number of vertices [Ste96].

A representation that has proven to be relevant in human vision is the
medial axis, producing a skeleton and a width value at each point on the
skeleton (the so-called quench function). For polygonal contours, the medial
axis and the quench function can be computed in time linear in the number
of vertices [CSW95]. For pixel chain contours, this can be computed using
the distance transform [Bor86].

The dissimilarity of contours can be based on sample points along the
contour curve, the whole contour curve, or the enclosed area. For example,
Fourier descriptors are based on samples of the contour. A number of methods
based on the contour curve and the area are mentioned below.

1.5.1 Turning function

As already mentioned in Section 1.4.1, the turning function is also applicable
for matching regions, and was used by [ACH+91] for matching polygons under
translation, rotation, and scaling. For the special case of polygons, matching
based on turning functions can be done as follows. First rescale both polygons
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so that the perimeter has length one. The Lp metric on function spaces,
applied to �A and �B , gives a dissimilarity measure on A and B:

dA;B =

�Z
j�A(s)��B(s)jp ds

�1=p

If the starting point of the arc length parameter of �A(s) is shifted by an
amount t, the new function is �A(s+ t). If the polygon is rotated by an angle
�, the new function is �A(s) + �. Making the dissimilarity invariant for the
starting point of the arc length parameter, and minimizing under rotation �,
amounts to minimizing

dA;B(t; �) =

�Z
j�A(s+ t)��B(s) + �jp ds

�1=p

for t and �.
For any �xed t and p = 2, dA;B(t; �) is minimal for � =

R
�B(s) ds �R

�A(s) ds� 2�t. For polygons, the turning functions are piecewise constant
step functions. Therefore dA;B(t; �) can be evaluated as the sum of O(m+n)
terms corresponding to the areas between the dotted lines, see �gure 1.11.
The minimum dA;B(t; �) is obtained when two steps of the step functions co-
incide, of which are O(mn) possible solutions. This leads to a straightforward
O(mn(m+ n)) algorithm. This can be sped up by incremental evaluation of
dA;B(t; �) for all the O(mn) possible solutions, giving an algorithm of time
complexity O(mn log(mn)) [ACH+91].

s

�A(s)

�B(s)

Fig. 1.11. Rectangles enclosed by �A(s), �B(s), and dotted lines are used for
evaluation of dissimilarity.

It should be noted that nonuniform noise in the form of perturbation of
vertices unevenly spread along the polygon is problematic for this distance
function.

1.5.2 Fr�echet distance

Parameterized contours are curves where the starting point and ending point
are the same. However, the starting and ending point could as well lie some-
where else on the contour, without changing the shape of the contour curve.
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Deciding whether the Fr�echet distance of two contours is smaller than �,
irrespective the starting point, can done in time O(mn log(mn)). The cor-
responding computation problem, computing the Fr�echet distance, can be
solved in time O(mn(log(mn))2) [AG95].

For convex contours curves, the Fr�echet distance is equal to the Hausdor�
distance, which can be computed in time O(mn log(mn)) [ABGW90].

1.5.3 Hausdor� distance

Given two polygons A and B, the directed Hausdor� distance from A to
B can be computed using the Voronoi diagram of B, which assigns to each
vertex and edge of A a region of points that lie closer to that vertex or
edge than to any other, see Figure 1.12. If the edges in the Voronoi diagram
separate regions of two edges (e.g. l(e1; e2)), or two vertices (e.g. l(v1; v3)),
or the regions of an edge and its endpoint vertex (e.g. l(v1; e1)), then they
are line segments. The Voronoi edge is a parabolic segment if it separates
regions of a polygon edge and a vertex that not its endpoint (e.g. p(v1; e2)).
The Voronoi diagram of B has O(n) edges, and it can be computed in time
O(n logn).

v1

v3

p(v1; e2)

e2

l(e1; e2)

e1 l(v1; e1)
l(v1; v3)

B

Fig. 1.12. Polygon and its Voronoi diagram.

To compute the directed Hausdor� distance from A to B, let us consider
the part of B that falls within a single region of the Voronoi diagram of A,
for example the thick line segments in Figure 1.13. Moving along the thick
polyline, the distance to B �rst decreases, than increases, so the maximal
distance is obtained at the intersection of the thick segments with the Voronoi
diagram. In general, the maximal distance is obtained at a vertex of A or at
an intersection point of A with the Voronoi diagram. Note that there can
be multiple intersection points on an edge of the Voronoi diagram, and the
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largest distance is obtained at the intersection with the largest or the smallest
coordinates; there are O(m+ n) of these points. At those points of A where
the maximal distance can occur, we have to actually compute to distance to
B, and take the maximum. This can be done in time O((m+ n) log(m+ n))
by a plane sweep algorithm, see [ABB95] for details.

B

A

Fig. 1.13. Overlay of polygon A with the Voronoi diagram of B.

Given two polygons, the minimal Hausdor� distance under translation
can be computed in time O((mn)2(log(m + n))3) using parametric search
[AST94], or simpler in time O((mn)3(m+ n) log(m+ n)) [ABB92].

Given the high complexities, it makes sense to implement approximation
algorithms to �nd a transformation that gives a Hausdor� distance that is
at most a constant times the minimum distance. For matching under trans-
lations, this can be done the following way. Let `A be the lower left corner
of the axis parallel bounding box of A, i.e. it has the smallest x-coordinate
of all points in A, and also, independently, the smallest y-coordinate of all
points in A. Suppose that the optimal translation of A would be f , so that
the Hausdor� distance dH = d(f(A); B) is minimal. Then the distance be-
tween `A and `B cannot be larger than dH

p
2. So if g is the translation that

maps `A onto `B, then the Hausdor� distance d(g(A); B) is at most a fac-
tor (1 +

p
2) times the optimal dH [ABB95]. Determining g can obviously

be done in time O(m + n), but computing the resulting distance still takes
O(m+ n) log(m+ n), as above.

The minimal Hausdor� distance under rigid motions (not only transla-
tions, but also rotations) can be computed in timeO((mn)4(m+n) log(m+n))
[ABB92]. So again, an approximation algorithm is interesting. Let kA be the
centroid of the edges of the convex hull of A. Suppose that the optimal rigid
motion of A would be f , so that the Hausdor� distance dH = d(f(A); B)
is minimal. There are many rigid motions of A that map kA onto kB . If
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g is the one that gives the smallest Hausdor� distance, then the Haus-
dor� distance d(g(A); B) is at most a factor (4� + 3) times the opti-
mal dH . For details about how to determine g, see [ABB95]. The time
complexity is O((mn) log(mn) log�(mn)). (The notation O(log� n) means

inffkj log log (k times)
: : :

logn � 1g). In words, it is the number of times

that log has be applied to get down from n to below one. For example
log� 24294967296 is only 6.)

1.5.4 Area of overlap and symmetric di�erence

Two dissimilarity measures that are based on the area enclosed by the poly-
gons rather than the boundaries, are the area of overlap and the area of
symmetric di�erence. For two compact sets A and B, the area of overlap
is de�ned as area(A \ B), the area of symmetric di�erence is de�ned as
area((A�B)[ (B�A)), see �gure 1.14. The area of symmetric di�erence is
a metric, but the area of overlap is not. The invariance group is the class of
di�eomorphisms with unit Jacobi-determinant. For translations, the transfor-
mation that maximizes the area overlap also minimizes the area of symmetric
di�erence.

A� B

B � A

B

A

Fig. 1.14. Area of overlap and symmetric di�erence.

Given two polygons, computing the area of overlap can be done by com-
puting the arrangement of two simple polygons, the combinatorial struc-
ture of point, edges, and facets resulting from overlaying the two polygons.
This can be done in time O(n log� n + C), with C the complexity of the
arrangement (number of vertices, edges, and facets). After preprocessing,
taking O((mn)2) time, the area of overlap can be computed more eÆciently,
even for any translation of one polygon with respect to the other, in time
O(log(m+ n)) [MW96].

If the polygons are convex, computing the smallest area of overlap under
translations can be done in time O((m + n) log(m + n)) [dBDvK+96]. It
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turns out that translating the polygons so that their centroids coincide gives
an overlap of at least 9/25 of the optimal solution [dBDvK+96].

Translating convex polygons so that their centroids coincide also gives an
approximate solution for the symmetric di�erence, which is at most 11/3 of
the optimal solution under translations [AFRW96]. This also holds for a set of
transformations F other than translations, if the following holds: the centroid
of A, c(A), is equivariant under the transformations, i.e. c(f(A)) = f(c(A))
for all f in F , and F is closed under composition with translation.

The computation of the centroids can be done in linear time by trian-
gulating each polygon, determining the centroids and areas of the triangles,
and then determining the total centroids as the weighted sum of the triangle
centroids. This takes time linear in the number of vertices.

Normalizing the area of overlap and symmetric di�erence by the area of
the union of the two polygons makes these measures invariant under a larger
transformation group, namely the group of all di�eomorphisms f(x) with a
Jacobi determinant that is constant over all points x 2 R2 [HV99a].

1.6 Robustness

We have alread seen in Section 1.2.4 that the Hausdor� distance is not robust
against noise. There are other types of distortions that can also have its e�ect
on the measure of dissimilarity between two patterns. Figure 1.15 shows the
e�ect discretization can have on a pattern, such as deformation, blurring,
as well as the formation of cracks and noise. If we have a robust, invariant
metric on patterns, then we can perform shape matching in a robust manner
by using the shape metric.

Fig. 1.15. Discretization e�ects: deformation, blur, cracks, and noise.

Below, we formalize four types of robustness.We introduce four axioms ex-
pressing robustness for what we call `deformation', `blur', `cracks' and `noise'.
Deformation robustness says that each point in a pattern may be moved a
little bit without seriously a�ecting the value of the metric. Blur robustness
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says that new points may be added close to the original pattern. Crack ro-
bustness says that components of patterns may be broken up as long as the
cracks are relatively thin. Noise robustness says that new small parts may be
added to a pattern.

Let P be a collection of patterns in R2 , and let T be the maximal group
of homeomorphisms under which P is closed. A metric d on P is called
deformation robust if it satis�es the following axiom:

Axiom 1.6.1. For each A 2 P and � > 0, there is a Æ > 0 such that kx �
t(x)k < Æ for all x 2 bd(A) implies d(A; t(A)) < � for all t 2 T .

Deformation robustness is equivalent to saying that for each pattern A 2 P ,
the map t 7! t(A) with domain T and range P is continuous. Figure 1.16
shows the image of A under a transformation with a small Æ in the sense of
Axiom 1.6.1.

In the following, the boundary of a pattern is denoted with bd(A). We
call a metric pattern space blur robust if the following holds:

Axiom 1.6.2. For each A 2 P and � > 0, an open neighborhood U of bd(A)
exists, such that d(A;B) < � for all B 2 P satisfying B � U = A � U and

bd(A) � bd(B).

The axiom says that additions close to the boundary of A do not cause
discontinuities. Figure 1.17 shows a neighborhood U of A in which parts of
B occur that are not in A.

bd(t(A))

bd(A)

Fig. 1.16. Deformation robust.

U

bd(A)

bd(B)� bd(A)

Fig. 1.17. Blur robust.

We say that a metric pattern space is crack robust if the next axiom holds:

Axiom 1.6.3. For each A 2 P, each \crack" x 2 bd(A), and � > 0, an open

neighborhood U of x exists such that A�U = B�U implies d(A;B) < � for
all B 2 P.

The axiom says that applying changes to A within a small enough neighbor-
hood of a boundary point of A results in a pattern B close to A in pattern
space. Whether the connectedness is preserved does not matter.

If the following axiom is satis�ed, we call a metric pattern space noise

robust:
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Axiom 1.6.4. For each A 2 P, x 2 R2 � bd(A), and � > 0, an open neigh-

borhood U of x exists such that B � U = A � U implies d(A;B) < � for all

B 2 P.

This axiom says that changes in patterns do not cause discontinuities in pat-
tern distance, provided the changes happen within small regions. By means
of the triangle inequality, we obtain an equivalent axiom when neighborhoods
of �nite point sets instead of singletons are considered.

Figure 1.19 shows a pattern A and a point x. Addition of noise B � A
within a neighborhood U of x results in a new pattern B. Axiom 1.6.4 says
that the distance between A and B can be made smaller by making U smaller.

U

x

bd(A)

Fig. 1.18. Crack robust.

U

x

bd(A)

Fig. 1.19. Noise robust.

All these robustness axioms can also be formulated for patterns in higher
dimensions. For a more detailed description, see [HV99c].

For the dissimilarity measures treated in the previous sections, table 1.1
lists the invariance group, and which robustness axioms are satis�ed. For a
more detailed treatment, see [HV99a]. The distance measure that is most
suitable for any particular application totally depends on the application at
hand.

1.7 Software

Most of these results are so recent that almost no implementations are avail-
able. Code for matching point sets under the Hausdor� distance is made
available via http://www3.cs.cornell.edu/dph/docs/. Code for polygon
similarity testing using turning angles is available via the Stony Brook
Algorithm Repository, see http://www.cs.sunysb.edu/~algorith/files/
shape-similarity.shtml. Software for size functions and matching with
size functions is available via http://www.dm.unibo.it/~ferri/vismath/

sizefcts/sizehom2.htm.No matching software is available via Netlib (http:
//netlib.bell-labs.com/netlib/index.html), and no matching software
at all is mentioned in the overview of computational geometry software of
[Ame97].
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distance pattern inv. group deform blur crack noise

bottleneck �nite point
sets

iso yes n.a. n.a. n.a.

minimum
weight

�nite point
sets

iso yes n.a. n.a. n.a.

most uniform �nite point
sets

iso yes n.a. n.a. n.a.

minimum
deviation

�nite point
sets

iso yes n.a. n.a. n.a.

Fr�echet curves iso yes n.a. n.a. n.a.

turning func +
Lp

curves sim yes n.a. n.a. n.a.

signature func.
+ warp

curves sim yes n.a. n.a. n.a.

norm. a�. arc
length + Hausd.

curves a� no n.a. n.a. n.a.

re
ection sets of curves a� yes yes yes yes

norm. area
symm. di�.

regions di�-cj yes yes yes yes

Hausdor� non-empty
compact sets

iso yes yes yes no

discrete point sets hom no no no no

Table 1.1. Patterns, metrics, invariance group, and robustness. `Iso' means the
group of isomorphisms, `sim' means similarities, `di�-cj' means di�eomorphisms
with constant Jacobian determinant. `N.a.' formally means that the axiom is satis-
�ed, but that this is meaningless for that pattern and distance (not applicable).

For implementing geometric algorithms, CGAL, the Computational Ge-
ometry Algorithms Library is available via http://www.cs.uu.nl/CGAL/.
The library provides geometric primitives such as points, lines, and trian-
gles, basic operations such as distance and intersection calculations, as well
as higher level data structures and algorithms such as triangulation, convex
hull, planar map, etc.

dBDvK+96

[AAR97] O. Aichholzer, H. Alt, and G. Rote. Matching shapes with a reference
point. In International Journal of Computational Geometry and Applications,
volume 7, pages 349{363, August 1997.

[ABB92] Helmut Alt, Bernd Behrends, and Johannes Bl�omer. Approximate match-
ing of polygonal shapes. In Proceedings of the 7th Annual ACM Symposium on
Computational Geometry, pages 186{193, 1992.



30 Remco C. Veltkamp and Michiel Hagedoorn

[ABB95] Helmut Alt, Bernd Behrends, and Johannes Bl�omer. Approximate match-
ing of polygonal shapes. Annals of Mathematics and Arti�cial Intelligence,
pages 251{265, 1995.

[ABGW90] H. Alt, J. Bl�omer, M. Godau, and H. Wagener. Approximation of
convex polygons. In Proceedings of the 17th International Colloquium on Au-
tomata, Languages, and Programming (ICALP), Lecture Notes in Computer
Science 443, pages 703{716. Springer, 1990.

[ACH+91] Esther Arkin, Paul Chew, Daniel Huttenlocher, Klara Kedem, and
Joseph Mitchel. An eÆciently computable metric for comparing polygonal
shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(3):209{215, 1991.

[AES95] Pankaj K. Agarwal, Alon Efrat, and Micha Sharir. Vertical decomposi-
tion of shallow levels in 3-dimensional arrangements and its applications. In
Proceedings of the 11th Annual ACM Symposium on Computational Geometry,
pages 39{50, 1995.

[AFRW96] Helmut Alt, Ulrich Fuchs, G�unter Rote, and Gerald Weber. Matching
convex shapes with respect to the symmetric di�erence. In Algorithms ESA '96,
Proceedings of the 4th Annual European Symposium on Algorithms, Barcelona,
Spain, September '96, pages 320{333. LNCS 1136, Springer, 1996.

[AG95] Helmut Alt and Michael Godeau. Computing the Fr�echet distance between
two polygonal curves. International Journal of Computational Geometry &
Applications, pages 75{91, 1995.

[AG96] Helmut Alt and Leonidas J. Guibas. Discrete geometric shapes: Matching,
interpolation and approximation. Technical Report B 96-11, Freie Universit�at
Berlin, December 1996.

[Ame97] Nina Amenta. Computational Geometry Software, chapter 52, pages 951{
960. In Goodman and O'Rourke [GO97], 1997.

[AMN+94] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An
optimal algorithm for approximate nearest neighbor searching. In Proceedings of
the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 573{582,
1994.

[AMWW88] Helmut Alt, Kurt Mehlhorn, Hubert Wagener, and Emo Welzl. Con-
gruence, similarity, and symmetries of geometric objects. Discrete and Compu-
tational Geometry, 3:237{256, 1988.

[AST94] Pankaj K. Agarwal, Micha Sharir, and S. Toledo. Applications of para-
metric searching in geometric optimization. Journal of Algorithms, 17:292{318,
1994.

[AVP] Alta Vista Photo Finder, http://image.altavista.com/cgi-bin/avncgi.
[Bal81] D. H. Ballard. Generalized Hough transform to detect arbitrary patterns.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(2):111{
122, 1981.

[BB82] D. H. Ballard and C. M. Brown. Computer Vision. Prentice Hall, 1982.
[BK00] Peter Brass and Christian Knauer. Testing the congruence of d-dimensional

point sets. In Proceedings of the 16th Annual Symposium on Computational
Geometry, 2000.

[Bor86] G. Borgefors. Distance transforms in digital images. Computer Vision,
Graphics, and Image Processing, 34:344{371, 1986.

[Bor88] Gunilla Borgefos. Hierarchical chamfer matching: a parametric edge match-
ing algorithm. IEEE Transaction on Pattern Analysis and Machine Intelligence,
10(6):849{865, November 1988.

[BY98] J.-D. Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge Uni-
versity Press, 1998.



1. State-of-the-Art in Shape Matching 31

[CG97] Scott D. Cohen and Leonidas J. Guibas. Partial matching of planar poly-
lines under similarity transformations. In Proceedings of the 8th Annual Sym-
posium on Discrete Algorithms, pages 777{786, 1997.

[CGH+97] L. P. Chew, M. T. Goodrich, D. P. Huttenlocher, K. Kedem, J. M. Klein-
berg, and D. Kravets. Geometric pattern matching under Euclidean motion.
Computational Geometry, Theory and Applications, 7:113{124, 1997.

[Che93] C. C. Chen. Improved moment invariants for shape discrimination. Pattern
Recognition, 26(5):683{686, 1993.

[CK92] Paul Chew and Klara Kedem. Improvements on approximate pattern
matching. In 3rd Scandinavian Workshop on Algorithm Theory, Lecture Notes
in Computer Science 621, pages 318{325. Springer, 1992.

[Cop68] E. T. Copson. Metric spaces. Cambridge University Press, 1968.
[CSW95] F. Chin, J. Snoeyink, and C. A. Wang. Finding the medial axis of a

simple polygon in linear time. In Proceedings of the 6th Annual International
Symposium on Algorithms Computation (ISAAC 95), Lecture Notes in Com-
puter Science 1004, pages 382{391. Springer, 1995.

[dBDvK+96] Mark de Berg, Olivier Devillers, Marc van Kreveld, Otfried
Schwarzkopf, and Monique Teillaud. Computing the maximum overlap of two
convex polygons under translation. In Proc. 7th Annu. Internat. Sympos. Al-
gorithms Comput., 1996.

[dBvKOS97] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-
Verlag, 1997.

[EI96] Alon Efrat and Alon Itai. Improvements on bottleneck matching and related
problems using geometry. Proceedings of the 12th Symposium on Computational
Geometry, pages 301{310, 1996.

[EK96] Alon Efrat and Matthew J. Katz. Computing fair and bottleneck matchings
in geometric graphs. In Proceedings of the 7th International Symposium on
Algorithms and Computation, pages 115{125, 1996.

[GO97] J. E. Goodman and J. O'Rourke, editors. Handbook of Discrete and Com-
putational Geometry. CRC Press, 1997.

[God91] M. Godau. A natural metric for curves - computing the distance for polyg-
onal chains and approximation algorithms. In Proceedings of the Symposium on
Theoretical Aspects of Computer Science (STACS), Lecture Notes in Computer
Science 480, pages 127{136. Springer, 1991.

[Gol95] Steven Gold. Matching and Learning Structural and Spatial Representa-
tions with Neural Networks. PhD thesis, Yale University, 1995.

[GT98] Bilge G�unsel and A. Murat Tekalp. Shape similarity matching for query-
by-example. Pattern Recognition, 31(7):931{944, 1998.

[HK90] D. P. Huttenlocher and K. Kedem. Computing the minimum Hausdor�
distance for point sets under translation. In Proc. 6th Annual ACM Symp.
Computational Geometry, pages 340{349, 1990.

[HKK92] D. P. Huttenlocher, K. Kedem, and J. M. Kleinberg. On dynamic Voronoi
diagrams and the minimum Hausdor� distance for point sets under Euclidean
motion in the plane. In Proceedings of the 8th Annuual ACM Symposium on
Computational Geometry, pages 110{120, 1992.

[HKR93] Daniel P. Huttenlocher, Gregory A. Klanderman, and William J. Ruck-
lidge. Comparing images using the hausdor� distance. IEEE Transactions on
Pattern Analysis and Machinen Intelligence, 15:850{863, 1993.

[HKS93] Daniel P. Huttenlocher, Klara Kedem, and Micha Sharir. The upper
envelope of Voronoi surfaces and its applications. Discrete and Computational
Geometry, 9:267{291, 1993.



32 Remco C. Veltkamp and Michiel Hagedoorn

[HU87] D. Huttenlocher and S. Ullman. Object recognition using alignment. In
Proceedings of the International Conference on Computer Vision, London, pages
102{111, 1987.

[HV99a] M. Hagedoorn and R. C. Veltkamp. Metric pattern spaces. Technical
Report UU-CS-1999-03, Utrecht University, 1999.

[HV99b] Michiel Hagedoorn and Remco C. Veltkamp. Reliable and eÆcient pattern
matching using an aÆne invariant metric. International Journal of Computer
Vision, 31(2/3):203{225, 1999.

[HV99c] Michiel Hagedoorn and Remco C. Veltkamp. A robust aÆne invariant
metric on boundary patterns. International Journal of Pattern Recognition and
Pattern Analysis, 13(8):11511164, December 1999. Special Issue on Invariants
for Pattern Recognition and Classi�cation.

[II88] Hiroshi Imai and Masa Iri. Polygonal approximation of a curve { formulations
and algorithms. In Toussaint [Tou88], pages 71{86.

[JFS95] C. Jacobs, A. Finkelstein, and D. Salesin. Fast multiresolution image
querying. In Computer Graphics Proceedings SIGGRAPH, pages 277{286, 1995.

[KH90] A. Khotanzad and Y. H. Hong. Invariant image recongnition by zernike
moments. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(5):489{497, 1990.

[Kru83] J. B. Kruskal. An overview of sequence comparison: Time warps, string
edits, and macromolecules. SIAM Review, 25:201{237, 1983.

[LL99] Longing Jan Latecki and Rolf Lak�amper. Convexity rule for shape de-
composition based on discrete contour evolution. Computer Vision and Image
Understanding, 73(3):441{454, 1999.

[Lon98] Sven Loncaric. A survey of shape analysis techniques. Pattern Recognition,
31(8):983{1001, 1998.

[LW88] Y. Lamdan and H. J. Wolfson. Geometric hashing: a general and eÆcient
model-based recognition scheme. In 2nd Inter. Conf. on Comput. Vision, pages
238{249, 1988.

[MAK96] F. Mokhtarian, S. Abbasi, and J. Kittler. EÆcient and robust retrieval
by shape content through curvature scale space. In Image Databases and Multi-
Media Search, proceedings of the First International Workshop IDB-MMS'96,
Amsterdam, The Netherlands, pages 35{42, 1996.

[Mul93] K. Mulmuley. Computational Geometry: An Introduction Through Ran-
domized Algorithms. Prentice Hall, 1993.

[MW96] David M. Mount and Angela Y. Wu. On the area of overlap of translated
polygons. Computer Vision and Image Understanding, 64:53{61, July 1996.

[NBE+93] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman,
D. Petkovic, P. Yanker, C. Faloutsos, and G. Taubin. The QBIC project:
Querying imag by content using color, texture, and shape. In Electronic Imag-
ing: Storage and Retrieval for Image and Video Databases, Proceedings SPIE,
volume 1908, pages 173{187, 1993.

[Ols97] Clark F. Olson. EÆcient pose clustering using a randomized algorithm.
International Journal of Computer Vision, 23(2):131{147, 1997.

[O'R85] Joseph O'Rourke. Curve similarity via signatures. In Toussaint [Tou88],
pages 295{317.

[O'R94] Joseph O'Rourke. Computational Geometry in C. Cambridge University
Press, 1994.

[PR92] Richard J. Prokop and Anthony P. Reeves. A survey of moment-based tech-
niques for unoccluded object representation and recognition. CVGIP: Graphics
Models and Image Processing, 54(5):438{460, 1992.

[PS85] Franca P. Preparata and Michael Ian Shamos. Computational Geometry,
an Introduction. Springer-Verlag, 1985.



1. State-of-the-Art in Shape Matching 33

[QBI] QBIC project, http://wwwqbic.almaden.ibm.com/.
[Ros97] Paul L. Rosin. Techniques for assessing polygonal approximations of

curves. IEEE Transactions on Pattern Recognition and Machine Intelligence,
19(5):659{666, 1997.

[RR80] S. Ranade and A. Rosenfeld. Point pattern matching by relaxation. Pattern
Recognition, 12:269{275, 1980.

[Ruc96] W. Rucklidge. EÆcient Visual Recognition Using the Hausdor� Distance.
Lecture Notes in Computer Science. Springer, 1996.

[Sch92] Stefan Schirra. Approximate decision algorithms for approximate congru-
ence. Information Processing Letters, 43:29{34, 1992.

[Scl97] Stan Sclaro�. Deformable prototypes for encoding shape categories in image
databases. Pattern Recognition, 30(4):627{641, 1997.

[SdLV99] Lambert Schomaker, Edward de Leau, and Louis Vuurpijl. Using pen-
based outlines for object-based annotation and image-based queries. In D. P.
Huijsmans and A. W. M. Smeulders, editors, Visual Information and Informa-
tion Systems { Proceedings of the Third International Conference VISUAL'99,
Amsterdam, The Netherlands, June 1999, LNCS 1614, pages 585{592. Springer,
1999.

[Sma96] Christopher G. Small. The Statistical Theory of Shapes. Springer Series
in Statistics. Springer, 1996.

[SP95] Stan Sclaro� and Alex P. Pentland. Modal matching for correspondence and
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
17(6), June 1995.

[SSS97] J. Schwerdt, M. Smid, and S. Schirra. Computing the minimum diame-
ter for moving points: An exact implementation using parametric search. In
Proceedings of the 13th Annual ACM Symposium on Computational Geometry,
pages 466{468, 1997.

[Ste96] Carsten Steger. On the calculation of arbitrary moments of polygons. Tech-
nical report, Dept. Computer Science, University of M�unchen, October 1996.

[Sto87] G. Stockman. Object recognition and localization via pose clustering. Com-
puter Vision, Graphics, and Image Processing, 40(3):361{387, 1987.

[Tou88] G. T. Toussaint, editor. Computational Morphology. North-Holland, 1988.
[Ull96] Shimon Ullman. High-Level Vision. MIT Press, 1996.
[Ume93] S. Umeyama. Parameterized point pattern matching and its application

to recognition of object families. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(1):136{144, 1993.

[Vai89] Pravin M. Vaidya. Geometry helps in matching. SIAM Journal of Com-
puting, 18(6):1201{1224, 1989.

[Vel92] Remco C. Veltkamp. Survey of continuities of curves and surfaces. Com-
puter Graphics Forum, 11(2):93{112, 1992.

[Vel98] Remco C. Veltkamp. Hierarchical approximation and localization. The
Visual Computer, 14(10):471{487, 1998.

[vO92] Peter J. van Otterloo. A Contour-Oriented Approach to Shape Analysis.
Hemel Hampstead, Prentice Hall, 1992.

[VU96] A. Verri and C. Uras. Metric-topological approach to shape recognition
and representation. Image Vision Computing, 14:189{207, 1996.

[VV99] Jules Vleugels and Remco C. Veltkamp. EÆcient image retrieval through
vantage objects. In D. P. Huijsmans and A. W. M. Smeulders, editors, Visual
Information and Information Systems { Proceedings of the Third International
Conference VISUAL'99, Amsterdam, The Netherlands, June 1999, LNCS 1614,
pages 575{584. Springer, 1999.



34 References

[Wol90] H. J. Wolfson. Model-based object recognition by geometric hashing. In
Proceedings of the 1st European Conference on Computer Vision, Lecture Notes
in Computer Science 427, pages 526{536. Springer, 1990.

[WR97] Haim Wolfson and Isidore Rigoutsos. Geometric hashing: an overview.
IEEE Computational Science & Engineering, pages 10{21, October-December
1997.

[WWFW97] J. Z. Wang, G. Wiederhold, O. Firschein, and S. X. Wei. Wavelet-
based image indexing techniques with partial sketch retrieval capability. In
Proceedings of the Fourth Forum on Research and Technology Advances in Dig-
ital Libraries. IEEE, 1997.


