
Algorithmic Modeling and Complexity Fall 2003

Lecture 13: October 14, 2003

Lecturer: J. van Leeuwen Scribe: B. de Boer

13.1 Overview

In modeling industrial processes, packing and cutting problems frequently arise. Packing
problems are known to be computationally hard. This lecture focused on packing problems
and more specifically, on the 1-dimensional packing problem or knapsack problem. We prove
that (the decision version of) the 1-dimensional packing problem is NP-complete by showing
that Vertex Cover 4p1-dimensional packing.

Later on, a pseudo-polynomial time algorithm is explained and used in solving the 1-dimensional
packing problem approximately to arbitrary precision and yet in reasonable computation time.
Finally, we define the problem a little bit differently, by allowing fractional solutions. We then
look at a greedy packing algorithm and show that it works in polynomial time and within a
performance ratio of 2.

13.2 The 1-dimensional packing problem

The 1-dimensional packing problem is defined as follows.

Given:

• a set S of objects ai, where each object has:

– a size s(ai) = si

– a profit p(ai) = pi

• and a bound B

determine a subset of the objects that has a total size ≤ B and whose total profit
is maximized.

We assume thoughout that B and the si, pi are integer and ≥ 0.

In one dimension, you can look at this as trying to pack objects with a certain length or
weight into a bin that can fit objects up to a certain total length or weight, respectively. This
problem occurs frequently in industrial contexts when a certain amount of material has to
be divided over orders. Consider for instance cutting pieces of textile from a role, where the
pieces correspond to orders which return a profit. This example also illustrates why cutting
and packing often give rise to similar problems.

13-1



Lecture 13: October 14, 2003 13-2

Of course packing is not limited to just one dimension. 3-Dimensional packing for instance
is important in the container loading problem. However, in this lecture only 1-dimensional
packing is discussed. Another interpretation of this problem is to pack a backpack with objects
that have a certain size and a certain value, such that the largest total value is packed. This
is known as the 0− 1 Knapsack Problem, meaning that there is only one copy of each object
and each object can only be packed 0 or 1 time.

13.2.1 Linear Programming model of 1-dimensional packing

We can construct the following Linear Programming model of the 1-dimensional packing
problem:

maximize z =
∑n

i=1 pixi,

subject to:∑n
i=1 sixi ≤ B

xi ∈ {0, 1} for i = 1, . . . , n.

A rough solution to this problem would be to just check all 2n possible combinations of values
for the xi’s.

13.3 NP-completeness of 1-dimensional packing

1-Dimensional packing is a deceptive problem: no polynomial-time algorithm is currently
known for it. In fact, it belongs to the hardest problems in the class NP.

Theorem 13.1 1-Dimensional packing is NP-complete.

Proof: Consider the decision version of 1-dimensional packing: given integers B and C, are
there 0 − 1 values for the xi such that z =

∑n
i=1 pixi ≥ C while

∑n
i=1 sixi ≤ B (‘is there a

feasible packing with total profit ≥ C’). It is trivial to see that this decision problem is ∈
NP. To prove NP-completeness, we show that Vertex Cover 4p 1-dimensional Packing.

Consider an instance of the Vertex Cover problem: given a network G =< V,E > with m
edges and a number K, does G have a vertex cover of size ≤ K? We will build an instance
of the 1-dimensional packing problem equivalent to it.

Define constants eit for i ∈ V and t ∈ E as follows:

eit =

{
1 if node i is incident to edge t,

0 otherwise.

Choose a large enough radix g. Now we create an instance of 1-dimensional packing with the
following objects:



Lecture 13: October 14, 2003 13-3

• an object ai with size(ai) = profit(ai) = gm+1 +
∑m

t=1 eit · gt for every i ∈ V .

• K auxiliary objects of size and profit gm+1.

• 1 extra auxiliary object of size and profit gt for every edge t.

Let B = K · gm+1 +
∑m

t=1 2 · gt, and take C = B: as profits and sizes are equal, this means
that the decision problem asks for a packing of exactly size B.

Claim 13.2 G has a vertex cover of size ≤ K if and only if the instance of the 1-dimensional
packing problem has a positive solution.

(⇒) Consider a vertex cover of K ′ ≤ K nodes. Adding the objects ai corresponding to the
nodes i in the vertex cover gives a packing of size:

K ′ · gm+1 +
∑m

t=1[1 or 2] · gt.

The coefficient of gt is 1 or 2 depending on whether one or both end points of edge t are
covered by the vertex cover. Adding (K −K ′) objects of size gm + 1 plus at most one object
of size gt for every edge t, gives a packing of exactly size (and profit):

B = K · gm+1 +
∑m

t=1 2 · gt = C

(⇐) Suppose a bunch of objects solve the packing instance, i.e. their sizes add up to exactly

B = K · gm+1 +
∑m

t=1 2 · gt.

Notes that when we add object sizes, the coefficient of gt can be at most 3. If we take g ≥ 4,
then the coefficients in the lower order terms do not carry and we can uniquely ‘decipher’ B.
Thus: take g = 4.

Consider the packing. Take away all the auxiliary objects! This leaves us with a packing of
size:

B′ = K ′ · gm+1 +
∑m

t=1[1 or 2] · gt

Thus this can arise only by adding K ′ objects ai. The corresponding nodes must cover every
edge t at least once and thus form a vertex cover of G of size K ′ ≤ K.

The given proof has another implication: it even shows the NP-completeness of a very special
case of 1-dimensional packing, namely the case when size(ai) = profit(ai) for every i. This
is known as the Subset Sum problem:

Given a set of objects S = {a1, . . . , an}, sizes si and an integer B. Determine
whether there is a subset of S with a total size that is exactly equal to B.

Corollary 13.3 The Subset Sum problem is NP-complete.



Lecture 13: October 14, 2003 13-4

13.4 A fast and tuneable approximation scheme

The NP-completeness of the 1-dimensional packing problem suggests that large instances bet-
ter be solved to approximate optimality, using a heuristic that is polynomial-time computable.
We show that this can be done by the technique of scaling. The key ingredient for this is an
exact solver.

13.4.1 An exact solution

To solve the 1-dimensional packing problem one may try a ‘tabular’ technique that attempts to
build an solution bottom-up from the optimal solution of all possible subproblems (‘dynamic
programming’). Let T be the two-dimensional table we want to construct. We want the
following property:

T [i, p] is a subset of {a1...ai} of minimum possible total size which has a profit of
exactly p.

Thus, T will be a n-by-(P + 1) table, with P =
∑n

i=1 pi (the table has a first column cor-
responding to p = 0). If we manage to compute T , then the answer to the 1-dimensional
packing problem can be retrieved from the n-th row: take the largest p such that T [n, p] is
defined and size(T [n, p]) ≤ B.

Lemma 13.4 The 1-dimensional packing problem can be solved in O(n · P ) time (thus in
time proportional to the size of table T ).

Proof: T can be filled efficiently row after row, as follows. The first row by definition consists
of the following ‘values’:

T [1, p] =

{
{a1} if p = p1,

undefined otherwise.

Suppose we have computed the values in row j. Then the values in row j+1 can be computed
from the following inductive formula:

T [j + 1, p] =


T [j, p] if p < pj+1,

T [j, p] if pj+1 = 0,

the smallest in size of T [j, p] and {aj+1} if p = pj+1 > 0,

the smallest in size of T [j, p] and T [j, p− pj+1] ∪ {aj+1} if p > pj+1.

In computing the entries in row j + 1 it seems we may have to repeatedly copy entire sets
from the previous row. To avoid this, we change the representation slightly. In each entry



Lecture 13: October 14, 2003 13-5

T [j + 1, p] we will not store the explicit set-value but only (i) the size of the set in T [j + 1, p],
(ii) a bit b1 that says whether the set in this slot equals the one in T [j, p] or not, and (iii) a
bit b2 that says whether the set in this slot equals {aj+1} or T [j, p− pj+1]∪ {aj+1} (if b1 = 1
then b2 is formally undefined and can be set to any value as it will not be inspected). For
example, if b1 = b2 = 0, then we know that the set T [j + 1, p] consists of {aj+1} and (the
elements of) the set represented in entry T [j, p − pj+1]. (Note that the backpointer value
−pj+1 follows implicitly from the row index.) The actual set can be reconstructed entirely
by ‘backchaining’ from this entry. On the other hand, we do not need the complete set for
computing the three items in T [j + 1, p]: the representations in the entries in row j suffice.

It is easily seen that with the new representation, the entries in T can be computed row after
row in O(1) time per entry, thus in O(n · P ) time total. The largest p such that T [n, p] is
defined and size(T [n, p]) ≤ B can be found in O(P ) time by going through row n. Retrieving
the set that realizes it can be done by backchaining from entry T [n, p], which takes O(n).

13.4.2 Pseudo-polynomiality

The given algorithm for solving the 1-dimensional packing problem is not a polynomial-time
algorithm! The reason is that P =

∑n
i=1 pi is not polynomially bounded in the size of the

problem, which has all numbers and especially the pi represented in binary: thus the pi are
written down in only

∑n
i=1 log pi bits and P is ‘exponential’ in this measure!

If the numbers in the 1-dimensional packing problem would have been written in unary
notation, then the given algorithm would have been ‘polynomial’ in the size of the input.
Algorithms that are polynomial-time bounded if problem instances are specified in unary
notation, are called pseudo-polynomial time algorithms.

Pseudo-polynomial time algorithms generally do poorly when the input contains ‘very large
numbers’. On the other hand, they can be very useful if there is a low upperbound on the
size of the numbers. In our case, the exact solver for 1-dimensional packing can be very useful
in applications where P is not too large. Note that the runtime of the algorithm can also be
written as O(n2pmax), where pmax is the largest profit value of any object in a given instance.

13.4.3 An algorithm scheme using scaling

We can avoid that P is large in instances of 1-dimensional packing by scaling the profit values
pi. In doing so we loose some accuracy in the scaled values, and we can only hope for a
result that will be ‘close to optimal’ in the end. We show that the scaling can be tuned so
a performance ratio ≤ 1 + ε results, for any desired ε > 0. Before the algorithm is run, we
eliminate all objects that do not fit, i.e. we assume that pmax ≤ B from now on.

Algorithm 1dP

specify ε > 0 (we assume that ε ≤ 1
2 without loss of generality)

let K be a suitable scaling factor (to be determined later)

scale the profits: p′
i := b pi

K c



Lecture 13: October 14, 2003 13-6

run the pseudo-polynomial solver on the instance with the same sizes but profits p′
i.

return the subset of objects S′ computed by the solver as answer.

Note that after scaling: pi − K ≤ K · p′
i ≤ pi. The choice of K will be given in the proof

below.

Theorem 13.5 (Ibarra and Kim, 1975) Algorithm 1dP computes a feasible solution to
the 1-dimensional packing problem within performance ratio ≤ 1 + ε and a running time of
O(n3

ε ).

Proof: Let the optimum solution of a given instance have profit OPT , and assume w.l.o.g.
that it is realized by packing the objects 1, . . . , k. Let algorithm 1dP compute a solution
OPT ′, realized by objects i1, . . . it. Then the profit of the computed solution satisfies:

pi1 + · · ·+ pit = K · (pi1

K
+ · · ·+ pit

K
) ≥ K · (bpi1

K
c+ · · ·+ bpit

K
c) ≥ K ·OPT ′.

On the other hand, the objects 1, . . . , k form a feasible solution to the scaled problem. It
means that OPT ′ ≥ bp1

K c+ · · ·+ bpk
K c and thus

K·OPT ′ ≥ K·(bp1

K
c+· · ·+bpk

K
c) ≥ K·(p1

K
−1+· · ·+pk

K
−1) = (pi+· · ·+pk)−K·k ≥ OPT−K·n.

By combining the two estimates it follows that we have a feasible solution with (unscaled)
profit ≥ OPT −K · n.

How close to OPT can we make this? Clearly OPT ≥ pmax, as the object with profit pmax

by itself is already feasible (by assumption). Choose K = ε·pmax

2n . Then

OPT −K · n = OPT − 1
2
ε · pmax ≥ (1− 1

2
ε) ·OPT ≥ 1

1 + ε
OPT

using that ε ≤ 1
2 , and thus the performance ratio of the algorithm is ≤ 1 + ε.

The running time of algorithm 1dP determined by the running time of the pseudo-polynomial
algorithm on the scaled profits. It is in the order of:

n ·
n∑

i=1

b pi

K
c ≤ n ·

n∑
i=1

pi

K
= n · P

K
=

2n2

ε
· P

pmax
≤ 2n3

ε
.

where we use that P
pmax

≤ n.

Thus, algorithm 1dP can be tuned to any desired to any small ε that is desired, while re-
maining polynomial in n and 1

ε . 1dP is called a fully polynomial-time approximation scheme.



Lecture 13: October 14, 2003 13-7

Exercise. Consider algorithm 1dP. Show that the choice of K guarantees that, if the objects
do not all have profit 0, then the scaled profits will not all be 0 either. (Hint: consider p′

max.)

Exercise. Modify algorithm 1dP to a polynomial-time algorithm of similar qualities but with
K a power of 2. (Hint: when 1dP would set K to a value < 1, then all profit values must be
‘polynomially bounded’.)

By refining the algorithm and dealing with large and small objects separately in a suitable
way, an even better algorithm can be obtained.

Theorem 13.6 (Lawler, 1979) The 1-dimensional packing problem can be solved by an
algorithm scheme that achieves a performance ratio ≤ 1 + ε and has a running time of
O(n log 1

ε + 1
ε4 ).

13.4.4 Approximation by a greedy approach

In the 1-dimensional packing problem a problem must be either packed fully or not at all. This
limits us in ‘filling holes’. We first consider the relaxed packing problem in which we allow
that fractions (‘parts’) of objects are packed. We then use it in the design of an approximation
algorithm for the original 1-dimensional packing problem.

13.4.5 Fractional 1-dimensional packing

Consider the 1-dimensional packing problem and allow that fractions of objects are packed.
The problem is called the knapsack problem rather than the 0 − 1 knapsack problem. The
profit of a fraction xi (0 < xi ≤ 1) of object ai will be xipi. The LP model becomes:

maximize z =
∑n

i=1 xipi,

subject to:∑n
i=1 xisi ≤ B

0 ≤ xi ≤ 1 for i = 1, . . . , n.

We will show that the fractional 1-dimensional packing problem can be solved in polynomial
time in a simple way.

Assume the n objects in a given instance are ordered by decreasing ‘profit per size’ ratio.
This requires only a simple sorting step. Thus assume the objects are listed such that:

p1

s1
≥ p2

s2
≥ ... ≥ pn

sn
.

Now, pack greedily: pick the objects in the order of the list for as long as possible, thus always
packing the available object with the largest p

s -ratio first until we reach the size-limit of B. If
the last object we picked does not fit anymore in its totality, pack the fraction of the object
that fills up the bin.



Lecture 13: October 14, 2003 13-8

Theorem 13.7 The greedy algorithm solves the fractional 1-dimensional packing problem
optimally, in O(n log n) time.

Proof: The algorithm follows the intuition. The argument to prove optimality is the follow-
ing. Consider any optimal solution to the fractional problem. Suppose there are objects i and
j with i < j in it such that object i is not fully packed (xi < 1) but object j is present for at
least a non-zero fraction (xj > 0). Consider a ‘slice’ of size b > 0 filled by (a part of) object
j with b small enough so we could exchange it for a ‘slice’ of size b > 0 from the unpacked
part of object i. Note that

b

sj
· pj ≤

b

si
· pi

thus exchanging the part of j by the (still unpacked) part of the same size of i will ‘increase’
the overall profit. Thus any optimal solution can be put into a normal form in which all
objects of largest p

s -value that fit are fully packed in the bin. This is exactly how the greedy
algorithm does the packing.

Interestingly, the greedy algorithm leads to an optimal solution in which at most one object
will be packed ‘fractionally’, i.e. with at most one value xi with 0 < xi < 1.

13.4.6 Greedy algorithm for 1-dimensional packing

Let’s return to the ordinary (non-fractional) 1-dimensional packing problem. An obvious idea
is to (i) run the greedy algorithm but (ii) run it only up to the point that the fractional object
would be included. This gives a feasible solution, but how good is it?

Assume the objects are ordered again by decreasing p
s . Consider the following, slightly mod-

ified algorithm:

Algorithm GR-1dP

run the greedy algorithm up to the point that the fractional object would be included

let S be the subset of objects computed

α := the profit value of the greedy solution S

if pmax > α then

return the set with the object of profit pmax

else

return S

Theorem 13.8 Algorithm GR-1dP computes a feasible solution to the 1-dimensional packing
problem within performance ratio 2 and a running time of O(n log n).



Lecture 13: October 14, 2003 13-9

Proof: We have to show that GR-1dP returns a solution with a profit value β such that
β ≥ 1

2 ·OPT .

Suppose by way of contradiction that β < 1
2 ·OPT . It means in particular that α < 1

2 ·OPT .
Note that the packing which would realize OPT is a feasible solution of the fractional packing
problem, which thus has an optimum ≥ OPT . As the greedy algorithm would fill the bin
optimally if at most one fractional object were included, it follows that in the assumed case the
greedy algorithm must indeed include a fractional object that contributes a profit > 1

2 ·OPT
(the whole solution realizes an optimum ≥ OPT ). In particular the object must have a profit
value > 1

2 ·OPT . Hence pmax > 1
2 ·OPT > α. But then, by its program, GR-1dP would have

returned the object of profit pmax and β = pmax > 1
2 ·OPT , contradiction.

The construction that proves Theorem 13.6 uses a mixture of the ideas discussed in this
lecture.

References

[1] O.H. Ibarra, C.E. Kim. Fast approximation algorithms for the knapsack and sum of
subset problems, Journal of the ACM 22 (1975) 463-468.

[2] E. Lawler. Fast approximation algorithms for knapsack problems, Math of Operations
Research 4 (1979) 339-356.


