
Algorithmic Modeling and Complexity Fall 2003

Lecture 14: 16 October

Lecturer: J. van Leeuwen Scribe: E. Maes

14.1 Overview

This lecture considers the matter of ‘approximability and in-approximability’ by means of
polynomial-time algorithms. We have seen many computationally hard problems, which
can be ‘solved’ efficiently using an approximation algorithm with a provable bound on the
performance ratio. Can this always be done? We will see that there are problems for which
no efficient heuristics of this kind appear to exist. Our leading example will be the Maximum
Independent Set problem.

In practice the conclusions like derived in this lecture are often taken for granted. A large
number of algorithmic techniques exist e.g. using ‘local search’, randomization or heuristics
inspired by natural processes that perform either within good expected bounds or without
any specific guarantees at all and yet often solve problems satisfactorily,.

14.2 Optimization problems and approximability

The context of this lecture will be optimization problems, i.e. models in which some goal func-
tion must be minimized or maximized subject to certain constraints. For example, consider
a network G =< V,E >. An independent set is any subset A ⊆ V such that no nodes of A
are connected by an edge. Determining large independent sets arises e.g. in scheduling, when
determining a large set of tasks that do not interfere with each other. In an earlier lecture we
saw that independent sets are complementary to vertex covers. The (optimization version of
the) Maximum Independent Set problem is the following problem:

Given a network G, what is the size of the largest possible independent set in G.

The decision version of the Maximum Independent Set problem was proved to be NP-complete
in Lecture 12. The question is whether there exists an efficient, polynomial-time algorithm
that can approximate the answer to any given instance of the Maximum Independent Set
problem within a good and guaranteed performance ratio. We first have to clarify what we
mean by ‘good approximability’.

14.2.1 Complexity classes based on approximability

Consider optimization problem where instances I have an optimum solution OPT (I) = OPT .
Let a polynomial-time approximation algorithm deliver a feasible solution of value RES(I) =

14-1

Lecture 14: 16 October 14-2

RES. Let PO be the class of polynomial-time solvable optimization problems. Let NPO
be the class of all ‘NP-optimization problems’, which have e.g. only polynomial size feasible
solutions and admit a polynomial-time algorithm for checking feasibility of any purported
solution.

One can distinguish between the following qualities of approximation for NPO problems by
polynomial-time algorithms:

• ABS: the class of problems solvable to within an absolute constant, |OPT −RES| ≤ c
for fixed c.

• APX: the class of problems solvable to within a performance ratio ≤ 1 + ε, for some
fixed ε > 0.

• f(n)-APX: the class of problems solvable to within a performance ratio ≤ f(n), for
some fixed function f depending on the problem size n = |I|.

• PTAS: the class of problems solvable to within a performance ratio ≤ 1 + ε for any
ε > 0, by a polynomial-time approximation scheme A(I, ε) that runs in time polynomial
in |I| for any fixed ε.

• FPTAS: the class of problems solvable to within a performance ratio ≤ 1 + ε for any
ε > 0, by a certain polynomial-time approximation scheme A(I, ε) that runs in time
polynomial in |I| and 1

ε .

Lemma 14.1 PO ⊆ ABS and PO ⊆ FPTAS ⊆ PTAS ⊆ APX ⊆ f(n)−APX ⊆ NPO.

It can be shown that P = NP ⇔ PO = NPO and that all inclusions are strict unless
P = NP .

Exercise. Verify that PO ⊆ FPTAS.

14.2.2 Approximability to within an absolute constant

One of the simplest notions of polynomial-time approximability concerns the approximability
to within a small absolute ‘distance’ from the optimum. For example, Minimum Graph
Coloring for planar graphs is in ABS.

Exercise. Design a polynomial-time algorithm for planar graph coloring such that |OPT −
RES| ≤ 1 for all instances. (Hint: use that every planar graph is 4-colorable in polynomial-
time, and that 2-colorability can be decided in polynomial-time.)

On the other hand, many problems appear not to be in ABS (unless P = NP). We give two
examples: 1-dimensional packing, and the Maximum Independent Set problem.

Proposition 14.2 1-Dimensional packing 6∈ ABS, unless P = NP .

Lecture 14: 16 October 14-3

Proof: Suppose 1-dimensional packing is approximable in polynomial time by an algorithm
that achieves OPT−RES ≤ c for some constant c. Without loss of generality we may assume
that c is an integer ≥ 1. Consider an arbitrary instance of 1-dimensional packing:

I : S = {a1, . . . , an} with s(ai) = si, p(ai) = pi, packing bound B.

Construct a new instance by multiplying all profits by a factor c + 1:

I ′ : S = {a1, . . . , an} with s(ai) = si, p(ai) = (c + 1) · pi, packing bound B.

If I has optimum profit OPT, then I ′ has optimum (c + 1)· OPT and vice versa. Apply the
approximation algorithm to I ′ rather than I. Because the result must be feasible, RES is a
multiple of c + 1 and (c + 1)OPT −RES ≤ c. Hence RES = (c + 1)OPT and OPT follows,
in polynomial time. As 1-dimensional packing is NP-complete, this is not possible unless
P = NP .

Exercise. Show that the Traveling Salesman problem is 6∈ ABS, unless P = NP . Show this
even for the symmetric metric case. (Hint: use a same technique as above.)

Proposition 14.3 Maximum Independent Set 6∈ ABS, unless P = NP .

Proof: Suppose there is a polynomial-time algorithm for the Maximum Independent Set
problem that achieves OPT −RES ≤ c, for some constant c. Again we may assume w.l.o.g.
that c is an integer ≥ 1. Let G be a network for which we want to determine the size of a
maximum independent set. Construct a network G′ consisting of c + 1 disjoint copies of G,
see the figure.

G′ can be constructed in polynomial time, and its maximum independent set has a size of
(c + 1) ·OPT . Run the approximation algorithm on G′: it gives an independent set J in G′

with (c + 1)OPT − |J | ≤ c and thus

OPT − |J |
c + 1

≤ c

c + 1
< 1.

In G′ at least one of the c + 1 copies of G must have an independent set J ′ with |J ′| ≥ |J |
c+1 .

By the above inequality we have

OPT − |J ′| < 1 ⇒ |J ′| = OPT,

Lecture 14: 16 October 14-4

and J ′ is a maximum independent set in G! This contradicts the NP-completeness of Maximum
Independent Set, unless P = NP .

14.2.3 Approximability by polynomial-time approximation schemes

FPTAS and PTAS are more interesting classes. They contain the problems that can be
approximated to within any performance ratio 1+ ε, albeit at a cost in terms of computation
time the smaller ε is chosen. For example, in Lecture 13 we proved that 1-dimensional packing
can be solved by a scheme that can achieve a performance ratio of 1 + ε for any ε > 0, at the
costs of a running time of O(n3

ε). Thus:

Proposition 14.4 1-dimensional packing ∈ FPTAS.

Fact 14.5 (Lipton and Tarjan, 1980) Maximum Independent Set restricted to planar net-
works is ∈ PTAS but 6∈ FPTAS, unless P = NP .

As a further example we consider the Minimum Bin Packing problem. It concerns packing
objects in bins without exceeding the capacity of each bin:

Given a set of objects {a1, . . . , an} with positive integer sizes s(ai) = si and an
unlimited number of bins of integer size B, determine the smallest number of bins
in which all objects can be packed. (It is assumed that si ≤ B for all i.)

The (decision version of the) Minimum Bin Packing problem is NP-complete, but the following
result holds.

Theorem 14.6 Minimum Bin Packing ∈ APX, but 6∈ PTAS unless P = NP .

Proof: Consider the so-called Next-Fit strategy: it takes the objects in the given order, and
fills the bins maximally one after the other. Say m bins are used for packing all n objects,
and let bi be the size filled in the i-th bin. Then bi + bi+1 ≥ B by the way we fill successive
bins, thus 2 ·∑m

1 bi ≥ m ·B. On the other hand, OPT bins suffice and thus
∑m

1 bi ≤ OPT ·B.
We conclude that m ≤ 2 ·OPT . Next-Fit clearly works in polynomial time. Thus Minimum
Bin Packing ∈ APX.

There are bin packing strategies that achieve slightly better performance ratios, but can
arbitrary ratios 1 + ε be reached? Suppose Minimum Bin Packing ∈ PTAS. Choose an ε
such that 1 + ε < 3

2 and consider the polynomial-time algorithm that allegedly approximates
Minimum Bin Packing instances with a performance ratio < 3

2 . We will use the following
problem called PARTITION and known to be NP-complete:

Given a set of objects S = {a1, . . . , an} with positive integer sizes s(ai) = si, can
S be partitioned in two parts of equal size. (It is assumed that si ≤ 1

2

∑n
i=1 si for

every i, otherwise the problem is trivial.)

Lecture 14: 16 October 14-5

Given an instance of PARTITION, consider the corresponding instance of Minimum Bin
Packing with the same objects and B = 1

2

∑n
i=1 si. Obviously the instance of PARTITION

has a positive answer if and only if the objects fit in ≤ 2, thus in exactly 2 bins. (Note that
for the instance 3 bins always suffice: together the objects span a size of 2B, cut through the
middle, put the objects to the left and to the right of the cut each in a bin and the object
that is cut, if any, in a third bin.)

Run the polynomial-time approximation algorithm on the Bin Packing instance: it will give
an answer that is feasible and < 3

2 · OPT . Now observe: if OPT = 2 then necessarily
RES < 3

2 · 2 = 3, thus RES = 2. If OPT 6= 2, then OPT ≥ 3 and necessarily RES ≥ 3 as
well. Thus PARTITION has a positiver answer if and only if RES = 2, and we can decide
PARTITION in polynomial time. Contradiction unless P = NP .

Corollary 14.7 Minimum Bin Packing does not have a polynomial-time approximation al-
gorithm with a performance ratio < 3

2 , unless P = NP .

Fact 14.8 (Simchi-Levi, 1994) There exists a polynomial-time approximation algorithm
for the Minimum Bin Packing problem that achieves a performance ratio of 3

2 .

14.2.4 Max2SAT and APX-completeness

The results in this section were mentioned but not proved in class. Consider the optimization
version of 2SAT, denoted by Max2SAT:

Given a set of clauses C = {C1, . . . , Cm} with ≤ 2 literals per clause, determine
the largest number of clauses in the set that can be simultaneously satisfied.

Problems like Max3SAT and MaxSAT are defined similarly. In a previous Lecture we showed
that 2SAT ∈ P . The following result may therefore surprise.

Lemma 14.9 The decision version of Max2SAT is NP-complete.

Proof: The decision version is clearly ∈ NP . To prove the NP-completeness, we show that
3SAT 4p Max2SAT.

Consider an instance of 3SAT. Let (x ∨ y ∨ z) be an arbitrary clause in it with literals x, y
and z. Allocate a new variable w and consider the following set Cx,y,z of 10 clauses with ≤ 2
literals per clause:

x, y, z, w

x ∨ y, y ∨ z, z ∨ x

x ∨ w, y ∨w, z ∨ w.

Lecture 14: 16 October 14-6

One verifies:

- (x ∨ y ∨ z) is true ⇔ 7 clauses of Cx,y,z are simultaneously satisfiable.

- (x ∨ y ∨ z) is false ⇔ 6 clauses of Cx,y,z are simultaneously satisfiable.

Transform the 3SAT instance into a Max2SAT instance by replacing every clause (x ∨ y ∨ z)
by the corresponding set Cx,y,z. This is a polynomial-time computable transformation. If the
3SAT instance has m clauses, then the 3SAT instance is satisfiable if and only if ≥ 7m clauses
in the Max2SAT can be simultaneously satisfied. This proves the p-reduction.

Theorem 14.10 MaxSAT, thus also Max2SAT, is ∈ APX.

Proof: Let C = {C1, . . . , Cm} be a set of clauses. Consider the following strategy, which
follows a greedy approach:

Algorithm GRS

count := 0

while there are non-empty clauses left bf do

determine the variable x that occurs most often (as x or x) in the current clauses

let c1 = the number of occurrences of x

let c0 = the number of occurrences of x

if c1 ≥ c0 then x := true else x := false

substitute the truth value of x throughout

do the administration

if c1 ≥ c0 then count := count + c1 else count := count + c0

delete the clauses that have become satisfied or ‘false’

end

GRS is obviously a polynomial-time algorithm and it always delivers a feasible solution. We
demonstrate that its performance ratio is ≤ 2.

We prove by induction on n, the number of variables in C, that GRS always satisfies ≥ 1
2m

clauses. For n = 1 this is trivial, observing that GRS is done in one iteration and precisely
chooses the majority of the clauses to be satisfied. Let the induction hypothesis hold for set
of clauses over n variables. Consider a set of clauses C over n + 1 variables, and see what
GRS does. Assume w.l.o.g. that c1 ≥ c0. By substituting for x, GRS will satisfy c1 clauses,
and a set of ≥ m − c1 − c0 clauses will be left for consideration in the next iteration of the
algorithm. By induction we will satisfy at least

c1 +
1
2
(m− c1 − c0) =

1
2
m +

1
2
c1 − 1

2
c0 ≥ 1

2
m

Lecture 14: 16 October 14-7

clauses. This completes the induction step.

The following result from modern complexity theory will be crucial in the next section.

Fact 14.11 Max2SAT ∈ APX, but 6∈ PTAS unless P = NP .

Within the class NPO a suitable notion of ‘approximation-preserving reduction’ between
optimization problems can be defined, similar to ‘p-reducibility’. The classes like PTAS and
APX are closed under this notion of reducibility. In a way very similar to NP-completeness
for decision problems one can define APX-completeness for NPO-problems.

Fact 14.12 Max2SAT, Max3SAT and MaxSAT are APX-complete.

14.3 (In-)approximability of Maximum Independent Set

How well can the Maximum Independent Set problem on arbitrary networks be approximated?
Our aim is to show the remarkable fact that Maximum Independent Set 6∈ APX, implying
that the problem is very hard to approximate unless P = NP .

14.3.1 Self-reduction of the problem

Lemma 14.13 If Maximum Independent Set has a polynomial-time approximation algorithm
with performance ratio ≤ c for some c, then it has one with performance ratio ≤ √

c.

Proof: Suppose there is a polynomial-time algorithm for the problem with performance ratio
≤ c, for some c > 0. Suppose we want to approximate the size of the maximum independent
set in G =< V,E >.

Construct G×G. It is the graph in which the nodes u of G act as ‘supernodes’ and all contain
one copy of the original graph G. Inside a supernode, nodes are connected as in G. If u and
u′ are supernodes, v sits inside u, and v′ sits inside u′, then v and v′ are connected if and only
of u and u′ are connected as supernodes in G. More formally, G×G has nodes < u, v > and
there is and edge between < u, v > and < u′, v′ > iff u = u′ and (v, v′) ∈ E, or (u, u′) ∈ E.

Lecture 14: 16 October 14-8

Claim 14.14 G has an independent set I of size ≥ k iff G × G has an independent set of
size ≥ k2.

Proof: (⇒) Take the independent sets I in the copies of G that sit in the ‘supernodes’ of G×G corresponding
to the nodes of I . This gives an independent set of size |I |2 ≥ k2 in G×G.

(⇐) Let J be an independent set in G × G. This induces many independent sets in G: one set consisting of

the supernodes in which the J-nodes sit and one within each copy of G inside a supernode. At least one of

them must have size ≥ p|J |.

Run the approximation algorithm on G × G. By the claim the maximum independent set
in G × G has size OPT 2. The result of the algorithm is an independent set J in G × G
with OPT 2 ≤ c · |J |, thus OPT ≤ √

c ·√|J | and by the claim one can actually retrieve an
independent set of size

√|J | in G. This algorithm has a performance ratio ≤ √
c.

Corollary 14.15 If Maximum Independent Set has a polynomial-time approximation algo-
rithm with a performance ratio ≤ c for some c, then Maximum Independent Set ∈ PTAS.

Proof: Suppose we want performance ratio ≤ 1+ ε for some given ε. Consider the algorithm
scheme that iterates the construction in Lemma 14.13 k times, with k such that after square-
rooting k times we get c

1

2k ≤ 1 + ε. Thus k ≥ log log c
log(1+ε) suffices, and this k is ‘constant’ in

terms of given ε. The algorithm has the desired performance ratio and is polynomial in |I|.

14.3.2 In-approximability

Theorem 14.16 Maximum Independent Set 6∈ APX, unless P = NP .

Proof: By Corollary 14.15 all we have to show is that Maximum Independent Set is 6∈ PTAS!
Suppose it is. Consider the following reduction of Max2SAT to Maximum Independent Set.

Let C = {C1, . . . , Cn} be an instance of Max2SAT. Assume w.l.o.g. that all clauses have
precisely 2 literals and that trivially satisfied clauses of the form x ∨ x are omitted. Design

Lecture 14: 16 October 14-9

a network G as shown. There is a supernode corresponding to every clause: it contains two
nodes, one for each literal in the clause. Draw an edge between the two literal-nodes within
every supernode. Furthermore, draw an edge between every two nodes in different supernodes
that are each others opposite as literals. The interpretation of an edge is to prevent conflicts
in truth value.

Claim 14.17 At least k clauses of C can be satisfied simultaneously iff G has an independent
set of size ≥ k.

Proof: If k clauses in C can be satisfied simultaneously, then the truth value assignment makes at least one

literal in each of the clauses true. The corresponding nodes in G form an independent set of size ≥ k. The

converse follows immediately as well.

By this direct correspondence, the assumption leads to a polynomial-time approximation
scheme for Max2SAT! This contradicts Fact 14.11, unless P = NP .

14.4 Further remarks

The Lecture showed that for many problems the prospects for polynomial-time approximabil-
ity are bleak. The P − versus−NP problem appears to be the crucial bottleneck even here.
As a surprising example we showed that Maximum Independent Set 6∈ APX, i.e. there does
not exist a polynomial-time algorithm for the problem with a performance ratio bounded by
a constant, no matter how large this constant is chosen, unless P = NP .

Fact 14.18 (Boppana and Halldórsson, 1992) Maximum Independent Set ∈ n
log2 n

−APX.

But things can be worse yet. We mention the following result for the Traveling Salesman
problem, which translates to many more involved vehicle routing problems.

Fact 14.19 (Sahni and Gonzalez, 1976) The Traveling Salesman problem cannot be ap-
proximated by any polynomial-time approximation algorithm within a performance ratio ≤
p(n) for any fixed polynomial p, i.e. TSP 6∈ poly-APX unless P = NP .

Many facts about the polynomial-time (in-)approximability of algorithmic models are listed
in the compendium of Crescenzi and Kann [2].

References

[1] G. Ausiello et al. Complexity and approximation - Combinatorial optimization problems
and their approximability properties, Springer-Verlag, Berlin, 1999.

[2] P. Crescenzi, V. Kann (Eds). A compendium of NP optimization problems, website at:
http://www.nada.kth.se/ ṽiggo/problemlist/compendium.html.

