
Algorithmic Modeling and Complexity Fall 2003

Lecture 15: 21 Oktober

Lecturer: M. Veldhorst Scribe: J.J. Franken

Overview

This is the first lecture of a series about Distributed Algorithms (DA) and fault tolerance
given by M. Veldhorst.

In distributed algorithms a number of hardware or software components cooperate in order to
reach a common goal. The components operate independently and the only way to communi-
cate is by sending messages from one component to another. The purpose of fault tolerance is
to design distributed algorithms that reach the common goal even if some components behave
erroneously.

In this lecture we will concentrate on modeling erroneous behavior of components and prove
an impossibility result even for a very modest error model. In the next lectures we will see a
number of problems for which fault tolerant algorithms do exist. The relation with different
types of distributed systems is made explicit.

15.1 Fault Tolerant Distributed Algorithms

For many software systems correctness and availability of computing resources is essential.
For example in medical systems, in systems for control of nuclear power plants, or in systems
for control of air traffic and spacecraft. Computers might crash, or be infected with viruses,
and not working properly. In real-time systems overload of resources might be considered as
nonavailability.

One way of ensuring the correct behavior of systems with degrading components is of course
to design software that is provably fault tolerant to some extent.

Another way is to ensure fault tolerance is to create redundancy by duplicating components.
For example by incorporation of back-up systems. As soon as erroneous behavior of one
component is detected, the component is replaced by a duplicate. If on the other hand,
duplicates are used all the time, there might be an increase in the necessity of fault tolerant
algorithms. If several duplicates measure the same physical quantity, then they should agree
on the same number for it, even if their measurements differ (slightly). So one could consider
the correct processing of erroneous data as an erroneous processing of correct data.

15-1

Lecture 15: 21 Oktober 15-2

15.2 A Distributed System

In this section we will model distributed systems in order to design algorithms for them
and to reason about the algorithms. Basicly a distributed system consists of a finite set P
of processes and a communication system. We will first describe processes, and then the
distributed system.

Each process p ∈ P

• has a read-only input register Xp,

• has an fixed identification,

• knows the fixed identifications of all other processes in P ,

• has a write-only output register Yp,

• runs forever,

• may send messages m to other processes in P by inserting them in M ,

• may poll M whether M contains a message m sent to p, and if so, read m (and deletes
it from M).

The program of a process p is a set of guarded commands where each guarded command
consists of a finite sequence of statements and an associated condition. In a processing step p
chooses nondeterministically a guarded command q of which the condition evaluates to true
and executes the sequence of statements of q.

As long as Yp has not been written we assume that it has the value b; b is assumed to be a
value that p cannot assign to Yp.

In order to reason about executions of a process we use the following concepts:

(internal) state: the process’ values of the input registers, the output registers, and the
internal variables (if any),

initial state: a state in which only the input values are known and in which the output
register has value b,

decision state: a state where Yp has a value different from b (because Yp is write-only, we
have that once p is in a decision state, it remains in it forever).

Actually, the program of p can be considered as a transition system that makes p to step
from state to state.

Now we will concentrate on the concept of a distributed system. A distributed system consists
of a finite set of processes and a communication system M . M contains the messages ‘in
transit’. A message has one destination (given as the identification of a process), one source
(given as the identification of the sending process) and a contents. A message in M with

Lecture 15: 21 Oktober 15-3

destination p can be taken from M only by process p. Observe that messages in M all with
destination p can be taken out from M in any order. p is unable to coerce a specific order.
This means that if p wants to process messages in a certain order, it must keep a buffer of
messages it took from M but that it still has to process. p is in full control of this buffer
and hence is able to process messages in the buffer in any order it considers appropriate.
Obviously this makes the design of a program of p rather difficult. In this series of lecture
on distributed algorithms we will give no special attention to buffering messages, though in
some sense we use it.

In order to reason about executions of a distributed system we use the following concepts:

configuration: (or global state) the set of internal states and the contents of M .

initial configuration: the set of initial internal states and an empty M .

decision state: a state where Yp has a value different from b (because Yp is write-only, we
have that once p is in a decision state, it remains in it forever).

event: an event is a transition from one configuration γ to another configuration γ′ (denoted
as γ → γ′) due to the execution of a series of statements associated with a guarded
command of one process.

reachability: a configuration γ′ is reachable from a configuration γ if there is a finite se-
quence of configurations γ = γ0 → γ1 → γ2 → · · · → γi = γ′).

execution: an execution is an infinite sequence of configurations (γ0 → γ1 → γ2 → · · ·) in
which γ0 is an initial configuration and γi → γi+1 is an event.
Executions are infinitely long because we considered processes to run forever. This is
done only for theoretical reasons.

Actually, the distributed system S can be considered as a transition system that makes S
to step from configuration to configuration.

A nondeterministic distributed system is correct if it is correct for each execution1. This
is rather cumbersome because there may be executions where an essential message is never
picked up by some process because there always is another guarded command that evaluates
to true. Hence, we want to restrict ourselves to so-called fair executions.

Definition 15.1 (fair execution) An execution of a distributed algorithm is fair if for each
process p and each guarded command c of p it holds that, once the condition of c evaluates
to true, then after a finite number of steps the condition of c does not evaluate to true or the
statements of c are executed by p.

This is important for the communication between processes. It is reasonable to assume that
each process p has a guarded command with the condition whether M contains a message for
p. In a fair execution a message sent to p will eventually be picked up by p.

1This is different from the concept of correctness of nondeterministic algorithms in the theory of NP-
completeness which is defined as correctness for at least one execution.

Lecture 15: 21 Oktober 15-4

Observe that time hardly plays a role in the above definitions. Processes may run slowly of
fast, messages sent in some order may be received in a different order, etc..

In this section we described asynchronous networks. There are other network models. For
example, synchronous networks in which the aspect of time in an execution is incorporated,
anonymous networks in which the identification of other processes is not known. For an
introduction in distributed algorithms we refer to Tel [2].

15.3 Faults in the Model

In this section we will discuss the modeling of faults. For the design of fault tolerant dis-
tributed algorithms it is also important to describe what still performs correctly in the different
fault models. We consider the following fault models:

initially dead: Some processes never start to execute their program, i.e., they are ‘dead’.
Life (that is not dead) processes execute their program correctly. It is not known which
processes are dead.

crash: A number of processes may crash sometime during their exections. A crash process
executes correctly until is crashes and halts it exection completely. The processes that
do not crash, execute their program correctly. It is not known in advance which process
will crash.

omissions: Some processes may skip statements during the execution of their program, but
executed statements are executed correctly.

Byzantine: a Byzantine process shows arbitrary behavior (i.e.. an execution in which at
least one step arises which leads from configuration C to a configuration C ′ which is
not an event. A Byzantine process knows that it is Byzantine. Correct processes do
not know what the Byzantine processes are.

An intially dead process is a special case of a crashed process; a crashed process is a special
case of a process with omissions, and a process with omissions is a special case of a Byzantine
process. So, when fault tolerance for Byzantine faults are achyieved, then fault tolerance for
the other given fault models are achieved.

Observe that in these models the communication system is correct: the destination and the
source of a message do not erroneously change, the contents of a message does not change,
messages are not lost, and process p cannot take from M a message with destination q when
q 6= p.

Definition 15.2 (A t-FAIL-robust-system) A t-FAIL-robust-system (with one of the fault-
models substituted for FAIL) with N processes is a system in which at least N − t processes
perform their local algorithm correctly and determine the right answer. The other processes
may fail according to faults of type FAIL.

Lecture 15: 21 Oktober 15-5

In the current and next lectures we will deal with the question whether provably t-FAIL-
robust algorithms can be designed. In robust algorithms the correct processes are able to
cooperate correctly and are able to find a correct solution to a problem even if a number of
processes fail permanently. To prove them correct, the precise type of faults should be known
as well as (a bound on) the number of faulty processes.

So-called stabilizing algorithms obtain fault-tolerance in a different way. Stabilizing algorithms
may be in an incorrect state but when no faults occur anymore, they move to a correct state
eventually. So, when faults do not occur too frequently, stabilizing algorithms find a correct
solution. Tel [2] gives attention to stabilizing algorithms.

15.4 The Consensus Problem

An important problem in distributed systems is that the processes find consensus about a set
of inputs.

Given: an input bit: Xp for each process p,

Required: for each process p an output bit: Yp ∈ {b, 0, 1}. If two processes p and q have
written their output register, they have written the same value:

Yp 6= b and Yq 6= b implies Yp = Yq

In case faults do not occur, a distributed algorithm for the consensus problem is easy: each
process p sends its input Xp to all other processes, and receives the input of all other processes.
Then each process p determines deterministically the consensus value based on all inputs.
But now consider for example a system with one dead process. It is possible that all other
processes are waiting for the receipt of the input of the dead process, and the algorithm never
writes an output.

Above the consensus problem is not specified properly. A solution could be that independent
of the input all processes write the zero bit. Actually we want to design a so-called t-FAULT-
robust consensus algorithm:

Definition 15.3 A t-FAULT-robust consensus algorithm for inputs Xp determines Yp outputs
where there are at most t faulty processes of type FAULT and that has the following three
characteristics.

fair termination: In each fair execution of each non-faulty process p, p eventually writes
its Yp register.

agreement: Each configuration γ′ reachable from an initial configuration γ satisfies

Yp 6= b ∧ Yq 6= b ⇒ Yp = Yq for all non-faulty processes p and q

non-triviality: for v = 0, respectively v = 1, there is an input and a reachable configuration
in which some non-faulty process p writes the value v in Yp.

Lecture 15: 21 Oktober 15-6

15.4.1 An impossibility result

In this section we will show an impossibility result Theorem 15.7 concerning crash-robust
deterministic consensus algorithms.

This theorem considers a slightly weaker concept of a crash. If a process crashes while
executing the sequence of statements of a guarded command, it still finishes the execution of
the sequence. The impossibility result obviously still holds for stronger concept of a crash.

Deterministic here means that the program of each process is deterministic except for the
order in which messages are taken from the communication system. Hence the execution of a
guarded command can be considered to be triggered by the receipt of a message m, and the
result in process p is determined by m and the state of p at the start of the execution. Actually,
we consider the execution of the sequence of commands of g using message m in configuration
γ as the application of a transition function applied to γ. This transition function is denoted
by gm. Obviously gm is not necessarily applicable to each configuration.

With this description of what a deterministic distributed algorithm is, Theorem 15.7 extends
automatically to nondeterministic consensus algorithms because correctness of nondetermin-
istic distributed algorithms was defined as correctness for each execution.

Before we are going to prove the impossibility result, we need some tools about transition
functions and configurations.

Definition 15.4 (applicable transition function) A transition function gm is applicable
in configuration γ if in γ message m is in the message system M . Application of gm leads to
configuration gm(γ).
A sequence σ = (t1, t2, . . . , tk) of transition functions is applicable to configuration γ if t1 is
applicable to γ and for each i (2 ≤ i ≤ k) ti is applicable to ti−1(ti−2(· · · t1(γ) · · ·). With
δ = tk(tk−1(· · · t1(γ) · · ·) we say that σ(γ) = δ, or γ σ δ.

We state the following lemma without a proof.

Lemma 15.5 Let σ1 and σ2 be two sequences of transition functions applicable in configu-
ration γ. If the sets of processes of σ1 and σ2 are disjoint then σ1(σ2(γ)) = σ2(σ1(γ)). In
other words: the final result is independent of the order of processing of the two independent
sequences of transition functions.

The next definitions are specific for the consensus problem.

Definition 15.6 (deciding, valence) Process p decides on a value v if it writes v in Yp.
Configuration γ is 0-decided (1-decided) if for some process p the output register Yp satisfies
Yp = 0 (Yp = 1).
Configuration γ is v-valent (v = 0, 1) if for all decided γ′ with γ γ′ we have that γ′ is
v-decided.
Configuration γ is bivalent if there is a 0-decided γ0 and a 1-decided γ1 such that γ γ0 and
γ γ1.
Configuration γ is univalent if either γ is 0-valent or γ is 1-valent.

Lecture 15: 21 Oktober 15-7

Obviously a robust algorithm should guarantee that no configuration is reached that is 0-
decided as well as 1-decided.

Theorem 15.7 (Fischer, Lynch, Paterson 1985)
There is no 1-crash-robust deterministic consensus algorithm.

Proof: This is proven by contradiction. Assume there is a 1-crash-robust deterministic
consensus algorithm A. Then in each non-faulty process eventually a decision state is reached.
The idea here is that an execution is constructed in which the transformation from a bivalent
configuration to a valent configuration is postponed forever.

The proof consists of three parts. First we will show that at least one bivalent initial con-
figuration does exist (Claim 15.8). Secondly we will show that we can move from bivalent
configuration to bivalent configuration (Claim 15.9), and finally we will construct an infi-
nite sequence of events in which we move to bivalent configurations forever and this infinite
sequence is actually a fair execution.

Assume that there are N processes, identified by there index i (1 ≤ i ≤ N).

Claim 15.8 There is a bivalent initial configuration.

Proof: We will prove this by contradiction; so suppose A has no bivalent initial configuration.
Hence, an initial configuration will either always lead to a 0-decision, independent of the
specific execution run, or always lead to a 1-decision (independent of the specific execution),
even if some process crashes. We require the algorithm to be non-trivial. Thus there is an
initial configuration X = (X1, . . . , XN) that will always lead to a 0-decision, and there is
an initial configuration X ′ = (X ′

1, . . . , X
′
N) that willl always lead to a 1-decision. Then we

can construct a sequence of initial configurations (X = X(0), X(1), . . . , X(k) = X ′) for some
k ≤ N where X(j−1) and X(j) differ in precisely one component.

X
(0)
1 X

(1)
1 · · · X

(k)
1

X
(0)
2 X

(1)
2 · · · X

(k)
2

...
... · · ·

...
X

(0)
N X

(1)
N · · · X

(k)
N

Because X(0) leads to a 0-decision, X(k) leads to a 1-decision, and no initial configuration
is bivalent, there must be a j such that X(j−1) leads to a 0-decision and X(j) leads to a
1-decision, while X(j−1) and X(j) differ in precisely one component, say in component p.

Now let γ0 be the initial configuration X(j−1) and let γ1 be the initial configuration X(j). So
the inputs of all processes are the same in configuration γ0 and γ1, except for the input of
process p. Now suppose p is the only process that crashes. Let σ be an execution for γ0 such
that σ(γ0) leads to a 0-decision. Now σ(γ0) must be the same execution as σ(γ1) (because p
crashes). Then either γ0 or γ1 is bivalent and hence we have a contradiction!

Claim 15.9 Let Γ be a bivalent configuration of a distributed algorithm, and let t = gm be a
transition function for process p (possibly m does not exist). Suppose t is applicable to Γ. Let C

Lecture 15: 21 Oktober 15-8

be the set of configurations reachable from Γ without applying t and let D = t(C) = {t(γ)|γ ∈ C
and t is applicable to γ} . Then D contains a bivalent configuration.

Proof: For technical reasons we assume that if a guarded command of a process p polls the com-
munication system M for a message, it may receive the non-existence answer even if M contains a
message for p. With this extension, we have that if a transition function is applicable but not chosen
to be executed, the transition function remains applicable. It more or less means that the receipt of
a message can be delayed arbitrarily long. As a consequence we have that the transition function t
which is applicable to Γ, is applicable to each γ ∈ C.

We will prove the claim by contradiction. Assume D has no bivalent configuration. Each configuration
in D is either 0-valent or 1-valent. We will first show that D contains a 0-valent configuration as well
as a 1-valent configuration. For each set T of N − 1 non-faulty processes with p ∈ T there is a 0-
valent configuration Γ0 that is reachable from Γ using only processes in T . Γ0 does exist but is not
necessarily a configuration in C. In case Γ0 is in C, we choose ∆0 = t(Γ0) ∈ D and ∆0 must be 0-valent.
If Γ0 6∈ C, there must be a path of configurations from Γ to Γ0 passing through D. Let ∆0 be the first
configuration in D on this path. Because by assumption D does not contain bivalent configurations,
this ∆0 must be 0-valent.
In a similar way there is a configuration ∆1 ∈ D that is 1-valent, and ∆1 is reachable from Γ using
the same set T of processes.

So now we have a path P0 = (Γ = γ0, γ1, . . . , γk) of configurations in C with t(γk) = ∆0, and we have
a P1 = (Γ = δ0, δ1, . . . , δh) of configurations in C with t(δh) = ∆1. These two paths have the first i

configurations in common for some i. For each configuration z ∈ P0 ∪ P1 the configuration t(z) exists
and t(z) is in D and is either 0-valent or 1-valent. So it must be that there are two configurations z

and z′ that are neighbors in P0 ∪ P1 and t(z) is 0-valent and t(z′) is 1-valent. Let t′ be the transition
function such that t′(z) = z′. Let t and t′ executed by processes p and p′ using messages m and m′,
respectively. We consider two cases.
Case 1. Process p′ 6= p. Then with lemma 15.5 the configuration t′(t(z)) = t(t′(z)) = t(z′) is 1-valent.
Hence from the 0-valent configuration t(z) a 1-valent configuration can be reached. Contradiction.
Case 2. Process p′ = p. Then there must be a finite deciding execution run σ starting in configuration
z and in which p is not involved, because otherwise A would not decide if p would crash. The fact that
z and z′ can be reached from Γ without using some process q 6= p does not mean that q must crash;
hence p might crash.
Let z′′ = σ(z) and z′′ ∈ C. Obviously σ can be applied to t(z) and to t(z′). t(z′′) = σ(t(z)) must be 0-
valent because t(z) is 0-valent. Moreover t(t′(z′′)) = σ(t(t′(z)) = σ(t(z′)) is 1-valent. This contradicts
the assumption that σ is a deciding execution run.
Hence in both cases we reach a contradiction. Thus D must contain a bivalent configuration.

Now we will prove the theorem. Any deciding run on a bivalent initial configuration goes
to a univalent configuration. Hence there must be an event (an application of a transition
function) that goes from a bivalent to a univalent configuration. We will show that it is
always possible that A runs in such a way that it avoids these deciding events, even in a fair
execution. We will construct such an execution run. We therefor have to be precise in what
order processes perform transition functions.

We keep a first-in-first-out queue QP of processes; initially QP contains all processes in
arbitrary order p1, . . . , pN . We also maintain a message queue QM in which messages are
ordered according to the time they are sent. Initially QM is empty. When a process crashes
it is automatically removed from QP .

Lecture 15: 21 Oktober 15-9

The execution run is built up of stages S1, S2, S3, Stage Si starts in configuration Γi−1

and ends with a configuration Γi, which is the starting configuration of the next stage. We
will construct stage Si in such a way that Γi is bivalent provided Γi−1 is bivalent. We start
with a bivalent configuration Γ0, which exists according to claim 15.8.

So assume that Γi−1 is bivalent. In stage Si the process p at the front of QP is removed
from QP and added at the rear. If QM contains a message with destination p, p considers
the transition function gm with m the first message in QM with destination p (m is removed
from QM). If QM contains no message for p, then p considers the transition function with an
empty message. By claim 15.9 we know that there is an applicable sequence σi of transition
functions ending with transition function gm such that σ(Γi−1) is bivalent. In stage Si this
sequence σi is executed. This execution of σi does not affect the process queue QP , but it
may change the message queue QM by inserting and/or removing messages. But we know
that Γi = σi(Γi−1) is bivalent.

In this way the decision of algorithm A is postponed forever. The constructed execution
is actually a fair execution. If QM contains a message for a process p this message will
eventually be received by p due to the way a process and transition function is chosen at the
beginnning of stages.

We conclude that there is fair execution of A in which A does not terminate. Contradiction.

In the next lectures we will show that the consensus problem can be solved assuming initially-
dead faults, and present a number of problems that can be solved in the crash fault model.

References

[1] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of Distributed Consensus with
One Faulty Process, Journal of ACM 32 (1985), pp 374-382.

[2] G. Tel, Introduction to Distributed Algorithms, Cambridge University Press, 1994.

