
Algorithmic Modeling and Complexity Fall 2003

Lecture 16: 24 October

Lecturer: M. Veldhorst Scribe: M. van Es

16.1 Overview

In the previous lecture we showed the nonexistence of a deterministic 1-crash-robust dis-
tributed algorithm for the consensus problem. Today we will try to answer two questions:
(i) In what fault model does a robust deterministic distributed algorithm exist, and (ii) for
which non-trivial problem does a t-crash robust distributed algorithm exist for some t ≥ 1?

16.2 Introduction

Remember that there is no 1-crash-robust deterministic consensus algorithm ([3] and the
previous lecture). Therefore, we can conclude the following about solving the consensus
problem in distributed systems:

• It is necessary to use a more strict fault model (not allowing the crash fault).

• We must consider another fundamental problem to be used as a building block in fault-
tolerant distributed systems; such another problem does exist for the crash model.

• We must consider randomization.

• It might help to use a weaker definition of termination.

• One could assume that the hardware supports some form of synchronization.

In this and the next lecture we will only deal with the first two and the last option.

16.3 Using a stricter fault model

The fault tolerant model used here is the initially dead model. A process is either initially
dead and stays dead or it is always alife. Now consider the consensus problem assuming the
four following restrictions:

• N processes, t are dead initially, but t is unknown

• t < N
2

• each process pi has an input xi (1 ≤ i ≤ N)

16-1

Lecture 16: 24 October 16-2

• all life processes should come up with the same binary value (the output).

We assume that the problem is not trivial: there are different inputs or different executions
on the same inout that must lead to different outputs.

A dead process, naturally, does not send nor receives any messages. Hence, if a message is
received by a process, the received message must originate from a life process. Now we present
the consensus algorithm. It consists of 2+ log N stages. Let P be the set of processes and let
L = dN+1

2 e.

1: for all processes p:
do for all processes q 6= p :

p sends a message (containing an identification of p) to q
endo

endo
for all processes p:
do p receives L− 1 messages and ignores other messages sent to it in stage 1.
enddo

for i← 1 to log N do
stage i + 1: for all processes q:

do q creates a message m with info of each r ∈ Pred(q)
q sends m to every other process.
q waits until it receives a message from each r ∈ Pred(q)
Pred(q)← Pred(q) ∪

⋃
r ∈Pred(q) Pred(r).

q stores the input values of all its new predecessors.
endo

enddo
final: for all processes p

do p computes the knot K of the induced subgraph of G determined by Pred(p).
p computes the consensus value using the input values of the processes in K.

endo

A life process p receives in stage 1 precisely L − 1 messages and therefore knows of L − 1
other life processes. Let G = (P,E) be the directed graph with processes as vertices and with
edges (i, j) ∈ E if process j has received and read in stage 1 a message from process i. Then,
when a life process i has finished its stage 1, indegree(i) = L− 1. The dead processes x are
isolated and have indegree(x) = outdegree(x) = 0.
Observe that the stages are not used as synchronization for the processes. As soon as a
process has finished a stage, it proceeds with the next one. Actually, the messages are in
some sense used for synchronization: a process does not proceed with the algorithm unless it
has received enough messages.

G is a directed graph with strongly connected components.

Definition 16.1 A graph G = (P,E) is strongly connected iff there is a path from i to j for
every i, j ∈ P . A strongly connected component of G is a maximal induced subgraph that is

Lecture 16: 24 October 16-3

strongly connected.1

There exists an algorithm that, given G, determines the strongly connected components in
linear time (linear in the number of nodes and edges).

Considering again the graph G with strongly connected components, G can be viewed as
a supergraph H in which the strongly connected components of G are the supernodes and
there is an edge from one supernode to another if there is an edge from one vertex in the
first supernode to a vertex in the second supernode. The graph of the supernodes is acyclic.
Otherwise, for supernodes that form a cycle, these strongly connected components together
also form a larger strongly connected component in G. This is not allowed, because the
strongly connected components are defined as maximal subgraphs.

Definition 16.2 The supergraph H is defined as follows. Suppose G has strongly connected
components V1, . . . , Vk. Then H = ({1, 2, ..., k}, F) where F = {(i, j)|i 6= j, ∃v1 ∈ Vi and
∃v2 ∈ Vj with (v1, v2) ∈ E}.

Given G, H can be determined sequentially in linear time (linear in the amount of vertices
and edges).

16.3.1 The knot subgraph

An induced subgraph K of G is called a knot, if K is a strongly connected component of G,
K has ≥ 2 processes (i.e., nodes), and K has no incoming edges. By the construction of G it
also holds that

|K| ≥ L

Suppose there are two knots in G. These two knots have no nodes in common, and each
of them contain at least L nodes. Hence the two knots together contain at least 2L nodes,
leading to the following situation:

2L ≥ 2 · N + 1
2

= N + 1 > N

The number of nodes in two knots would yield a total number of nodes in G that is larger
than N , thus there can be only one knot.

Lemma 16.3 Let p be a life process. Then there is a life process q ∈ K such that q → p ∈ E.

Proof: Let p be a life process with indegree(p) = L − 1. Then there are q1, . . . , qL−1 such
that (qi, p) ∈ E. If p ∈ K, then by the definition of a knot, qi ∈ K for each i (1 ≤ i ≤ L− 1).

Now suppose p 6∈ K. If one of the qi is in K, the lemma holds. So assume none of the qi is
in K. The G contains at least L nodes not in K. K has itself at least L nodes. Hence, G
contains at least 2L nodes. Contradiction. Hence one of the qi must be in K.

1These are standard definitions in graph theory and can be found in many textbooks on graph theory and
graph algorithms

Lecture 16: 24 October 16-4

16.3.2 Shortcuts

Now let us consider the stages 2 and further in the algorithm. The general idea all input
values of the processes in K should be broadcasted to all the other life processes, such that
all processes know of the processes in K and their input-values. The life processes will use
them to compute a value (0 or 1) that is the consensus value. From the previous lemma we
know that each life process is reachable from the knot K.

Suppose a path p1, p2, . . . , px exists. We add edges to G by shortcutting: add for each i
(1 ≤ i ≤ x − 2) the edge (pi, pi+2). For each path of length two, the shortcut is added. If
we repeat this shortcut for each path of length 2, log x times, each pi has an incoming edge
from pj for each j (1 ≤ j < i). Observe that in adding edges by shortcutting, the number of
edges in the graph may increase, but there is no change in the strongly connected components
(considered as subsets of nodes).

Let
Pred(p) = {q|q → p ∈ G}

so q is the ‘predecessor’ of p. Shortcutting means that all predecessors of q must become
predecessors of p. The life process q makes a long message composed of:

• id(q), its own identification

• xq, the input-value of q

• id(r), xr for a r ∈ Pred(q), the pair of the identification and the input-value of all its
predecessors.

Process q “shouts” this message around to be picked up by all p of which q is a predecessor.
Then it waits until it hears the shouts of all its own predecessors r. Note that this waiting is
only successful because the crash fault is not allowed in this model. Then q updates het set
of predecessors: Pred(q)← Pred(q) ∪

⋃
r ∈Pred(q) Pred(r).

Because the longest path in G has length at most N just before stage 2, log N repetitions of
the updating described above, suffice to give each life process the input values of all processes
in the knot.

Finally, the consensus value is computed independently and deterministically by all life pro-
cesses using the input values of the processes in the knot. Hence we have shown the correctness
of the following theorem.

Theorem 16.4 (Fischer, Lynch and Paterson 1985 [3]) The consensus problem can
be solved if we have t < N

2 initially dead process.

16.3.3 Efficiency

It is quite common to define the efficiency of distributed algorithms in terms of communication:
what is the maximum number of bits sent through the network?

Lecture 16: 24 October 16-5

Exercise. Determine the efficiency of the consensus algorithm, measured as big O of a function
of N (the number of processes). Assume that the identification and input of each process
consists of O(log N) and 1 bit, respectively.

Exercise. The original paper of Fischer et al. [3] has a different algorithm for stage 2 and
further:

2: for all processes p:
do p creates a message m with (p, Pred(p), xp)

p sends m to every other process.
Knowsof(p)← {p} ∪ Pred(p)
Received(p)← {p}
while not Knowsof(p) ⊆ Received(p)
do pick up a message (r, Pred(r), xr)

Knowsof(p)← Knowsof(p) ∪ Pred(r)
Received(p)← Received(p) ∪ {r}
p stores vertex r, the incoming edges of r and the input xr.

endo
enddo

3: for all processes p
do p computes the knot K of the induced subgraph of G determined by Knowsof(p).

p computes the consensus value using the input values xq of the processes q ∈ K.
endo

Prove the following graph-theoretic lemma:

Lemma 16.5 Let G = (V,E) be a directed graph, X ⊆ V , x ∈ X and C is the strongly
connected component of G containing x. Suppose (v, w) ∈ E, w ∈ X implies v ∈ X. Then
C ⊆ X.

Show finally that this stage 2 and 3 correctly finishes the consensus algorithm. Determine the
efficiency of this modified algorithm (with the same assumptions as in the previous exercise).

16.3.4 Randomization

It is unfortunate that in the crash or Byzantine fault model, even a simple problem as con-
sensus cannot be solved deterministically. The impossibility result of Fischer et al. [3] (see
also previous lecture) shows only that at least one execution of one specific input may lead
to postponement of a necessary decision. One could look for algorithms with many possible
executions for each input (initial configuration) where the algorithm will decide (determine a
correct output) on most executions. Thinking in this way, Bracha and Toueg [2] were able to
design randomized consensus algorithms for the crash and Byzantine failure model, with at
most N/2 and N/3 faulty processes, respectively, in which the probability of a terminating
execution within k steps tends to 1 if k tends to ∞.

Lecture 16: 24 October 16-6

16.4 The renaming problem.

As stated in the introduction we will inspect a problem different from the consensus problem,
to see whether there exists a non-trivial problem that can be solved in the crash fault model.
The renaming problem is defined as follows: processes have different identifications, assign to
the life processes new (different) identifications from a limited set of characters (e.g., a small
number of bits)?

Given: for each process p, id(p) is the identification of p, and p 6= q implies id(p) 6= id(q).

Determine: a new(p), the new identification of p, for each life process p such that

id(p) 6= id(q) implies new(p) 6= new(q) for p and alife q

Fault model: The used fault model is the crash model, and at most t < N
2 processes might

crash (t is known).

In the algorithm process p maintains a name space Vp. Initially Vp = {id(p)}. During the
algorithm Vp will grow and note that once id(q) has been added to Vp, id(q) will forever
remain in Vp. Process p will receive name spaces of other processes, and it counts the number
of times it receives a copy of its current name space. As soon as p has counted to N − t, the
current name space of p is called stable.
When p is alife, then sometime Vp will become “stable”. Even after it has become stable, the
execution of the algorithm for process p proceeds and Vp may still grow, become unstable,
and may become stable for a second (a third, . . .) time.

A new identification will be assigned to p according to the rule

new(p) = (|Vp|, (rank of id(p) in Vp))

with rank being an integer related to the size of Vp. If id(p) is the largest element (name) in
Vp, then its rank equals 0. If id(p) is the second largest element in Vp, its rank will be 1, etc.
The used Vp is the set Vp when it just has become stable for the first time. Now there could
three possibilities for different processes p and q to which new names will be assigned:

1. |Vp| 6= |Vq|. Then new(p) 6= new(q).

2. |Vp| = |Vq| and Vp 6= Vq. The algorithm will be designed in such a way that this case
never occurs.

3. Vp = Vq. Then the ranks of id(p) and id(q) are different, because (the identifications
of) p and q are different.

The new names are chosen from a set of size at most (N − 1
2 t)(t + 1).

Lecture 16: 24 October 16-7

16.4.1 Algorithm for renaming

Initially set Vp = {id(p)} and the counter cp ← 0
shout(Vp)
while true
do receive(V)

if V = Vp

then cp ← cp + 1
if cp = N − t and no new(p) has been assigned
then *Vp is stable*

new(p)← (|Vp|, (rank of id(p) in Vp))
endif

else if V ⊆ Vp then ignore
else if Vp ⊆ V then cp ← 1; Vp ← V

else cp ← 0; Vp ← V ∪ Vp

endif
shout(Vp)

enddo

Now the question arises whether or not this algorithm terminates. This is not the same
as the question whether it stops running, which it will not, but whether it will give new
identifications (names) to all life processes.

Lemma 16.6 Assume that the algorithm terminates.
Let p and q have decided on a new name, based on a certain Vp and Vq, respectively, then
Vp ⊆ Vq or Vq ⊆ Vp or both.

Proof: Process p has received Vp N − t times from processes r1, r2, . . . , rN−t and process q
has received Vq N − t times from processes s1, s2, . . . , sN−t. Because t < N

2 holds, one of the
ri and sj is the same process; let this be process r. This process r has sent Vr to p which led
to an increase of cp. Process r also sent V ′

r to q which led to an increase of cq. This means

V′
r =Vq

Vr =Vp

If r sends V ′
r to q before it sends Vr to p: V ′

r = Vq and Vr = Vp and V ′
r ⊆ Vr hold which

implies Vq ⊆ Vp. If r sends Vr to p before it sends V ′
r to q, then Vp ⊆ Vq. Hence the lemma

holds.

With this lemma it is shown that the case 2 in the assignment of new names (i.e., the case
|Vp| = |Vq| and Vp 6= Vq) does not occur.

What if the algorithm runs forever and would not terminate (i.e., some life process never
assigns a new name to itself).

Lemma 16.7 Each life process p reaches a stable set at least once in each fair t-crash exe-
cution.

Lecture 16: 24 October 16-8

Proof: Let p be a life process. The set Vp remains expanding while it is certain that always
|Vp| ≤ N . Hence there must be a largest name space V maxp of process p. As soon as Vp has
become this set V maxp, p shouted V maxp to all life processes. Hence, from some moment
onwards we have V maxp ⊆ Vq for all life processes q (here we use the assumption of fair
executions).

Claim 16.8 For each life process q sometime Vq = V maxp.

Proof: Suppose the claim does not hold. Then for some life process q we have that V maxp

is a proper subset of Vq at some moment. Then of course q shouts this Vq around, which is
picked up by p. Then p expands Vp which was already the maximum sized set during the
whole execution of p. Contradiction.

Thus each life process q sends once V maxp to p. With N − t life processes, V maxp becomes
a stable set.

Theorem 16.9 (Attiya et al., 1990 [1]) The renaming problem can be solved in a t-crash
model in which t < N/2.

References

[1] Attiya, H., A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk, Renaming in an asyn-
chronous environment, Journal of the ACM, volume 37, pages 524–548, 1990.

[2] Bracha, G. and S. Toueg, Asynchronous consensus and broadcast protocols, Journal of
the ACM, volume 32, pages 824–840, 1985.

[3] Fischer, M.J., N.A. Lynch, and M.S. Paterson, Impossibility of distributed consensus with
one faulty process, Journal of the ACM, volume 32, pages 374–382, 1985.

