Algorithmic Modeling and Complexity Fall 2003

Lecture 17: 28 October
Lecturer: M. Veldhorst Scribes: Paulo Magalhaes and Rui Coelho

17.1 Overview

How to reach consensus in a faulty synchronous networks, in particular, in the presence of
Byzantine processes was the topic for this lecture. We approached this by using an analogy of
the Byzantine Generals Problem and finished by introducing a solution using signed messages.

17.2 Synchronous networks

In a synchronous networks the operations are done according with pulses. A pulse is a periodic
moment when all messages are sent, received and local computations for the given period take
place.

A Byzantine process is a process with an erroneous behaviour, having unpredictable actions.
For our study, let’s consider the following assumptions:

e a message sent by s to d arrives in d without any change;
e cach message contains its correct source (even a Byzantine process can’t change it);

e the absence of an expected message can be detected.

17.2.1 Byzantine broadcast

The origin of the term Byzantine comes from the city of Byzantium, later renamed Con-
stantinople and then Istanbul. In this city, the Byzantine empire were vitiated by a bureau-
cratic over-elaboration bordering on lunacy: quadruple banked agencies, dozens or even scores
of superfluous levels and officials with high flown titles unrelated to their actual function, if
any.

Our problem of Byzantine processes, is then similar to the Byzantine Empire army generals
that are trying to conqueror a city. Hence, the commander gives an order (i.e: attack, retreat,
etc) spreading it through all the generals. The main problem is that the generals, or even the
commander, might be traitors (Byzantine processes).

Assume that there are N different armies, each one having only one general commanding
them and being the commander one of those generals. Let ¢t be the number of traitors among
the N generals. Knowing that the commander issues an order v, the following conditions
must occur:

17-1

Lecture 17: 28 October 17-2

1. all loyal generals must have the same value;

2. if the commander is loyal, all loyal generals must have have the value v.

Theorem 17.1 Ifin a total of 3 generals, one of them is a traitor, then the problem can’t be
solved.

Proof: Let’s consider, for simplicity, the case in which the only possible orders v are attack
and retreat. Considering the situation pictured in Fig. 17.1. in which the commander is
loyal and sends an attack order but general 2 is a traitor and reports to general 1 that the
commander ordered retreat. For condition (2) to be satisfied, general 1 must comply with the
attack order. Now looking at Fig. 17.2. in which the the commander is a traitor and sends
different messages to his generals. The general I doesn’t know who the traitor is. Then, so
that he complies to condition (1) he should retreat. However, for general 1 both situations
are indistinguishable, and so, it’s impossible for him to decide which of the orders to accept.

Commander

& %%%
<|—‘ SN S 3
Fig. 17.1. general 2 is a traitor Fig. 17.2. The commander is a traitor.

Theorem 17.2 Having N armies, and t > %, then there is no algorithm A that solves the
problem.

Proof: By contradiction: assume there is an algorithm A that solves the problem of N
generals with ¢ > % Then, it is possible to partition the generals into 3 groups of equal size
with one of them consisting of only traitors. Considering each of this groups as a individual
general (of a larger army of lieutenant generals for example) we see that the problem reduced
itself to the case of 3 generals and one traitor. Then, algorithm A must be able to solve this
last problem. But, as was shown, that is impossible: contradiction. [|

Let P be a set of processes and P’ € P such that |P’| < t. Then P — P’ has a majority of a
loyal processes. Let majority(vy,va,...,vn) be a function with the following return values:

e v; if value v; occurs in vy, ..., v by majority.

® Uyndefined Otherwise.

Let broadcast(Q,q € Q,v,t) be a function that sends to every element of Q-g (i.e.: except
himself) the value v and knowing that there can be at most ¢ traitors.

Algorithm A(0)

Lecture 17: 28 October 17-3

1. The commander sends his value to every general.

2. Each general uses the value he receives from the commander.
Algorithm A(t), with ¢ > 0

1. The commander sends his value to every general.

2. For each i, let v; be the value general ¢ receives from the commander. General i acts as
the commander in Algorithm A(t — 1) to send the value v; to each of the N — 2 other
generals using the broadcast function.

3. For each i, and each j # i, let v; be the value general i received from general j in step
(2), using A(t — 1). General i uses the value of majority(vy,...,un—1).

Theorem 17.3 For any t, algorithm A(t) satisfies conditions (1) and (2) if there are more
than 3t generals and at most t traitors.

Proof: The proof is by induction on . If there are no traitors, then it is easy to see that
A(0) satisfies (1) and (2). Induction hypothesis: assume that the theorem is true for A(t —1),
with ¢ > 0. Now, for A(t):

Case 1: commander is loyal. Then, if there are more than 3¢ generals and at most ¢ traitors,
the majority of values v will always be equal to the value given by the commander, thus
satisfying (1) and (2) and so proving the claim.

Case 2: commander is a traitor. Then, it sends values v1,vs,...,un_1 tO P1,p2,...,DN—_1-
Each p; then calls A(P — po, pi,vi,t — 1). If there are ¢ traitors and the commander is
one of them then there are ¢t — 1 generals that are traitors. By the theorem, there must
be more than 3t generals and thus more than 3t — 1 generals if the commander is not
included. If so, knowing that 3t—1 > 3(t—1), one can apply the induction hypothesis to
conclude that A(t—1) satisfies conditions (1) and (2). So, for each j, any 2 loyal generals
get the same value v; in step (3). Thus, any 2 loyal generals get the same set of values
V1,02, ...,un—1 and therefore decide on the same value of majority(v,ve,...,on—1) in
step (3), proving condition (1).

17.2.2 Signed Messages

As we saw it is the traitors ability to lie that makes the Byzantine Generals Problem so
difficult. The problem becomes easier to solve if we can restrict that ability. One way to do
this is to allow the generals to send unforgeable signed messages. We can then assume that:

e A loyal general signature in a message cannot be forged, nor the contents changed.

e Every general can check the authenticity of another general’s message.

Lecture 17: 28 October 17-4

Signed messages are of the form x:¢ where x denote the value signed by General ¢. If so, v:j:4
denotes the value v signed by j, and then that value v:j signed by ¢. In this algorithm, each
general keeps track of a growing set V;, containing the set of properly signed orders he has
received so far. Consider a message v:0 to be a message from the commander.

In the following algorithm, the commander sends a signed order to each of his generals. Each
general then adds his signature to that order and sends it to the other generals, who add
their signatures and send it to others, and so on. This means that a general must effectively
receive one signed message, make several copies of it, sign and send those copies. It does not
matter how these copies are obtained; a single message might be photocopied, or else each
message might consist of a stack of identical messages which are signed and distributed as
required.

Algorithm SM (t)

Initially V; = 0.

(1) The commander signs and sends his value to every general.
(2) For each general i:

(A) If general i receives a message of the form v:0 from the commander and he has
not yet received any order, then

(i) he lets V; equal {v};

(ii) he sends the message v:0:i to every other general.

Vi, then
(i) he adds v to V;;

than j1, ... Jk.
(3) For each i: When general i receives no more messages , he obeys the order choice

(Va).

Note that if the commander is loyal, then the set V; should never contain more than a single
element. If that is not the case then the commander must be a traitor as shown in Fig. 17.3.

e

N

&
"Retreat":0:2
"Attack":0:1

Fig. 17.3. Algorithm SM(t). The commander is the traitor.

Lecture 17: 28 October 17-5

References

[1] L. Lamport, M. Pease, and R. Shostak. The Byzantine generals problem, ACM Trans-
actions on Programming Languages and Systems (TOPLAS), v.4 n.3, p.382-401, July
1982.

