
Algorithmic Modeling and Complexity Fall 2003

Lecture 2: 4 September

Lecturer: J. van Leeuwen Scribe: M. Mahabiersing

2.1 Overview

The Vehicle Routing Problem is a classic problem in algorithmic modelling. The problem is
computationally very hard and is often approached using faster, but inexact approximation
algorithms. This lecture was to get acquainted with different qualities of approximation. Two
special cases of the VRP were discussed: the Euclidean TSP and the m-TSP with capacities.

2.2 Performance Ratio

Consider instances I of an optimization problem like the VRP. Let the optimum solution of
an instance I have value Opt(I). Suppose we have an algorithm A that produces feasible
solutions with value Sol(I).

Definition 2.1 The performance ratio of A is (any bound on) α(n) = max|I|=n{
Sol(I)
Opt(I) ,

Opt(I)
Sol(I) }.

For a minimization problem like the TSP, an approximation algorithm has a performance ratio
of (say) 2 if it always delivers feasible solutions that are within a factor of 2 from optimum:
Sol(I) ≤ 2 ·Opt(I). If optimum solutions are hard to compute, one would like to hope for an
efficient approximation algorithms that have a performance ratio α(n) → 1 for n →∞.

Unfortunately, for the general TSP and thus for the general VRP, there is NO known efficient
i.e. polynomial time-bounded algorithm that solves the problem within a performance ratio
bounded by a constant, in fact not even with a performance ratio bounded by any polynomial
in n, the number of locations.

In special cases of the VRP there are ways of approximating the optimum solutions with
certain performance guarantees.

2.3 The symmetric, metric TSP

Consider the TSP problem on a symmetric, metric network, i.e. assume cij = cji and the
triangle inequality. Let the optimum TSP-tour in a given instance have length OPT .

Observation: Deleting one edge from an optimum TSP-tour gives a spanning tree with a cost
≤ OPT.

2-1

Lecture 2: 4 September 2-2

This observation can be used in a ‘fast’ approximation algorithm for solving the TSP as
follows.

Algorithm S

Step 1. Determine a minimum spanning tree T with the depot as the root.

Step 2. Make a depth-first traversal of the tree T and when backtracking over visited
nodes, ‘shortcut’ the traversal to the first unvisited node in the traversal order.

Step 3. Stop when the traversal ends, at the root.

Step 1 follows easily with a standard low polynomial-time algorithm. Step 2 (and step 3) can
be implemented in linear time.

Proposition 2.2 Algorithm S computes a feasible tour and this tour has a length ≤ 2 ·OPT.

Proof: Feasibility is clear. By the observation, T has length ≤ OPT . Without shortcuts,
the traversal has a length ≤ 2 · OPT . The metric property implies that shortcuts can only
shorten the tour.

The proposition shows that the symmetric, metric TSP can be solved with a constantly
bounded performance ratio: algorithm S achieves a performance ratio ≤ 2.

Theorem 2.3 (Christofides, 1976) The symmetric, metric TSP can be solved in polyno-
mial time within a performance ratio ≤ 3

2 .

The 3
2 is still the best known result in the symmetric, metric case. We note that the best

performance ratio for the asymmetric, metric TSP is essentially log n, shown by Frieze et al.
in 1982. Improvements appear in Kumar and Li [7].

2.4 The Euclidean TSP

In the important case of the Euclidean TSP (‘the TSP in the plane’) it appears possible to
obtain a better result. We show that in this case one can get a performance ratio ‘very close’
to 1.

2.4.1 Preliminary bound

Scale the problem so that all n locations fit in the unit square. We will not rely on computing
euclidean distances between locations, as this would require infinite precision computing.

Lemma 2.4 The n locations in the unit square can be visited in a feasible tour of length
≤
√

2 ·
√

n +
√

2
2 + 2.

Lecture 2: 4 September 2-3

Proof: Divide the unit square in
√

n
c horizontal strips of thickness c√

n
, for some c to be

determined later. Now design two tours as follows.

Tour I. Starting a distance of c
2
√

n
below the top left corner of the square, follow the midline

of the first strip from left to right. While doing so, visit each location in the strip that is
passed by moving at most c

2
√

n
up or down and back. At the end of the first strip, move

down c√
n

down, and traverse the midline of the second strip, this time moving from right
to left. Continue sweeping back and forth through the strips until the lowest strip has been
traversed. Then go back in the straight line to the starting point, either along the leftmost
edge of the unit square or along the diagonal (if the traversal ended in the bottom right
corner). The visits to the locations are not left as side-steps in the traversal but shortcut
to straight lines. This only shortens the tour. The length of tour I is: #strips · horizontal
distance + vertical distance + distances to locations and back + return to starting point
≤

√
n

c · 1 + 1 + n · 2 · c
2
√

n
+
√

2.

Tour II. The same as the first, but this time the tour starts at the top left corner, and we
traverse the top-edge of each strip. Again locations are visited as they are passed within a
distance of at most c

2
√

n
by moving the appropriate distance down or up and back again. At

the end one needs to traverse the bottom edge of the lowest strip, to properly complete before
return ing to the top left corner. The length of tour II is: #strips · horizontal distance +
vertical distance + distances to locations and back + traversal of bottom edge + return to
starting point ≤

√
n

c · 1 + 1 + n · 2 · c
2
√

n
+ 1 +

√
2.

Note that the length of returning to the starting point (defined as
√

2 here) is actually 1 in
one of the tours. Which tour that is depends on the number of strips.

By adding the length of the tours, we can save on the estimate for visiting the locations.
Since the return length of 1 tour is 1, the return length of the 2 tours together is at most√

2+1. Also if one tour visits a location ‘from below’, the other tour will visit it ‘from above’
and vice versa. Thus 2 · c

2
√

n
is is actually a bound on the sum of the two terms in tour I and

II, for each location. Hence:

tour I + tour II ≤
√

n
c · 2 + 2 + n · 2 · c

2
√

n
+
√

2 + 1 + 1 = (2
c + c)

√
n +

√
2 + 4.

For c =
√

2, the average length of the two tours is:
√

2 ·
√

n +
√

2
2 + 2, which means that one

of the tours must be shorter than this.

2.4.2 Karp’s heuristic for the Euclidean TSP

Karp’s partitioning scheme now works as follows. We continue with the instance of n locations
in the unit square. Take a value s such that s! ≤ n. (Show that one can take e.g. s = log n

2 log log n .)

Algorithm K

Step 1. Draw
√

n
s vertical strips containing

√
ns points each. Also draw

√
n
s horizontal

strips within each vertical strip, with each strip containing s points. (This partitions
the unit square into n

s ‘blocks’ of s points each.)

Lecture 2: 4 September 2-4

Step 2. Solve the TSP problem within each block of s points exactly e.g. using an
algorithm that enumerates all s! tours.

Step 3. Choose an arbitrary point in each block (thus n
s points in total). Connect these

points in a tour as given in Lemma 2.4. Combine this tour with the tours in the blocks,
shortcutting other traversal to obtain a feasible tour.

By the choice of s, algorithm K runs in polynomial time. Let the resulting tour be T and let
its length be: c(T). Let the optimum TSP-tour through the n points have length OPT .

Theorem 2.5 (Karp, 1977) The tour T computed by algorithm K satisfies: OPT ≤ c(T) ≤
OPT + O(

√
n
s).

Proof: Let U be any optimum TSP-tour, c(U) = OPT . Consider any individual block Bi.
Let Ui be the (length of the) segments of U inside Bi. Let OPTi be the (length of the)
optimal tour through the points in block Bi as computed by algorithm K. Also, let P (Bi) be
the perimeter of Bi.

Claim 2.6 OPTi ≤ Ui + 3
2P (Bi).

Proof We complete Ui to a closed tour through the s locations inside Bi as follows. Let x1, . . . , xk be the
points in clockwise order around the perimeter of Bi where Ui enters/leaves Bi. Note that k is even. Consider
the graph consisting of x1, . . . , xk and the locations inside Bi, with edges as in Ui. Make the graph connected
by adding the the segments between the consecutive xi’s along the perimeter of Bi as edges. The locations all
have degree 2, but the xi’s all have degree 3.

Now observe that there are k edges along the perimeter and thus the xi’s can be matched in pairs so the total
length of the k

2
matched edges is ≤ 1

2
P (Bi). Add the k

2
matched edges to the graph, thus ‘duplicating’ these

edges. It means that now the xi’s all have degree 4, i.e. even degree as well. The total length of the edges in
the graph is now: Ui + P (Bi) + 1

2
P (Bi) = Ui + 3

2
P (Bi).

Because all nodes in the graph have even degree, the graph admits an Eulerian cycle (a cycle that traverses all
edges exactly once). Doing the Eulerian traversal in the graph but shortcutting over nodes that were already
visited and over the nodes x1, . . . , xk leads to a feasible tour of length ≤ Ui + 3

2
P (Bi) inside Bi visiting all

locations. The claim follows.

Now estimate c(T) as follows, using Lemma 2.4 and the claim.

c(T) ≤
∑n

s
i=1 OPTi +

√
2 ·

√
n
s + O(1) ≤

∑n
s
i=1 Ui + 3

2

∑n
s
i=1 P (Bi) +

√
2 ·

√
n
s + O(1)

≤ c(U) + 3
2(2

√
n
s + 2

√
n
s) +

√
2 ·

√
n
s + O(1) = OPT + O(

√
n
s),

where we note that
∑n

s
i=1 P (Bi) amounts to counting twice the full width and height of the

unit square for each strip worth of (horizontal c.q. vertical edges of)
√

n
s blocks.

Theorem 2.5 says at best that the tour computed by algorithm K is within a distance of
O(
√

n) from optimum. It does not yet say something about the performance ratio.

Theorem 2.7 (Karp, 1977) The ‘expected’ performance ratio of algorithm K converges to
1 for n →∞.

Lecture 2: 4 September 2-5

Proof:

It can be shown that the ‘expected’ length of a TSP through n uniformly distributed locations
in the unit square is ≥ β ·

√
n, for some constant β. Thus

c(T)
OPT ≤ (OPT + O(

√
n
s)/OPT ≤ 1 + γ√

s

for some constant γ. This proves the result.

2.4.3 Arora’s algorithm scheme for the Euclidean TSP

Karp’s result was the best result, and a remarkable one, for the Euclidean TSP for almost
twenty years. It still stands as a powerful technique. More recently the partitioning scheme
was considerably refined so as to achieve a guaranteed performance ratio as close to 1 as one
would want to have it, still with a polynomial time algorithm.

Theorem 2.8 (Arora, 1996) There is an algorithm A operating on pairs I, ε such that for
any fixed ε > 0, A solves Euclidean TSP instances I within a performance ratio 1+ ε, in time
polynomial in n = |I|.

Arora’s algorithm typically has a running time in the order of n
1
ε .

2.5 The m-TSP

Unfortunately in many instances of the VRP, it is considerably harder to achieve approxi-
mations with very good performance guarantees. In this case one often resorts to heuristics:
algorithms that do well in practice but for which we have no absolute guarantees.

We examine the ‘capacitated’ m-TSP, with 1 depot and m vehicles with ‘capacity’ Q. The
problem is to devise ≤ m feasible tours that cover all locations with least total cost, where
a tour is called feasible if it can be serviced by a vehicle of capacity Q. We do not assume
symmetry of the costs for traversing edges or anything.

2.5.1 Clarke-Wright savings heuristic

Clarke and Wright (1964) proposed an approach that can be adapted to various versions of
the VRP. In the case of the m-TSP, the Clarke-Wright heuristic maintains a set R of tours
that satisfies the following invariant:

- every tour in R is feasible,

- the tours in R overlap only in the depot and are otherwise disjoint, and

- the tours in R jointly cover all locations.

Lecture 2: 4 September 2-6

An initial set R is easily constructed. Start with the empty set, and for each location i,
add the tour that goes from the depot to i and back. If we can combine tours so eventually
|R| ≤ m, then the first moment this happens (if it happens at all) one has at least a feasible
solution to the m-TSP! The quality will depend on the combine-rule for tours.

Let h0 denote the depot. Consider two disjoint, feasible tours: h0 – i1 – I – ip – h0 and h0 –
j1 – J – jq – h0. The tours can be combined to e.g.

h0 – i1 – I – ip – j1 – J – jq – h0

with a savings in cost of ciph0 + ch0j0 − cipj1. Similar cross-overs at the depot between the
first and the second tour can be made, with a similar calculation of the savings.

Combine rule: Given two disjoint feasible tours I and J , combine them into one
of more new tours T = [I, J] as above provided T is feasible. The savings of a new
feasible tour T is the difference in edge cost between I + J and T .

In addition to the set R, the Clarke-Wright heuristic maintains the set S of all combinations
of tours in R as given by the combine-rule. Every combined (feasible) tour is specified in
terms of the two constituent tours, the way they are combined, and the subsequent savings.
Note that combinations that lead to infeasible tours (which may happen in case of e.g. finite
Q), are not included in S.

Given the initial set R defined above, the set S is initialized to the set of all tours h0 – i1
– j1 – h0 and h0 – j1 – i1 – h0, with the corresponding savings marked over h0 – i1 – h0

and h0 – j1 – h0, respectively. (Note that we do not assume symmetry so order counts.) In
the course of the algorithm, S may contain combinations of tours that have already been
combined with other tours in the meantime. The following formulation of the algorithm takes
this into account.

Clarke-Wright savings heuristic

Initialize R and S as above.

while S 6= ∅ do

extract the potential combination [I, J] from S with the maximum saving

if I and J are still in R then

delete I and J from R

add all results of combining [I, J] with a tour from R in a
feasible way as in the combine-rule to R

add the combined tour [I, J] to R

else delete [I, J] from S

until |R| = m

Lecture 2: 4 September 2-7

Lemma 2.9 The Clarke-Wright savings heuristic always terminates and preserves the in-
variant for R.

Proof: In each iteration of the while-loop, either |S| or |R| reduces in size by one.

If upon termination one has |R| = m, then the tours in R form a feasible solution to the
m-TSP that can be expected to be ‘optimized’ (but not necessarily optimal). The Clarke-
Wright is reputed to do well in practice. To improve it, some implementations ‘bias’ the cost
of T in the combine-rule by a factor > 1.

Lemma 2.10 The Clarke-Wright savings heuristic can be implemented in O(n2 · log n) time.

Proof: Implement S as a heap. S has O(n2) elements initially, and at most O(n) elements
can be added to it each time a new tour is formed. When a new tour is formed, R reduces in
size by 1 and this can happen at most n−m = O(n) times. Thus S will remain of size O(n2)
throughout.

Extractions can be done in order log n2 thus O(log n) time. In the worst case all O(n2)
potential element of S will eventually be extracted. The combine-rule is called at most n
times, and each call involves combining a new tour with the ≤ n tours currently in R. This
accounts for a total of O(n2 · log n) time.

2.5.2 Clarke-Wright savings heuristic for the TSP

Taking m = 1 and Q = ∞, the Clarke-Wright heuristic become a heuristic for the ordinary
TSP.

Theorem 2.11 (Ong and Moore, 1984) The Clarke-Wright savings heuristic applied to
the symmetric, metric TSP has a performance ratio of log2 n + 1.

References

[1] S. Arora. Polynomial time approximation schemes for Euclidean TSP and other geometric
problems. In: Proc. 37th Ann. IEEE Symposium on Foundations of Computer Science
(FOCS’96), 1996, pp. 2-11.

[2] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman prob-
lem. Techn. Report 388, Grad. School of Industrial Administration, Carnegie-Mellon
University, Pittsburgh, PA, 1977.

[3] G. Clarke and J.W. Wright. Scheduling of vehicles from a central depot to a number of
delivery points. Oper. Research 12 (1964) 568-581.

[4] A.M. Frieze, G. Galbiati, and F. Maffioli. On the worst-case performance of some algo-
rithms for the asymmetric traveling salesman problem. Networks 12 (1982) 23-39.

Lecture 2: 4 September 2-8

[5] C. de Jong, G. Kant, and A. van Vliet. Efficient implementations of the savings method
for the vehicle routing problem with time windows. Manuscript, Department of Computer
Science, Utrecht University , 1996.

[6] R.M. Karp. Probabilistic analysis of partitioning algorithms for the traveling-salesman
problem in the plane. Math. Oper. Research 2 (1977) 209-224.

[7] R. Kumar and H. Li. On asymmetric TSP: transformation to symmetric TSP and per-
formance bound. Submitted to J. Oper. Research (2002).

[8] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys (Eds). The traveling
salesman problem - A guided tour of combinatorial optimization. John Wiley & Sons,
Chichester, 1985.

[9] H.L. Ong, J.B. Moore. Worst-case analysis of two travelling salesman heuristics. Oper.
Res. Lett. 2 (1984) 273-277.

