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6.1 Overview

We saw how Linear Programming (LP) is used in modelling optimization problems. In prac-
tice many problems are modelled as 0− 1 LPs or ILPs. In many cases it pays to analyze the
relaxed LP, which may lead to a good approximation algorithm. In studying (general) LP
models there is a powerful tool: with every LP there is a dual LP that has the same optimum.
Sometimes the connection between the primal and the dual problem can be exploited. We
show this in the design of an approximation algorithm for the Set Cover problem.

6.2 Modeling the Set Cover Problem

As leading example of how a dual LP is derived, we consider the (relaxed) Set Cover Problem
(SCP). The problem consists of:

• a universe: U = {1, .., n},

• a collection of subsets of U : S = {S1, .., Sm} with with costs/expenses: c(Si) = ci > 0,
and

• a goal: determine a subcollection of the Si of smallest total cost that covers U .

The relaxed primal LP model (SCP) is:

min z =
m∑

j=1

cjxj

subject to
m∑

j=1

aijxj ≥ 1 for every i ∈ U

xj ≥ 0 for all j

where

aij =
{

1 if i ∈ Sj ;
0 otherwise.

6-1
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The original problem SCPI has the constraint ‘xi ∈ {0, 1} instead of xi ≥ 0. Let zI be the
optimum solution of the SCP with 0−1 constraint and z∗ the, possibly non-integral, optimum
of the relaxed SCP. Then: z∗ ≤ zI .

Observation 6.1 An optimal solution of the relaxed SCP has: x∗j ≤ 1 for every j.

There is no integrality constraint in the SCP although eventually we do want to find a good,
feasible 0− 1 solution.

6.2.1 The dual problem

We now design the dual of the SCP model: SCPd. This is done by introducing a dual variable
yi with the ith constraint in the SCP (1 ≤ i ≤ n), with yi ≥ 0. Multiply the left- and
right-hand side of every constraint by the corresponding dual variable:

m∑
j=1

aijxj · yi ≥ yi

and add the n inequalities:

n∑
i=1

(
m∑

j=1

aijxj · yi) ≥
n∑

i=1

yi ⇒ (1)

⇒
m∑

j=1

(
n∑

i=1

aijyi︸ ︷︷ ︸
≤cj

) · xj ≥
n∑

i=1

yi (2)

Compare equation 2 with the goal function z. Then for a fixed xj ≥ 0 it is interesting to
‘vary’ the yi while keeping

∑
aijyi ≤ cj . Doing so keeps the right-hand side of equation 2 and

hence the lefthand side below the value of z = z(x), even if we maximize the left-hand side
(
∑

yi). But this maximization process is independent of the specific xj ’s. Hence maximizing∑
yi under the given constraint amounts to approximating the minimum of the goal function

z from below. This leads to the following dual SCPd of SCP:

max zd =
n∑

i=1

yi

subject to
n∑

i=1

aijyi ≤ cj for every j ∈ U

yi ≥ 0 for all i

We conclude:
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Theorem 6.2 (Weak duality theorem) For every feasible solution xj of SCP and feasible
solution yi of the dual SCPd: zd ≤ z.

Proof: This is evident from the given argument. Note that indeed:

∑
i yi =

∑
i 1 · yi ≤

∑
i(
∑

j aij xj) yi ≤
∑

j(
∑

i aij yi) xj ≤
∑

j cjzj .

The classical LP-theory learns that an even stronger result holds whenever an LP problem
and its dual have a finite optimum, as in the case of the Set Cover problem.

Theorem 6.3 (Strong duality theorem) SCP and SCPd have the same optimum values,
i.e. z∗d = z∗.

6.2.2 The complementary slackness conditions

One can characterize the optimum solutions of SCP and SCPd precisely. Given values for the
yi, let

cj = cj −
n∑
1

aijyi.

Note that yi is dual feasible if and only if cj ≥ 0.

Theorem 6.4 Let xj and yi be feasible solutions of SCP and SCPd. These solutions are
optimal iff

xj > 0 ⇒ cj = cj −
∑

i

aijyi = 0 (primal complementary slackness condition)

yi > 0 ⇒
∑

j

aijxj = 1 (dual complementary slackness condition).

Proof: Let xj and yi be feasible. Then

0 ≤
∑

j cjxj =
∑

j(cj −
∑

i aijyi)xj =
∑

j cjxj −
∑

i(
∑

j

aijxj︸ ︷︷ ︸
≥1

)yi ≤ z −
∑

i yi = z − zd.

Suppose x and y are optimal solutions. Then z − zd = 0 by strong duality and thus all
inequalities become ‘equalities’. Hence

∑
j aijxj = 1 for all yi > 0 and

∑
cjxj = 0, i.e. cj = 0

for every xj ≥ 0. Conversely, if the properties hold we have equality all the way and thus
z − zd = 0, implying that x and y are optimal.
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The complementary slackness condition say that in the optimum: if yi > 0 then there is
equality in the corresponding constraint of the primal, and if xj > 0 then there is equality in
the corresponding constraint of the dual. This holds for every LP model and its dual with a
finite optimum. It can be given the following intuitive meaning in the case of the Set Cover
problem:

primal slackness: if xj > 0 (‘set Sj is selected’) then cj = 0 (‘the costs cj are fully paid
by the yi’).

dual slackness: if yi > 0 (‘element i pays’), then
∑

j aijxj = 1 (‘element i is fully
covered’).

Furthermore, if we have feasible solutions x and y with this property, then we know they are
primal and dual optimal respectively. Of course in the optimum of SCP it can happen that
the elements i are ‘fractionally covered’ by a number of different Sj ’s together. Thus we may
not have a feasible solution of the original SCP yet.

This is the machinery, how can we use it?

6.3 Solving the Set Cover Problem

Consider any instance of the Set Cover problem. We will show the primal and dual LP model
can be exploited in approximating the optimum solution. We show three approaches, the first
two of which involve a call to a general LP-solver.

Definition 6.5 (Frequency) Let f = maxi{
∑m

j aij}, the maximum number of times an
element i of U occurs in different subsets Sj.

Observation 6.6 Let
∑m

j aijxj ≥ 1 for a given i. Then there must be a j with aij = 1 and
xj ≥ 1

f . (Hint: there can be at most f non-zero terms.)

6.3.1 Primal approaches

The first algorithm is a simple rounding algorithm: if any xj > 0 in the optimum solution,
then we pick set Sj in the cover!

Algorithm SC-A

solve the (relaxed) SCP, let the optimum solution be x∗j .

for every j do: x∗j > 0 ⇒ xj = 1 and pick the corresponding set Sj

return the Sj ’s picked.
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Theorem 6.7 (Hochbaum, 1982) Algorithm SC-A computes a feasible solution to SCPI

and has performance ratio ≤ f

Proof: By observation 6.1. we have: 0 ≤ x∗j ≤ 1. As we only round up, it follows that the
0− 1 solution xj is feasible, i.e. represents a set cover of U .

Now observe the following, where we use an optimum solution y∗i of the dual to help in the
estimating:

z∗ =
m∑

j=1

cjx
∗
j ≤ z∗I ≤

m∑
j=1

cjxj =
∑

j
with x∗j > 0

cj =
∑

j
with x∗j > 0

(
n∑

i=1

aijy
∗
i

)
≤

∑
j

(
n∑

i=1

aijy
∗
i

)
=

n∑
i=1

0@ mX
j=1

aij

1A
| {z }

≤f

y∗i ≤ f ·
n∑

i=1

y∗i = f · z∗d = f · z∗ ≤ f · z∗I

Here primal complementary slackness condition is used in the fifth ‘step’. We conclude that∑
j cjxj , the cost of the solution, is within f from the optimal value z∗I .

The effect of algorithm SC-A can be obtained equally well by solving the dual and checking
which constraints in the dual are satisfied with equality: these constraints correspond precisely
to the j with xj > 0 (by complementary slackness).

Algorithm SC-A’

solve the SCPd, let the optimum solution be y∗i .

for every j do:
∑

i aijy
∗
i = 1 ⇒ xj = 1 and pick the corresponding set Sj

return the Sj ’s picked.

This algorithm computes the same result as SC-A.

The second algorithm is a simple rounding algorithm also but it is slightly more selective in
determining which xj ’s it will round: only if xj ≥ 1

f will we pick set Sj in the cover! Thus
potentially we pick fewer subsets than in algorithm SC-A.

Algorithm SC-B

solve the (relaxed) SCP, let the optimum solution be x∗j .

for every j do: x∗j ≥ 1
f ⇒ xj = 1 and pick the corresponding set Sj

return the Sj ’s picked.
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Theorem 6.8 Algorithm SC-B computes a feasible solution to SCPI and has performance
ratio ≤ f

Proof: Here we choose fewer sets, but we still round to a feasible solution as can be seen as
follows. Consider any element i. As ∑

j

aijx
∗
j ≥ 1

it follows from observation 6.2 that there is a j with aij = 1 and xj ≥ 1
f . Thus xj = 1 and

set Sj is picked, and i is covered by this Sj .

The performance ratio might be lower than for algorithm SC-A because we round fewer xj ’s
up. Thus the performance ratio will be ≤ f also. We can verify this more easily:

z∗ =
∑

cjx
∗
j ≤ z∗I ≤ ≤︸︷︷︸

bec.
feas.
sol.

∑
j with︸ ︷︷ ︸

x∗
j
≥ 1

f

cjxj︸︷︷︸
Cost of

SCPI sol.

≤

≤ f ·
∑

j with︸ ︷︷ ︸
x∗

j
≥ 1

f

cjx
∗
j ≤ f ·

∑
j cjx

∗
j = fz∗

A disadvantage of the primal approaches is that they still need a call to an LP-solver. In the
next section we discuss an approach where this is not needed.

6.4 Primal-dual approach

The primal-dual algorithm solves the LP by trying to satisfy the complementary slackness
conditions. The algorithm starts with a dual feasible solution and iterates while maintaining
the following invariant:

1. for all j: xj ∈ {0,1}

2. (dual feasibility) for all i: yi ≥ 0 and for all j: cj = cj −
n∑
1

aijyi ≥ 0

3. (primal complementary slackness) for all j: xj > 0 ⇒ cj = 0.

4. (weak dual complementary slackness) for all i: yi > 0 ⇒
∑n

j=1 aijxj ≥ 1.
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(Recall that the dual complementary slackness condition was: yi > 0 ⇒
∑n

j=1 aijxj = 1.)

If dual complementary slackness were satisfied for all i, then we can stop: an optimal (integral)
solution is found. This is too much to hope for, and thus only a weak version is included in
the invariant: it expresses that ‘elements that pay’ are ‘certainly covered’. However, we will
try to satisfy as many of the (weak) dual complementary slackness conditions as possible as
the algorithm proceeds. Hopefully this will ‘move’ the xj closer to a feasible solution of SCPI ,
i.e. to a solution that covers the entire set U .

Lemma 6.9 Suppose the algorithm maintains the invariant and succeeds in reaching a fea-
sible solution xj i.e. in covering U , then its performance ratio is ≤ f .

Proof: Suppose the algorithm reaches a feasible solution xj (1 ≤ j ≤ n). Let J = {j|xj = 1},
thus U =

⋃
j∈J

Sj . Say the algorithm ends with y-values yi. Then:

z∗ ≤ z∗I ≤
∑
j∈J

cjxj =
∑
j∈J

(∑
i

aijyi

)
·1 ≤

∑
i

∑
j

aij

 yi ≤ f ·
∑

i

yi ≤ f ·z∗d = f ·z∗ ≤ f ·z∗I .

Thus the computed solution is within a factor f from the optimum.

The techniques is typical for many primal-dual approaches. We now formulate the primal-dual
algorithm for the Set Cover problem.

algorithm SC-BE

initialize

yi := 0,
cj = cj −

∑
i aijyi := cj (prices paid)

J := ∅ (will contain the set-indices picked for the cover)
xj := 0

while there are uncovered elements left do

pick an uncovered element i ∈ U (thus all xj with i ∈ Sj must be 0)

pick an index k with i ∈ Sk and ck smallest, say ck = µ
(thus pick a subset that is cheapest to add).

set yi := µ, add k to J and set xk := 1

and repair the invariant

for all j do cj := cj − aij · yi

( this will make ck = 0)

return the subsets Sj with j ∈ J .
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Lemma 6.10 Algorithm SC-BE maintains the primal-dual invariant.

Proof: Clearly the initialization gives values to the yi and xj that satisfy the invariant. For
example, for every j: xj > 0 ⇒ cj = 0) is vacuously true.

Suppose the invariant holds at the beginning of the while-loop. We argue that it holds at
the end as well. We check the conditions.

1. Evident. The only change is that xk becomes 1.

2. As i was uncovered, its yi was 0. The yi now becomes (possibly) non-zero, is set to
ck ≥ 0 and this remains ≥ 0. However all cj-values are updated. Consider the following
for any j:

cj = cj −
∑

t

atjyt = cj −
∑
t6=i

atjyt − aijyi = cj −
∑
t6=i

atj − 0 = cj −
∑
t6=i

atj .

This shows that updating cj to cj − aij · yi preserves the definition of cj . Furthermore,
by the choice of k (and thus ck = µ) we have:

cj ≥ µ ⇒ (cj −
∑
t6=i

aijyt)− µ ≥ 0 ⇒ (cj −
∑
t6=i

aijyt)− aijµ ≥ 0 ⇒ cj − aijµ ≥ 0.

The left-hand side of the latter inequality equals the updated value of cj , the righthand
side shows that the update remains ≥ 0.

3. Note that xk changes and becomes (possibly) non-zero. However, it is clear that ck

becomes 0, and thus complementary slackness is restored: xk > 0 and ck = 0. No other
xj values are changed.

4. At the beginning of the loop i was uncovered, i.e. we had
∑

j aijxj = 0 and yi = 0.
By taking Sk into the cover, we get

∑
j aijxj = 1 (because of the contribution of xk).

But at the same time we set yi to µ ≥ 0. This satisfies the weak condition for i. For
elements different from i the contribution of xk can only increase the sum in the covering
constraint. This weak complementary slackness is invariant as well.

Theorem 6.11 (Bar-Yehuda and Even, 1981) Algorithm SC-BE computes a feasible so-
lution to SCPI , runs in time O(f · n), and has a performance ratio ≤ f .

Proof: By construction the algorithm halts precisely when all elements are covered. Thus
we get a feasible solution. As the algorithm maintains the invariant, Lemma 6.9 shows
that it has a performance ratio ≤ f . The algorithm is easily seen to be implementable in
O(
∑

j |Sj |) = O(f · n) steps.

As a quite surprising consequence we can conclude also:
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Corollary 6.12 The weighted vertex cover problem can be solved by a linear-time approxi-
mation algorithm with a performance ratio ≤ 2.

Proof: Vertex cover is a special case of set cover. Given a network instance, just take:

• U = the set of all edges,

• subsets Su = {all edges incident to u} with c(Su) = 1, for every u ∈ V ,

This has f = 2 (every edge has two endpoints and is thus in 2 sets). Thus algorithm SC-BE
runs in time O(f ·m) in this case, where m is the number of edges)

Interestingly, Gonzalez (1995) showed that the same result can be achieved by purely graph-
theoretic means, without resorting to the LP-model.

Exercise. Apply algorithm SC-BE to solve/approximate the minimum weight dominating set
problem. What is f in this case? (Hint: try max degree +1.)

6.5 Further remarks

Finally, it is known that by a different approximation algorithm the Set Cover Problem can
be solved in easy polynomial time within a performance ratio of lnn. Feige [2] showed that no
polynomial time approximation algorithmm exists that achieves a performance ratio ≤ c lnn
time for a c < 1 unless all NP -problems can be decided in only slightly super-polynomial
time.
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