
Algorithmic Modeling and Complexity Fall 2003

Lecture 7: 23 September

Lecturer: J. van Leeuwen Scribe: M. van Es

7.1 Overview

Facility location problems are concerned with optimally locating facilities like warehouses,
distribution centres, newspaper stands, schools, hospitals and so on, in such a way that
(groups of) customers are served best at the lowest possible cost of building and operating
the facilities. In this lecture we consider a typical case in networks where the ‘distances’
between customers and facilities satisfy a metric-symmetric property, model it as an Integer
Linear Program (ILP), and attempt to solve it by a fast primal-dual type of approximation
algorithm.

7.2 Modeling the Facility Location problem

A typical facility location problem is comprised of the following components:

• locations: places where facilities could be built and opened. Let fi be the cost for
doing so at location i.

• customers/clients: for each customer j and location (i.e. possible facility at) i, there
is a distance/service cost cij : the cost if customer j would use service from the facility
at location i.

• requirements, wishes, and constraints: for example, it may be required that each
customer is assigned to exactly one location. A typical constraint may be that only a
limited number of facilities can be built and opened.

• goal: to find a set of locations and an assignment of customers to them such that
opening facilities at these locations and assigning customers to them leads to the least
possible ‘total cost’.

Definition 7.1 The total cost of a feasible solution to the facility location problem is:

∑
i opened

fi +
∑

i,j with j assigned the opened i

cij

Typically a further constraint could be imposed on the capacity of every facility, i.e. the
maximum number of customers it can service. This constraint is not used in our case. The
problem we study is therefore known as the uncapacitated facility location problem (UFL).
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Exercise. Solve the UFL problem in case fi = 0 for all facilities i. (Hint: open a facility at
every location i.)

In the remainder we will assume that all fi ≥ 0 and cij ≥ 0 and and that these costs are all
integer. We will also use the terms location and facility interchangeably.

7.2.1 Representing the UFL problem

When studying the uncapacitated facility location problem, the locations can be imagined as
a ‘row’ of nodes F (running index i) and the customers as a ‘row’ of nodes C (running index
j) below it.

A facility or location i is labeled with its opening cost fi. The possible assignment of customer
j to facility i is described by an edge (i, j) with label cij , the already mentioned service cost.

Lemma 7.2 The Set Cover problem can be ‘reduced’ to the UFL problem.

Proof: Remember the Set Cover problem. It consists of a universe U = {x1, . . . , xn}, a
collection of subsets S = {S1, . . . Sm} and cost value for each subset c(Si) = ci. The goal is
to minimize

∑
i ci.

Now design an instance of the UFL problem as follows. In the UFL problem, the customers
correlate with the elements of the set U and the facilities with the subsets in the collection
S. The opening cost of facility i (1 ≤ i ≤ m) is set to fi = ci.

The question remains what to take for cij in this UFL problem instance. Take cij to be 1 if
j ∈ Si and ∞ otherwise.

We claim that any cost-q solution of the Set Cover instance corresponds to a cost-q+n solution
of the constructed UFL problem instance and vice versa (for any finite q).

(⇒) Consider any solution Si1 , . . . , Sik of the Set Cover problem of cost q. In the UFL instance,
open facilities i1, . . . , ik and assign every customer j to an opened facility that ‘covers’ it. (If
a customer j is covered by more than one subset/facility, it has to choose one of them to
connect to.) The result is a feasible solution of cost q (for the opened facilities) + n (the
total cost for connecting the customers).

(⇐) Conversely, consider any feasible solution to the UFL instance with (finite) cost q + n.
The cost of connecting the customers is n, so the cost of the opened facilities i1, . . . , ik in the
solution is q. It is easily verified that Si1 , . . . , Sik must form feasible solution to the Set Cover
instance, with cost q.

It follows that the optimum solution to the Set Cover problem equals the optimum solution
of the UFL problem to which it was reduced.

In general the UFL problem is computationally hard. Fortunately it can be modelled in the
framework of LP.
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7.3 Modeling the UFL problem by a 0-1 Linear Programming
model

We now show how the UFL problem can be modelled as a 0-1 LP, we will consider the relaxed
problem, take is dual and interpret the complementary slackness conditions.

Take the following indicator variables:

yi: indicator variable expressing whether a facility (at location) i is opened or not.

xij : indicator variable expressing whether facility i will service customer j or not, i.e.
whether j is serviced by i or not.

The model for minimizing the total cost of a feasible solution to a given UFL problem is due
to Baliski (1966). The 0-1 LP reads as follows:

UFL01

min
∑

i,j cijxij +
∑

i fiyi

subject to:

1.
∑

ixij ≥ 1 for every j (all customers must be serviced).

2. yi−xij ≥ 0 for all i, j (if j is connected to i, i.e. xij = 1 then i must be open).

3. xij ∈ {0, 1}.
4. yi ∈ {0, 1}.

We will especially study the relaxed UFL01 problem, which we will simply call ‘UFL’. In the
relaxed UFL the last two constraints are converted to:

3′. xij ≥ 0.

4′. yi ≥ 0.

We will not consider solving the relaxed problem directly but move towards a primal-dual
approach.

7.3.1 The dual UFL model and the complementary slackness conditions

The following dual variables are created:

αj : belonging to the constraint
∑

i xij ≥ 1 for every j.

βij : belonging to the constraint yi − xij ≥ 0 for all i, j.
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We will see in a moment that the αj and βij have a nice intuitive interpretation.

The dual of the UFL model is designed in the standard way:

UFLd

max
∑

jαj .

subject to:

1. αj − βij ≤ cij for all i, j (dual constraint related to primal variable xij).

2.
∑

jβij ≤ fi for all i (dual constraint related to primal variable yi).

3. αj ≥ 0.

4. βij ≥ 0.

Looking at the dual one gets the idea for the following interpretation of the dual variables.

• αj is the total cost paid by customer j.

• βij is the contribution of customer j to the cost of opening facility i (to which it will
presumable be assigned).

Constraint 1 expresses e.g. that the amount of money customer j has left after contributing
to the opening costs of facility j (i.e. αj − βij) may be used for paying towards the service
costs cij . We may only hope that in an optimum solution, the total payments of the various
customers are sufficient to cover the costs! The complementary slackness conditions express
that we may indeed hope this to be the case:

Complementary slackness conditions

1. xij > 0 → αj − βij = cij (‘if j is connected to i, then j has paid βij for the opening and
has precisely cij left for the servicing costs’).

2. yi > 0 →
∑

jβij = fi (‘if i is opened, then all customers assigned to i have paid for
opening it’).

1’. αj > 0 →
∑

ixij = 1 (‘if customer j pays an amount αj , then it is covered by the
facilities’). then it is covered by a facility.)

2’. βij > 0 → yi = xij (‘if customer j contributes to the cost of opening a facility then this
facility is opened and j is connected to it’).

The only difficulty is that the yi and xij are not necessarily 0-1 valued in an optimal solution
to UFL and therefore the αj and βij cannot automatically be assumed to have the desired
interpretation either.



Lecture 7: 23 September 7-5

7.3.2 An ideal primal-dual argument

Jain and Vazirani (2001) suggested the possibility to solve the UFLd by trying to satisfying
the complementary slackness conditions i.e. by using the primal-dual argument. The idea is,
that if we have a feasible solution in the dual model and can ‘move’ this towards the optimum
while maintaining values for xij and yi that eventually become feasible as well, then the final
feasible solution to the primal that is found this way may be a good approximate solution to
the original UFL01 problem.

Suppose we manage to find solutions to the dual and primal problem such that:

• xij , yi ∈ {0, 1} are primal feasible. Let the assignment φ be such that φ(j) = i if and
only if xij = 1.

• αj and βij are dual feasible (we will later see that we can even take them to be integral
but this is not needed here).

• the dual complementary slackness conditions hold, i.e.

1′. αj > 0 → (
∑

ixij = 1 → by 1. there is precisely one xij equal to1 thus φ(j) =
i hence ) → xφ(j),j = 1.

2′. βij > 0 → yi = xij (thus if xij = 1 then yi = 1, meaning that facility i is open).

• the weakened primal slackness conditions hold,

1. xij > 0 → 1
3cij ≤ αj − βij ≤ cij (with i = φ(j)).

2. yi > 0 → 1
3fi ≤

∑
φ(j) = i βij ≤ fi.

Proposition 7.3 If the assumption holds, the primal solution yields an approximation of the
UFL01 problem within a factor 3 from optimum.

Proof: If the assumption holds, then consider the cost of the solution yi, xij :∑
cijxij +

∑
fiyi

≤
∑

cijxij +
∑

3βijxij

(looking only at terms fiyi with yi = 1 we can estimate fi by 3 ·
∑

φ(j) = i βij . Re-
placing the factor yi by xij is harmless because whenever βij 6= 0, we have yi = xij by
assumption. Extending the summation over all i, j is fine too as it only increases our
sum.)

=
∑

(cij + 3βij)xij

(only the terms with xij 6= 0 count, thus use the weak primary slackness constraint)

≤
∑

j3αj

≤ 3· optimal value of the dual = 3· optimal value of the primal

≤ 3· optimal of the original UFL01 model.
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This proves the claim.

Jain and Vazirani claim that if we assume that the UFL problem can be embedded in a
metric-symmetric network situation (i.e. for the costs cij), then we can achieve the assumed
properties, even in a strong way.

7.4 A primal-dual approach to finding a feasible solution

Assume that the costs cij satisfy a metric-symmetric property (see Lemma 7.10). Also recall
that the fi and cij are assumed to be integral.

The aim is more or less clear. We want to start with a feasible dual solution and build towards
a large solution satisfying the complementary slackness conditions. We will do this in terms of
the αj and βij first: it means that we will let a sufficient number, but not too many customers
‘pay’ for the opening and service costs through their ‘dual’ variables. Setting 0-1 values for
the yi and xij will be done at the end. Hopefully the result is a solution that is ‘close to
optimal’.

Starting with a dual feasible solution is easy. We take αj = βij = 0. We now grow a ‘large’
dual feasible solution by incrementing the αj by 1 repeatedly, and if necessary the βij too,
while maintaining dual feasibility, i.e.

αj − βij ≤ cij and
∑

βij ≤ fi.

Raise αj until αj−βij = cij holds, then raise αj and βij by 1 together (to keep their difference
at cij) until

∑
βij = fi holds. How far we go with this depends on several possible events.

As soon as some of the βij-values are beginning to rise, we may get to a point where ‘equality’
arises in some or more of the constraints

∑
βij ≤ fi, meaning that facility i gets fully paid

and ‘can be built if we want to’ (thus not necessarily opened).

Definition 7.4 Facility i is fully paid for if
∑

jβij = fi.

Definition 7.5 Customer j is paying for facility i if βij > 0.

Clearly, if a facility i is fully paid for, then no customer j should raise his βij further. It
follows that if j had already raised its αj so far that it was forced to raise its βij ’s along with
it, then it should not raise its αj any further either! Otherwise it will continue to raise its αj

until it satisfies some αj ≥ cij for the first time.

Definition 7.6 Customer j has reached facility i if αj ≥ cij. If facility i is the ‘first’ among
the facilities reached by j to become fully paid for, then j is said to become linked to i and i
is the linking facility for j.
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(The ‘status’ of a customer depends on the progress of the algorithm. In the definition it is to
be understood that once a customer j has reached a facility i, it will have reached i from now
on. Typically j’s dual variables are no longer raised once it has become linked to a facility.)

Note that facilities that are fully paid for are not necessarily all going to be opened. Neither
are customers that get linked to a facility i automatically going to be assigned to i in the end.
We will partition the customers in groups later.

We describe the algorithm below. It uses three checks:

Check-reached(j)

only called when j is not linked and its αj has just been incremented

check whether j has ‘reached’ a new i

going through all i do

if αj ≥ cij then declare i reached by j

end

Check-fullypaid(i)

only called when i is not yet fully paid and some j just raised its αj and βij

if
∑

jβij = fi then declare i fully paid

end

Check-linked(j)

only called when j is not linked and some i has just become fully paid

going through all i that are fully paid for do

if j has reached i and is not yet linked then declare j linked to i (with i the linking
facility for j)

Note that this links j arbitrarily to the first fully paid i that it has reached. Note
also that several j may be linked to the same i. Once a j gets linked it will not be
linked again, by virtue of the if-test

end

The three checks could be described more efficiently e.g. the various sums checked need not
be evaluated each time from scratch but can be maintained incrementally. We ignore this
detail now. With the three checks the algorithm ‘JV’ becomes as follows.
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Algorithm JV

Loop so all j eventually become linked.
Use a loop counter t as a ‘clock’

t := 0

for all unlinked j do Check-reached(j)

for all i not fully paid for do Check-fullypaid(i)

for all unlinked j do Check-linked(j)

while there are unlinked customers left do

begin

Now raise the contribution of the unlinked customers. While raising the contributions,
customers may reach more facilities, facilities may become fully paid for and, subse-
quently, customers may become linked in the process

t := t + 1

for every unlinked j do

begin

Raise j’s contribution by 1 unit
αj := αj + 1
and check whether any βij must be increased too
for every facility i do
begin

if j did not reach i (i.e. before now) then
the increase of αj was all

else if j has reached i then
because j is unlinked, i cannot be fully paid for yet
βij := βij + 1

end
do the final bookkeeping for j

Check-reached(j)
for all i not fully paid for do Check-fullypaid(i)
any i that became fully paid for may now serve as linking facility
for all unlinked j do Check-linked(j)

end

end

Exercise. Show that algorithm JV must terminate after finitely many steps i.e. after incre-
menting the the dual variables finitely many times.
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7.4.1 Properties of algorithm JV

We will now argue that algorithm JV does the job we want. We first show some auxiliary
properties. This part of our exposition elaborates on the approach in [2].

Definition 7.7 For every facility i that is fully paid for, let ti be the t-value during the
algorithm at which facility i became fully paid for.

Lemma 7.8 a. If customer j has reached i, then αj ≥ cij.

b. If βij > 0 (i.e. j ‘pays’ for facility i) and facility i is fully paid for, then αj ≤ ti.

c. If i is the linking facility for j, then ti ≤ αj.

Proof:

(a.) This is immediate from the definition of Check-reached.

(b.) βij > 0 means that j reaches i before i is fully paid for (otherwise j was linked immedi-
ately). αj is thus incremented further in the rounds of algorithm JV after j reaches i, until
j gets linked. Clearly j gets linked the latest when i becomes fully paid for.

(c.) Let i be the linking facility for j. There are two possibilities:

Case 1. βij > 0. In this case we have αj = ti, because the incrementing of αj went along
with the incrementing of t exactly until the moment of linking.

Case 2. βij = 0. If j reached i (at time αj), then this must be after i got fully paid for. Thus
ti ≤ αj .

We now move towards defining a suitable primal solution, especially the yi that should become
1 (‘which facilities will be opened’). We introduce:

Definition 7.9 The domain of i is the set Di = {j|βij > 0}, i.e. the set of all customers that
pay for i.

What can we say about the domains Di. The customers that pay for facilities are divided over
the domains but may belong to several domains simultaneously (‘pay for several facilities’).
And there may be a bunch of customers that do not pay for facilities at all, i.e. have all their
βij = 0.

The following lemma is crucial and will use the symmetric and metric property of the costs,
viz. the triangle inequality for the cij ’s.

Lemma 7.10 Let i and i′ be facilities that are fully paid for and suppose Di ∩Di′ 6= ∅. Let
i′ be the linking facility for j. Then

1
3
cij ≤ αj − βij ≤ cij .
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Proof:

Consider customer j and distinguish two cases.

Case 1: j has reached i. Then by the algorithm we have αj − βij = cij so this is ok.

Case 2: j did not reach i. This means that necessarily βij = 0 and αj ≤ cij , which gives the
right side of the inequality.

Let j′ ∈ Di ∩ Di′ . Now j′ must have reached both i and i′, thus by the previous lemma:
cij′ ≤ αj′ and ci′j′ ≤ αj′ . Because j′ is paying for both facilities we have βij′ > 0 and βi′j′ > 0
and hence, by the previous lemma: αj′ ≤ ti′ and αj′ ≤ ti. Furthermore, i′ was the linking
facility for j. This means that ci′j ≤ αj and that by the lemma: ti′ ≤ αj . Combining all this
gives, using symmetry and the triangle inequality:

cij ≤ cij′ + ci′j′ + ci′j ≤ αj′ + αj′ + αj ≤ 3 · αj

where we use that αj′ ≤ min{ti′ , ti} ≤ αj . Thus we have in this case: 1
3cij ≤ αj − βij as

desired. (Note that βij = 0 here.)

7.4.2 Opening facilities and assigning customers

We now have all ingredients for determining a ‘good’ primal solution. Recall that our aim is
to satisfy the conditions from Section 7.3.2, especially the dual and weakened primal comple-
mentary slackness conditions.

Let FP be the set of fully paid facilities. Which ones are we going to open and how do we
assign customers?

Definition 7.11 Let I be a maximal set of facilities i1, . . . , ir ∈ FP such that their Di’s are
mutually disjoint.

Open the facilities ∈ I, i.e. set yi = 1 for i ∈ I. Assign customers j to open facilities φ(j) as
follows:

if j ∈ Di for an i ∈ I then assign j to i: φ(j) = i. We declare j ‘directly connected’.

if j does not belong to any Di with i ∈ I, then

let i′ be the linking facility for j (thus i′ ∈ FP )

if i′ ∈ I (then necessarily βi′j = 0 because j 6∈ I and) we assign j to i′ again:
φ(j) = i′. We declare j ‘directly connected’.

if i′ 6∈ I then let i ∈ I be such that Di ∩Di′ 6= ∅. (Because I is maximal, such an
i must exist.) Now assign j to i: φ(j) = i. We declare j ‘indirectly connected’.

Observe that all customers j are assigned and that they are all assigned to an opened facility!
Set xij = 1 if and only if φ(j) = i.
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Theorem 7.12 (Jain and Vazirani, 2001) The yi, xij form a feasible solution to the UFL01

problem that is within a factor 3 from optimum.

Proof: The solution yi, xij is a 0-1 solution that is clearly feasible by construction. The
αj , βij in turn are a dual feasible solution, again by construction. We proceed by showing
that the primal and dual feasible solutions we have, satisfy the slackness conditions 1′, 2′, 1
and 2 as given in Section 7.3.2.

Ad 1’. This is trivial, as φ is a valid assignment for all customers j.

Ad 2’. Let βij > 0. Consider customer j. If i ∈ I then i is open and j is assigned to i:
yi = xij = 1. If i 6∈ I then i is not open and j cannot be assigned to it: yi = xij = 0.

Ad 1. Let xij > 0, hence xij = 1: j is assigned to opened facility i ∈ I. If j is ‘directly
connected’ to i, then necessarily αj − βij = cij thus the inequality holds. If j is indirectly
connected to i, then Lemma 7.10 applies, proving the inequality again!

Ad 2. Let yi > 0, hence yi = 1: thus i is open and i ∈ I. By the assignment method, all
customers j with βij > 0 are assigned to i, i.e. have φ(j) = i. Because i ∈ FP , it is fully paid
for and we have

∑
φ(j) = i βij =

∑
βij = fi

which is even stronger than required.

The theorem now follows from Proposition 7.3.

7.4.3 Further remarks

Jain and Vazirani [3] show that algorithm JV can be implemented so as to run in O(m log m)
time, where m = |F | · |C|.

The uncapacitated facility location problem has enjoyed considerable interest in the last few
years, resulting in ever better polynomial time approximation algorithms. We list some of
them below, with the performance ratio they achieve.

year author(s) performance ratio
1997 Shmoys, Tardos and Aardal 3.16
1999 Jain and Vazirani 3
1999 Guha and Khuller 2.47
1999 Charikar and Guha 1.72
2001 Jain, Mahdian and Saberi 1.61
2002 Mahdian, Ye, and Zhang 1.52
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