
Algorithmic Modeling and Complexity Fall 2003

Lecture 9: 30 September

Lecturer: J. van Leeuwen Scribe: Jules van Kempen

9.1 Overview

Many issues of algorithmic modeling arise in planning, i.e. in assigning sufficient resources to
tasks so these tasks can be carried out. We consider a classical example known as the trans-
portation problem, originally due to Hitchcock [2] and others and analyzed in the framework
of network modeling and LP by e.g. Ford and Fulkerson [1] and Dantzig. The problem will
be shown to be equivalent to the modeling framework of minimum cost flow. We will also
consider the assignment problem as a special case. It will be shown to be equivalent to the
single-pair shortest path problem.

9.2 The transportation problem

The transportation problem is the following problem:

Given are m depots with quantities a1, . . . , am of a certain commodity in store,
and n customers which require quantities b1, . . . , bn respectively. The cost of
transporting 1 unit of the commodity from depot i to customer j is cij ≥ 0 and
fractional amounts take a proportional cost. Determine the quantity of the goods
that must be transported from the depots to the customers such that the demands
of the customers are met at the least possible total cost.

The transportation problem is a prototypical sypply-and-demand problem. For consistency
we require:

∑m
i=1 ai ≥

∑n
j=1 bj.

The transportation problem can be modeled by a Linear Program, using indicator variables
xij for the quantity to be transported from depot i to customer j:

minimize
∑

cijxij

subject to
∑n

j=1 xij ≤ ai (for i = 1, . . . ,m) (‘every depot has enough supply’)
∑m

i=1 xij = bj (for j = 1, . . . , n) (‘every customer demand is met’)

xij ≥ 0 (for 1 ≤ i ≤ m and 1 ≤ j ≤ n)

9-1
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Alert readers will notice that the ≤-sign in the first constraint of the LP can actually be
an =-sign: we can assume that all goods of the depots are actually ‘transported’, by (not)
transporting everything that the customers do not need to a ‘dump’ at zero cost. Formally:

Proposition 9.1 Without loss of generality we may assume that
∑m

i=1 ai =
∑n

j=1 bj.

Proof: We assumed that
∑m

i=1 ai ≥
∑n

j=1 bj. If
∑m

i=1 ai >
∑n

j=1 bj , then invent a new
customer n + 1 with a demand bn+1 =

∑m
i=1 ai −

∑n
j=1 bj. Let ci,n+1 = 0 for i = 1, . . . ,m.

Consider the transportation problem for this new instance. Of course we must include vari-
ables xi,n+1 for i = 1, . . . ,m now in the LP model.

The new model is equivalent to the old, as customer n+1 merely acts as a dump: transporting
goods from any depot to n + 1 costs nothing and thus is equivalent to leaving the goods that
are not needed to satisfy the demands of customers 1, . . . , n at the depots. In the new model
we have

∑m
i=1 ai =

∑n+1
j=1 bj.

By 9.1 we may assume that
∑n

j=1 xij = ai in the general model of the transportation problem:

(TrP)

minimize
∑

cijxij

subject to
∑n

j=1 xij = ai (i = 1, . . . ,m)
∑m

i=1 xij = bj (j = 1, . . . , n)

xij ≥ 0 (1 ≤ i ≤ m, 1 ≤ j ≤ n).

Lemma 9.2 Every instance of the transportation problem has a feasible solution.

Proof: One way of seeing this is the following. Transport all goods from the first depot to
the first customer and following, then continue with the goods of depot 2 and so on, stocking
a customers with bj goods before passing to the next customer. Because

∑m
i=1 ai =

∑n
j=1 bj ,

this precisely satisfies all customer demands. The quantities xij transported from i to j give
a feasible solution.

A different way is the following. Say
∑m

i=1 ai =
∑n

j=1 bj = H. Choose xij = aibj

H for 1 ≤ i ≤ m
and 1 ≤ j ≤ n. Then

n∑

j=1

xij =
m∑

j=1

aibj

H
=

ai

H

m∑

j=1

bj = ai

m∑

i=1

xij =
m∑

i=1

aibj

H
=

bj

H

m∑

i=1

ai = bj

showing that the constraints in the LP are fulfilled. Obviously aibj

H ≥ 0 if ai ≥ 0 and bj ≥ 0.
Thus all constraints are met and this solution is feasible.
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9.3 Modeling the transportation problem as a flow problem

In the previous lecture we saw that assignment problems can be reduced to solving flow
problems on bipartite networks. For the transportation problem we will show a connection to
a very useful general type of flow problem, namely flow with costs.

9.3.1 The minimum cost flow problem

Consider a (directed) flow network G =< V,E, b, c, s, t > with:

bij ≥ 0, the capacity of edge ij

cij ≥ 0, the cost of transporting one unit of flow through ij

a source s and a sink t with in-degree(s) = out-degree(t) = 0.

A feasible flow f in G must fulfill the following constraints:

• 0 ≤ f(i, j) ≤ b(i, j),

• ∑
(∗,j)∈E f(∗, j) =

∑
(j,∗)∈E f(j, ∗) for all j ∈ V − {s, t}.

The second constraints are known as the flow conservation constraints. They imply that the
amount of flow out of s is equal to the amount of flow into t.

Definition 9.3 (i) The value of a flow f is v =
∑

(s,∗)∈E f(s, ∗) =
∑

(∗,t)∈E f(∗, t) = |f |.
(ii) The cost of a flow f is ||f || = ∑

(i,j)∈E c(i, j)f(i, j)

The minimum cost flow problem is defined as follows:

Given a value v0 ≥ 0, determine a flow f from s to t such that |f | = v0 with least
possible cost ||f ||.

9.3.2 The equivalence theorem

The transportation problem can be rephrased into the minimum cost flow problem and vice
versa. We show this in two steps.

Lemma 9.4 Every instance of the transportation problem can be ‘reduced’ to a minimum
cost flow problem.

Proof: Consider an arbitrary instance of the transporting problem TrP as given above:
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minimize
∑

cijxij

subject to
∑n

j=1 xij ≤ ai
∑m

i=1 xij = bj xij ≥ 0.

Design a network GTrP as follows. It consists of a source s, m nodes (1, . . . ,m) corresponding
to the depots, n nodes corresponding to the customers, and a sink t. GTrP has the following
edges:

• an edge from s to every depot i with capacity ai and cost 0,

• an edge from every depot i to every customer j with capacity ∞ and cost cij , and

• an edge from every customer j to the sink t with capacity bj and cost 0.

ai, 0

1

i

m

t

1

j

n

, cij bj, 0

Let vTrP =
∑m

i=1 ai (=
∑n

j=1 bj). Consider the minimum cost flow problem in GTrP for value
vTrP .

The required flow value forces the outgoing edges of s and the ingoing edges of t to be filled
to their full capacity (‘saturated’). By taking xij = f(i, j) it is seen that the constraints in
the TrP are precisely equal to the flow conservation constraints in the nodes i (1 ≤ i ≤ m)
and j (1 ≤ j ≤ n) in GTrP . The goal functions are equal as well. Thus every transportation
problem can be reduced to this corresponding minimum cost flow problem.

The rather more surprising fact is the converse to this lemma.
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Lemma 9.5 Every instance of the minimum cost flow problem can be ‘reduced’ to a trans-
portation problem.

Proof: Consider an arbitrary instance of the minimum cost flow problem, based on a network
G =< V,E, b, c, s, t > and a certain desired flow value v0. We will reduce the problem to a
minimum cost flow problem in a network GTrP of the type described in Lemma 9.3 that is
directly equivalent to a transportation problem. GTrP consists of: a new source S, nodes oij

corresponding to the edges of the original network, n nodes (including s and t) corresponding
to the nodes of the original network, and a new sink T . The edge-nodes act as depots, the
nodes as customers. GTrP has the following edges, where we will use the following notation:
bi∗ =

∑
ij∈E bij:

• an edge from S to every depot oij with capacity bij and cost 0,

• an edge from every depot oij to ‘customer’ i with capacity ∞ and cost 0,

• an edge from every depot oij to ‘customer’ j with capacity ∞ and cost cij ,

• an edge from every depot oij to customers 6= i, j with capacity ∞ and cost ∞,

• an edge from customer s to sink T with capacity bs∗ − v0 and cost 0,

• an edge from every customer j 6= s, t with capacity bj,∗ and cost 0,

• an edge from customer t to sink T with capacity bt∗ + v0 and cost 0.

S

ij

s

i

j

t

Tb ij, 
0

, 0

, c
ij

b
s* - v0 , 0

bi* , 0

bj* , 0

b t*
 +

v 0, 
0
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GTrP indeed represents a transportation problem. This follows since

vTrP =
∑

(i,j)∈E

bij =
∑

i

bi∗ = bs∗ +
∑

i6=s,t

bi∗ + bt∗ = (bs∗ − v0) +
∑

i6=s,t

bi∗ + (bt∗ + v0).

and thus the supply at S = the demand at T . Note also that bs∗−v0 ≥ 0, otherwise we cannot
have a feasible flow in G. Thus the graph is of the correct form.

Claim 9.6 Feasible flows of value v0 in G correspond to feasible flows of vTrP in GTrP with
the same cost value, and vice versa.

Proof: (⇒) Suppose f is a feasible flow in G, where |f | = v0 and certain cost ||f ||. Now design a feasible
flow in GTrP as follows:

send bij flow from S to oij

divide the flow from oij in such way that:

– f(i, j) flow goes to j

– bij − f(i, j) flow is diverted to i

saturate the edges towards T .

The flow conservation constraints are obviously satisfied in all nodes oij . Let us now look at the flow that
enters nodes s, . . . , i, . . . , j, . . . , t. For every such node i the incoming flow is equal to the diverted flow from
nodes oi∗ plus the direct flow from nodes o∗i:

X

(i,j)∈E

(bij − f(i, j)) +
X

(j,i)∈E

f(j, i) = bi∗ + (
X

(∗,i)∈E

f(∗, i)−
X

(i,∗)∈E

f(i, ∗)).

This equals:

• bi∗ for i 6= s, t (use the flow-constraints),

• bs∗ − v0 for i = s, and

• bt∗ + v0 for i = t.

Send this flow through to node T and we have the defined the whole flow. Note that the costs of the flows in
both networks are equal, namely

P
(i,j)∈E cijf(i, j).

(⇐) Conversely, consider a feasible flow of value vTrP i in GTrP . Suppose the amount of flow that goes through
the edge oij → j is xij . We claim: if we take f(i, j) = xij in the original graph we have a feasible flow with
|f | = v0 and same cost. To see this,we argue as follows.

If xij flow goes to node j, then bij −xij flow goes to node i in GTrP . Thus we may conclude that 0 ≤ xij ≤ bij

for all (i, j) ∈ E (first flow constraint). If we look at the flow conservation constraints in a node i 6= s, t in
GTrP we find:

bi∗ =
X

(∗,i)∈E

x∗i +
X

(i,∗)∈E

(bi∗ − xi∗)a = bi∗ + (
X

(∗,i)∈E

x∗i −
X

(i,∗)∈E

xi∗).

So,
P

(∗,i)∈E x∗i =
P

(i,∗)∈E xi∗ (flow conservation), therefore the flow is feasible. Moreover, in the same

manner one can verify that for i = s and i = t the flow has value v0. Finally, in both cases the costs are
P

cijxij .
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We have thus found a correct way to transform a minimum cost flow problem into a ‘minimum
cost’ transportation problem.

The two lemmas combined give our main result.

Theorem 9.7 (Wagner, 1959) The minimum cost flow problem is equivalent to the trans-
portation problem.

The result implies that efficient algorithms to solve the minimum cost flow problem can be
converted into efficient algorithms to solve the transportation problem and vice versa.

9.4 The assignment problem

We recall the problem of matching n persons to n tasks (perfect bipartite matching). Suppose
that every person can do all tasks but at certain costs. Let cij ≥ 0 be the cost charged by
person i for performing task j. The assignment problem asks for a perfect matching of least
possible total cost.

Consider the following LP-model of the assignment problem:

minimize
∑

cijxij

subject to
∑n

j=1 xij = 1 (for i = 1, . . . , n)
∑n

i=1 xij = 1 (for j = 1, . . . , n)

xij ≥ 0 (for 1 ≤ i, j ≤ n)

xij ∈ {0, 1} (**)

It follows that the assignment problem is a special case of the transportation problem with
ai = 1 and bj = 1 for all 1 ≤ i, j ≤ n and with the 0 − 1 constraint added for the xij . We
note a special property of the transportation problem (not proved in class).

Fact 9.8 Suppose all ai and bj are integer in the transportation problem. Then the coefficients
of all basic feasible solutions of the problem are integral.

Lemma 9.9 Constraint (**) in the assignment problem can be omitted without changing the
optimal solution to the problem.

Proof: Without condition (**) we have a special case of the transportation problem: take
m = n and ai = bi = 1 for 1 ≤ i, j ≤ n. By 9.8 we have that all basic feasible solutions of
this problem are integral. Since the optimum of an LP is achieved in one of the basic feasible
solutions, we know the optimum solution is integral. The constraints of the problem force the
values to be ∈ {0, 1}. Thus condition (**) is automatically fulfilled and may be omitted.
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9.4.1 Modeling the assignment problem as a shortest path problem

Consider a network G with weighted edges and no cycles of weight < 0. The shortest path
problem in G is well-defined. We now show that there is a rather direct connection between
the assignment problem and the single-pair shortest path problem.

Lemma 9.10 The single-pair shortest path problem is ‘reducible’ to the assignment problem.

Proof: Consider the graph G of a shortest path problem and label the nodes in G in such
way that the source is 1 and the target is n. Let cij be the weight of edge i → j and take
cij = ∞ for all (i, j) 6∈ E and cii = 0 for all i. Consider the following assignment problem
with variables x12, · · · , x1n, x22, · · · , x2n, · · · · · · , x(n−1)2, · · · , x(n−1)n in LP formulation:

minimize z =
∑n−1

i=1

∑n
j=2 cijxij

subject to
∑n

j=2 xij = 1 (for 1 ≤ i ≤ n− 1)
∑n−1

i=1 xij = 1 (for 1 ≤ j ≤ n)

xij ≥ 0 (for 1 ≤ i ≤ n− 1 and 2 ≤ j ≤ n)

By 9.8 this problem has an optimal solution which is integral. By the constraints of this
problem the values of this optimum solution are further forced to be ∈ {0, 1}. One can
imagine this solution to be a matrix (xij) with rows 1 to n − 1 and columns 2 to n and all
entries ∈ {0, 1}. Then the constraints force that in each row and each column there is exactly
one 1 and the other values are 0.

Suppose that the shortest path from 1 to n has weight W and the optimum of the assignment
problem is z∗.

Claim 9.11 z∗ = W

Proof: (⇒) First we prove z∗ ≤ W . This follows because there is a feasible solution with weight W . Suppose
1, j1, j2, . . . , jr, n is a path of length (weight) W . Then take the solution with x1j1 = xj1j2 = . . . = xjrn = 1
and xii = 1 for all i 6= j1, . . . , jr. For this feasible solution the goal function has exactly value W .

(⇐) Now we prove z∗ ≥ W . Consider an optimal solution to the assignment problem as defined above. Now
construct a ‘chain’ starting with the unique j1 with x1j1 = 1. The next link is determined as follows. Suppose
we reached jp and jp 6= n. Determine jp+1 as the unique column in the matrix (xij) that has xjpjp+1 = 1. Now
look at the chain 1, j1, j2, . . . , jp. A new jp+1 can never be equal to an earlier ji, since this would mean that
we would have two entries with a 1 in the same column and this contradicts the constraints. So, the chain
ends with n: 1, j1, j2, . . . , n and can be as a path from 1 to n (and every c-value in it is < ∞ because we have
a finite optimum). Now look at the indices i 6∈ {j1, . . . , jr}. By the same argument one can see that the xij ’s
with value 1 divide into (directed) cycles in G. Since we assumed there are no negative cycles, these cycles all
have weight ≥ 0. So it follows that the optimum z∗ ≥ W + 0 + · · ·+ 0 = W .

So z∗ = W as was to be shown.

Thus we have transformed the shortest path problem to an assignment problem with the same
optimum in an easy manner.
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Lemma 9.12 The assignment problem is ‘reducible’ to the single-pair shortest path problem.

Proof: Consider an assignment problem in its regular LP form:

minimize z =
∑

cijxij

subject to
∑n

j=1 xij = 1 (for i = 1, . . . , n)
∑n

i=1 xij = 1 (for j = 1, . . . , n)

xij ≥ 0 (for 1 ≤ i, j ≤ n)

Claim 9.13 Without loss of generality we can assume cij ≥ 0 for all 1 ≤ i, j ≤ n.

Proof: Suppose not all cij are ≥ 0. Take a C large enough so C + cij ≥ 0 for all i and j. The assignment
problem is clearly equivalent to the modified problem with goal function

z + C · n =
X

cijxij + C · n =
X

cijxij + C ·
X

xij =
X

(C + cij) · xij

which clearly has all costs non-negative.

Now rewrite the problem by ‘moving’ the j-index 1 up:

minimize z =
∑n

i=1

∑n+1
j=2 cijxij

subject to
∑n+1

j=2 xij = 1 (for i = 1, . . . , n)
∑n

i=1 xij = 1 (for j = 2, . . . , n + 1)

xij ≥ 0 (for 1 ≤ i ≤ n and 2 ≤ j ≤ n + 1)

Observe that this assignment problem has the same form as derived in Lemma 9.10 and we
can in fact assume it comes from a graph G with weights cij as in the very same construction.
Because the cij are ≥ 0, G indeed has no cycles of negative weight and its shortest path
problem is well-defined. It easily follows that the optimum solution to the assignment problem
equals the weight of the shortest path from 1 to n + 1 in G.

By the two lemmas we conclude the following quite remarkable result:

Theorem 9.14 The assignment problem is equivalent to the single-pair shortest path prob-
lem.

As the reductions are quite simple, the following conclusion follows as a special consequence.

Corollary 9.15 The assignment problem can be solved efficiently with a shortest path algo-
rithm in polynomial time.
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