DYNAMIC PLANAR POINT LOCATION
WITH
SUB-LOGARITHMIC LOCAL UPDATES

Maarten Löffler Utrecht University
Joe Simons University of California, Irvine
Darren Strash Intel Oregon
DYNAMIC PLANAR POINT LOCATION
WITH
SUB-LOGARITHMIC LOCAL UPDATES

Maarten Löffler
Joe Simons
Darren Strash

Utrecht University
University of California, Irvine
Intel Oregon
DYNAMIC PLANAR POINT LOCATION
WITH
SUB-LOGARITHMIC LOCAL UPDATES

Maarten Löffler Utrecht University
Joe Simons University of California, Irvine
Darren Strash Intel Oregon
DYNAMIC PLANAR POINT LOCATION WITH SUB-LOGARITHMIC LOCAL UPDATES

Maarten Löffler Utrecht University
Joe Simons University of California, Irvine
Darren Strash Intel Oregon
Let P be a set of n points in the plane.
Let P be a set of n points in the plane.
Let P be a set of n points in the plane.

Let q be one more point.
Let P be a set of n points in the plane.

Let q be one more point.
Let P be a set of n points in the plane.

Let q be one more point.

QUESTION
Is q an element of P?
Let P be a set of n points in the plane.

Let q be one more point.

QUESTION
Is q an element of P?

Two possible answers: *yes* or *no*.
Let P be a set of n points in the plane.

Let q be one more point.

QUESTION Is q an element of P?

Two possible answers: *yes* or *no*.

We can answer the question in linear time...
Let P be a set of n points in the plane.

Let q be one more point.

QUESTION
Is q an element of P?

Two possible answers: yes or no.

We can answer the question in linear time...

Or, after preprocessing P, in $O(\log n)$ time!
Let P be a set of n points in the plane.

Let q be one more point.

QUESTION

Is q an element of P?

Two possible answers: *yes* or *no*.

We can answer the question in linear time...

Or, after preprocessing P, in $O(\log n)$ time!
Let P be a set of n points in the plane.

Let q be one more point.

QUESTION

Is q an element of P?

Two possible answers: yes or no.

We can answer the question in linear time...

Or, after preprocessing P, in $O(\log n)$ time!
Now, suppose our points are *imprecise*.
Now, suppose our points are *imprecise*. That is, each point is given as a region of *potential* locations.
Now, suppose our points are *imprecise*.

That is, each point is given as a region of *potential* locations.
Now, suppose our points are *imprecise*.

That is, each point is given as a region of *potential* locations.
Now, suppose our points are *imprecise*. That is, each point is given as a region of *potential* locations.
Now, suppose our points are *imprecise*. That is, each point is given as a region of potential locations.
Now, suppose our points are *imprecise*. That is, each point is given as a region of *potential* locations.
Now, suppose our points are *imprecise*. That is, each point is given as a region of potential locations. Let \mathcal{R} be a set of n such regions in the plane.
Now, suppose our points are *imprecise*. That is, each point is given as a region of potential locations.

Let \mathcal{R} be a set of n such regions in the plane.
Now, suppose our points are imprecise.

That is, each point is given as a region of potential locations.

Let \mathcal{R} be a set of n such regions in the plane.

Let q be a query point.
Now, suppose our points are \textit{imprecise}.

That is, each point is given as a region of potential locations.

Let \mathcal{R} be a set of n such regions in the plane.

Let q be a query point.
Now, suppose our points are *imprecise*. That is, each point is given as a region of potential locations.

Let \mathcal{R} be a set of n such regions in the plane.

Let q be a query point.

QUESTION

Is q an element of \mathcal{P}?
Now, suppose our points are *imprecise*. That is, each point is given as a region of potential locations.

Let \mathcal{R} be a set of n such regions in the plane.

Let q be a query point.

QUESTION

Is q an element of \mathcal{P}?

Two possible answers: *maybe* or *no*.
Now, suppose our points are *imprecise*.

That is, each point is given as a region of *potential* locations.

Let \mathcal{R} be a set of n such regions in the plane.

Let q be a query point.

QUESTION

Is q an element of \mathcal{P}?

Two possible answers: *maybe* or *no*.

Again, we can answer the question in logarithmic time after preprocessing.
Suppose furthermore that our points are *dynamic*.
Suppose furthermore that our points are dynamic.

Our estimate of a point’s location may change...
Suppose furthermore that our points are *dynamic*. Our estimate of a point’s location may change...
Suppose furthermore that our points are *dynamic*.

Our estimate of a point’s location may change...
Suppose furthermore that our points are *dynamic*.

Our estimate of a point’s location may change...
Suppose furthermore that our points are *dynamic*.

Our estimate of a point’s location may change.

... or the true location itself of a point may change.
Suppose furthermore that our points are *dynamic*.

Our estimate of a point’s location may change. . .

. . . or the true location itself of a point may change.
Suppose furthermore that our points are *dynamic*.

Our estimate of a point’s location may change...

...or the true location itself of a point may change.

Let \mathcal{R} be a set of n dynamic regions in the plane.
Suppose furthermore that our points are *dynamic*. Our estimate of a point’s location may change. . . or the true location itself of a point may change.

Let \mathcal{R} be a set of n dynamic regions in the plane.
Suppose furthermore that our points are *dynamic*.

Our estimate of a point’s location may change... or the true location itself of a point may change.

Let \mathcal{R} be a set of n dynamic regions in the plane.
Suppose furthermore that our points are *dynamic*. Our estimate of a point’s location may change... or the true location itself of a point may change.

Let \mathcal{R} be a set of n dynamic regions in the plane.
Suppose furthermore that our points are dynamic. Our estimate of a point’s location may change. . .

. . . or the true location itself of a point may change.

Let \mathcal{R} be a set of n dynamic regions in the plane.

Let q be a query point.
Suppose furthermore that our points are *dynamic*. Our estimate of a point's location may change. . .

. . . or the true location itself of a point may change.

Let \mathcal{R} be a set of n dynamic regions in the plane.

Let q be a query point.
Suppose furthermore that our points are *dynamic*. Our estimate of a point’s location may change. . . or the true location itself of a point may change.

Let \(\mathcal{R} \) be a set of \(n \) dynamic regions in the plane. Let \(q \) be a query point.

QUESTION

Is \(q \) an element of \(P \)?
Suppose furthermore that our points are dynamic.

Our estimate of a point’s location may change...

...or the true location itself of a point may change.

Let \mathcal{R} be a set of n dynamic regions in the plane.

Let q be a query point.

QUESTION
Is q an element of \mathcal{P}?

We can still answer the question in logarithmic time after preprocessing.
Suppose furthermore that our points are *dynamic*. Our estimate of a point's location may change. . . or the true location itself of a point may change.

Let \mathcal{R} be a set of n dynamic regions in the plane.

Let q be a query point.

QUESTION

Is q an element of \mathcal{P}?

We can still answer the question in logarithmic time after preprocessing. But now we also need to respond to changes in \mathcal{R}.
Suppose furthermore that our points are *dynamic*. Our estimate of a point’s location may change. . . or the true location itself of a point may change.

Let R be a set of n dynamic regions in the plane.

Let q be a query point.

QUESTION

Is q an element of P?

But now we also need to respond to changes in R.

We can still answer the question in logarithmic time after preprocessing.

We want to also handle updates efficiently.
What is known about dynamic planar point location?
What is known about dynamic planar point location?

$O(\log^2 n)$ queries with $O(\log n)$ updates.

[Cheng & Janardan, 1992]
What is known about dynamic planar point location?

$O(\log n)$ queries with $O(\log n)$ updates.

[Cheng & Janardan, 1992]

$O(\log^2 n)$ queries with $O(\log n)$ updates.

[Arge et al., 2006]
What is known about dynamic planar point location?

- $O(\log n)$ queries with $O(\log n)$ updates.

 [Cheng & Janardan, 1992]

- $O(\log^2 n)$ queries with $O(\log n)$ updates.

 [Arge et al., 2006]

- In special cases, $O(\log n)$ queries and $O(\log^{1+\varepsilon} n)$ updates is possible.

[Arge et al., 2006]
What is known about dynamic planar point location?

- $O(\log n)$ queries with $O(\log \log n)$ updates.
 - [Cheng & Janardan, 1992]

- $O(\log^2 n)$ queries with $O(\log n)$ updates.
 - [Arge et al., 2006]

- $O(\log^{1+\varepsilon} n)$ queries and $O(\log^{1+\varepsilon} n)$ updates.
 - [Arge et al., 2006]

In special cases, $O(\log n)$ queries and $O(\log n)$ updates is possible . . .

. . . such as in monotone subdivisions . . .

- [Goodrich & Tamassia, 1998]

What is known about dynamic planar point location?
What is known about dynamic planar point location?

\[O(\log n) \] queries with \[O(\log \sqrt{n}) \] updates.

[Cheng & Janardan, 1992]

In special cases, \[O(\log n) \] queries \textit{and} \[O(\log^{1+\epsilon} n) \] updates is possible . . .

[Arge et al., 2006]

. . . such as in \textit{monotone} subdivisions . . .

[Goodrich & Tamassia, 1998]

. . . or in \textit{rectilinear} subdivisions.

[Goodrich & Tamassia, 1998]

[Arge et al., 2006]

[Cheng & Janardan, 1992]

[Goodrich & Tamassia, 1998]

[Blelloch, 2008]

[Giora & Kaplan, 2009]
Updates always take at least logarithmic time.
Updates always take at least logarithmic time.

The bottleneck is often point location itself.
Updates always take at least logarithmic time.

The bottleneck is often point location itself.

However, in our application, updates are local.
Updates always take at least logarithmic time.

The bottleneck is often point location itself.

However, in our application, updates are local.

QUESTION
Is it possible to break the $\log n$ barrier in this case?
PROBLEM STATEMENT & RESULTS
PROBLEM
Maintain \(n \) regions in the plane such that . . .
PROBLEM
Maintain \(n \) regions in the plane such that ...
PROBLEM
Maintain n regions in the plane such that . . .

. . . we can \textit{insert} a new region of any size in $\log n$ time . . .
PROBLEM
Maintain \(n \) regions in the plane such that . . .

. . . we can \textit{insert} a new region of any size in \(\log n \) time . . .
PROBLEM
Maintain n regions in the plane such that...

...we can *insert* a new region of any size in $\log n$ time...

...we can *delete* any region in $\log n$ time...
PROBLEM
Maintain \(n \) regions in the plane such that ...

... we can \textit{insert} a new region of any size in \(\log n \) time ...

... we can \textit{delete} any region in \(\log n \) time ...
PROBLEM
Maintain \(n \) regions in the plane such that . . .

. . . we can *insert* a new region of any size in \(\log n \) time . . .

. . . we can *delete* any region in \(\log n \) time . . .

. . . we can locally alter, or *update*, a region in less than \(\log n \) time . . .
PROBLEM
Maintain n regions in the plane such that ...

... we can \textit{insert} a new region of any size in $\log n$ time ...

... we can \textit{delete} any region in $\log n$ time ...

... we can locally alter, or \textit{update}, a region in less than $\log n$ time ...

PROBLEM
Maintain n regions in the plane such that . . .

... we can insert a new region of any size in $\log n$ time . . .

... we can delete any region in $\log n$ time . . .

... we can locally alter, or update, a region in less than $\log n$ time . . .

... and we can answer point location queries in $\log n$ time
PROBLEM
Maintain \(n \) regions in the plane such that . . .

. . . we can \textit{insert} a new region of any size in \(\log n \) time . . .

. . . we can \textit{delete} any region in \(\log n \) time . . .

. . . we can locally alter, or \textit{update}, a region in less than \(\log n \) time . . .

. . . and we can answer point location queries in \(\log n \) time
Of course, this is not always possible.
Of course, this is not always possible. When is an update *local*?
Of course, this is not always possible.

When is an update local?

Regions can grow or shrink by at most a constant factor.
Of course, this is not always possible.

Regions can grow or shrink by at most a constant factor.

When is an update *local*?
Regions can move a constant times their current size. Of course, this is not always possible.

Regions can grow or shrink by at most a constant factor. When is an update *local*?

GOOD

BAD
Regions can move a constant times their current size. Of course, this is not always possible.

When is an update *local*?

Regions can grow or shrink by at most a constant factor.

Regions can move a constant times their current size.

GOOD

BAD

\[2 \cdot s \]
Regions can move a constant times their current size.

Of course, this is not always possible.

Regions can grow or shrink by at most a constant factor.

Regions can change their shape, as long as they stay fat.

When is an update *local*?

\[2 \cdot s \]

GOOD

BAD
Regions can move a constant times their current size. Of course, this is not always possible.

When is an update local?

Regions can grow or shrink by at most a constant factor.

Regions can change their shape, as long as they stay fat.
One more assumption: the regions are and stay disjoint!
One more assumption: the regions are and stay disjoint!
And the results are ...
And the results are ...

1D:
And the results are . . .

1D: Queries: $O(\log n)$ time
And the results are ...

1D: Queries: $O(\log n)$ time

Insertions and deletions: $O(\log n)$ time
And the results are . . .

1D: Queries: $O(\log n)$ time
Insertions and deletions: $O(\log n)$ time
Local updates: $O(1)$ time
And the results are . . .

1D:

Queries: $O(\log n)$ time
Insertions and deletions: $O(\log n)$ time
Local updates: $O(1)$ time

2D:
And the results are ...

1D:
- Queries: $O(\log n)$ time
- Insertions and deletions: $O(\log n)$ time
- Local updates: $O(1)$ time

2D:
- Queries: $O(\log n)$ time
And the results are

1D:
- Queries: $O(\log n)$ time
- Insertions and deletions: $O(\log n)$ time
- Local updates: $O(1)$ time

2D:
- Queries: $O(\log n)$ time
- Insertions and deletions: $O(\log n)$ time
And the results are ...

1D:
- Queries: $O(\log n)$ time
- Insertions and deletions: $O(\log n)$ time
- Local updates: $O(1)$ time

2D:
- Queries: $O(\log n)$ time
- Insertions and deletions: $O(\log n)$ time
- Local updates: $O(\log n / \log \log n)$ time
TECHNICAL DETAILS: 1 DIMENSION
1-dimensional regions are intervals.
1-dimensional regions are intervals.
1-dimensional regions are intervals.

They move around on a line: big intervals are fast, small ones are slow.
1-dimensional regions are intervals.

They move around on a line: big intervals are fast, small ones are slow.
1-dimensional regions are intervals.

They move around on a line: big intervals are fast, small ones are slow.

NOTE
Big intervals can *jump over* small ones!
1-dimensional regions are intervals.

They move around on a line: big intervals are fast, small ones are slow.

NOTE
Big intervals can *jump over* small ones!
We need a structure that provides quick access to “similar places”...
We need a structure that provides quick access to "similar places"... but also supports some sort of binary search.
We need a structure that provides quick access to “similar places”...

...but also supports some sort of binary search.

IDEA Let’s maintain two trees.
We need a structure that provides quick access to “similar places” . . .

. . . but also supports some sort of binary search.

IDEA Let’s maintain two trees.
We need a structure that provides quick access to “similar places”... but also supports some sort of binary search.

IDEA Let’s maintain two trees.
We need a structure that provides quick access to “similar places”...

...but also supports some sort of binary search.

IDEA Let’s maintain two trees.
We need a structure that provides quick access to “similar places” . . . but also supports some sort of binary search.

IDEA Let’s maintain two trees.

\[
\begin{align*}
\text{O(1) Updates} & \quad \mathcal{R} \\
\text{SPACE TREE} & \quad \text{O(\log n) Queries} \\
\text{DATA TREE} & \\
\end{align*}
\]
For the space tree we use a quadtree.
For the space tree we use a quadtree.

Consider the set P of midpoints of the intervals.
For the space tree we use a quadtree.

Consider the set P of midpoints of the intervals.
For the space tree we use a **quadtree**.

Consider the set P of midpoints of the intervals.
Construct a root box containing all points of P.

For the space tree we use a quadtree.

Consider the set P of midpoints of the intervals.
For the space tree we use a **quadtree**.

Consider the set P of midpoints of the intervals.

Construct a *root* box containing all points of P.
For the space tree we use a *quadtree*.

Consider the set P of midpoints of the intervals.

Construct a *root* box containing all points of P.

Recursively split boxes that contain at least 2 points.
For the space tree we use a quadtree.

Consider the set P of midpoints of the intervals.

Construct a root box containing all points of P.

Recursively split boxes that contain at least 2 points.
For the space tree we use a quadtree.

Consider the set P of midpoints of the intervals.

Construct a root box containing all points of P.

Recursively split boxes that contain at least 2 points.
For the space tree we use a *quadtree*.

Consider the set P of midpoints of the intervals.

Construct a *root* box containing all points of P.

Recursively split boxes that contain at least 2 points.
For the space tree we use a \textit{quadtree}.

Consider the set P of midpoints of the intervals.

Construct a \textit{root} box containing all points of P.

Recursively split boxes that contain at least 2 points.
Construct a root box containing all points of P.

For the space tree we use a quadtree.

Consider the set P of midpoints of the intervals.

Recursively split boxes that contain at least 2 points.
For the space tree we use a **quadtree**.

Consider the set P of midpoints of the intervals.

Construct a **root** box containing all points of P.

Recursively split boxes that contain at least 2 points.

Compress the tree by deleting long empty paths.
For the space tree we use a quadtree.

Consider the set P of midpoints of the intervals.

Construct a root box containing all points of P.

Recursively split boxes that contain at least 2 points.

Compress the tree by deleting long empty paths.
For the space tree we use a quadtree.

Consider the set P of midpoints of the intervals.

Construct a root box containing all points of P.

Recursively split boxes that contain at least 2 points.

Finally, add pointers between neighbouring boxes of the same size.

Compress the tree by deleting long empty paths.
Construct a root box containing all points of P.

For the space tree we use a quadtree.

Consider the set P of midpoints of the intervals.

Recursively split boxes that contain at least 2 points.

$Compress$ the tree by deleting long empty paths.

Finally, add pointers between neighbouring boxes of the same size.
For the space tree we use a quadtree.

Consider the set P of midpoints of the intervals.

Construct a root box containing all points of P.

Recursively split boxes that contain at least 2 points.

LEMMA
No leaf is much smaller than the interval it stores.

Compress the tree by deleting long empty paths.

Finally, add pointers between neighbouring boxes of the same size.
For the data tree we use a dynamic search tree.
For the data tree we use a dynamic search tree.

Again, consider the midpoints of the intervals.
For the data tree we use a dynamic search tree.

Again, consider the midpoints of the intervals.
For the data tree we use a dynamic search tree.

Again, consider the midpoints of the intervals.

We now only care about their order, and build a balanced tree.
For the data tree we use a dynamic search tree.

Again, consider the midpoints of the intervals.

We now only care about their order, and build a balanced tree.
For the data tree we use a dynamic search tree.

Again, consider the midpoints of the intervals.

We now only care about their order, and build a balanced tree.
For the data tree we use a dynamic search tree.

Again, consider the midpoints of the intervals.

We now only care about their order, and build a balanced tree.
For the data tree we use a dynamic search tree.

Again, consider the midpoints of the intervals.

We now only care about their order, and build a \textit{balanced} tree.

\textbf{LEMMA}

The search tree has logarithmic depth.
How do we handle a query?

How do we handle an update?
How do we handle a query?

How do we handle an update?
How do we handle a query?

How do we handle an update?
How do we handle a query?

How do we handle an update?
How do we handle a query?

How do we handle an update?
How do we handle a query?

How do we handle an update?
How do we handle a query?

How do we handle an update?
How do we handle a query?

How do we handle an update?
How do we handle a query?

How do we handle an update?
How do we handle a query?

How do we handle an update?
How do we handle a query?

How do we handle an update?
How do we handle a query?

How do we handle an update?
How do we handle a query?

How do we handle an update?
How do we handle a query?

How do we handle an update?
How do we handle a query?
How do we handle an update?
TECHNICAL DETAILS:
2 DIMENSIONS
In \mathbb{R}^2, we would like to use a similar strategy.
In \mathbb{R}^2, we would like to use a similar strategy.
In \mathbb{R}^2, we would like to use a similar strategy.
In \mathbb{R}^2, we would like to use a similar strategy.
In \mathbb{R}^2, we would like to use a similar strategy.
In \mathbb{R}^2, we would like to use a similar strategy.

How hard can it be?
Quadtrees also exist in 2 dimensions!

Well understood, linear size data structure.
DATA TREE
We still need something for the actual point location.
We still need something for the actual point location.

Build existing structure on regions, and use cross pointers as before?
We still need something for the actual point location.

Build existing structure on regions, and use cross pointers as before?

How do regions relate to the quadtree?
PROBLEM
We can’t just use any search tree anymore.
PROBLEM
We can’t just use any search tree anymore.
PROBLEM
We can’t just use any search tree anymore.
We can’t just use any search tree anymore.
PROBLEM
We can’t just use any search tree anymore.
PROBLEM
We can’t just use any search tree anymore.
PROBLEM
We can’t just use any search tree anymore.

IDEA
Build a search tree on the quadtrees leaves.
Take another look at a quadtree.
Take another look at a quadtree.
Take another look at a quadtree.

It’s a degree 4 tree of potentially linear height.
Take another look at a quadtree.

It’s a degree 4 tree of potentially linear height.
Take another look at a quadtree.

It’s a degree 4 tree of potentially linear height.

We build another tree, with a vertex for each edge of the quadtree.
Take another look at a quadtree. It’s a degree 4 tree of potentially linear height.

We build another tree, with a vertex for each edge of the quadtree.
Take another look at a quadtree.

It's a degree 4 tree of potentially linear height.

We build another tree, with a vertex for each edge of the quadtree.
Take another look at a quadtree.

It’s a degree 4 tree of potentially linear height.

We build another tree, with a vertex for each edge of the quadtree.
Take another look at a quadtree.

It's a degree 4 tree of potentially linear height.

We build another tree, with a vertex for each edge of the quadtree.
Take another look at a quadtree.

It’s a degree 4 tree of potentially linear height.

We build another tree, with a vertex for each edge of the quadtree. Now we can locate points in the quadtree in $O(\log n)$ time.
Take another look at a quadtree.

It’s a degree 4 tree of potentially linear height.

We build another tree, with a vertex for each edge of the quadtree.

Now we can locate points in the quadtree in $O(\log n)$ time.
Take another look at a quadtree. It’s a degree 4 tree of potentially linear height.

We build another tree, with a vertex for each edge of the quadtree. Now we can locate points in the quadtree in $O(\log n)$ time.
Take another look at a quadtree. It’s a degree 4 tree of potentially linear height.

We build another tree, with a vertex for each edge of the quadtree. Now we can locate points in the quadtree in $O(\log n)$ time.
Take another look at a quadtree. It's a degree 4 tree of potentially linear height.

We build another tree, with a vertex for each edge of the quadtree.

Now we can locate points in the quadtree in $O(\log n)$ time.
Take another look at a quadtree. It’s a degree 4 tree of potentially linear height.

We build another tree, with a vertex for each edge of the quadtree. Now we can locate points in the quadtree in $O(\log n)$ time.
Take another look at a quadtree. It’s a degree 4 tree of potentially linear height.

We build another tree, with a vertex for each edge of the quadtree. Now we can locate points in the quadtree in $O(\log n)$ time.
PROBLEM
The number of regions intersecting a quadtree leaf can be linear!
PROBLEM
The number of regions intersecting a quadtree leaf can be linear!
The number of regions intersecting a quadtree leaf can be linear!
PROBLEM
The number of regions intersecting a quadtree leaf can be linear!
PROBLEM
The number of regions intersecting a quadtree leaf can be linear!
PROBLEM
The number of regions intersecting a quadtree leaf can be linear!
PROBLEM
The number of regions intersecting a quadtree leaf can be linear!

IDEA
Maintain a balanced quadtree.
Consider a quadtree again.
Consider a quadtree again.
Consider a quadtree again.

In a *balanced* quadtree, neighbouring squares don’t differ much in size.
Consider a quadtree again.

In a balanced quadtree, neighbouring squares don’t differ much in size.
Consider a quadtree again.

In a balanced quadtree, neighbouring squares don’t differ much in size.
Consider a quadtree again. In a balanced quadtree, neighbouring squares don’t differ much in size.
Consider a quadtree again.

In a *balanced* quadtree, neighbouring squares don’t differ much in size.
Consider a quadtree again.

In a *balanced* quadtree, neighbouring squares don’t differ much in size.
Consider a quadtree again.

In a *balanced* quadtree, neighbouring squares don’t differ much in size.
Consider a quadtree again.

In a balanced quadtree, neighbouring squares don’t differ much in size.
Consider a quadtree again.

LEMMA
Now each leaf intersects at most $O(1)$ regions.

In a balanced quadtree, neighbouring squares don’t differ much in size.
Consider a quadtree again.

Lemma

Now each leaf intersects at most $O(1)$ regions.

In a balanced quadtree, neighbouring squares don’t differ much in size.

Fortunately, balanced quadtrees still have linear size.
PROBLEM
But now we can’t change the quadtree locally in $O(1)$ time!
PROBLEM
But now we can’t change the quadtrees locally in $O(1)$ time!

ADVICE
Don’t worry, be happy!
PROBLEM
The distance from \(q \) to the right cell may be linear!
PROBLEM
The distance from q to the right cell may be linear!
PROBLEM
The distance from q to the right cell may be linear!
PROBLEM
The distance from q to the right cell may be linear!
PROBLEM
The distance from q to the right cell may be linear!
PROBLEM
The distance from q to the right cell may be linear!
PROBLEM
The distance from q to the right cell may be linear!
PROBLEM
The distance from q to the right cell may be linear!
PROBLEM
The distance from q to the right cell may be linear!
PROBLEM
The distance from q to the right cell may be linear!
PROBLEM
The distance from q to the right cell may be linear!

IDEA
Let's add yet another auxiliary structure!
We use a *marked ancestor* data structure.
We use a **marked ancestor** data structure.

Consider a tree, where some nodes are *marked*.
We use a *marked ancestor* data structure.

Consider a tree, where some nodes are *marked*.
We use a *marked ancestor* data structure.

Consider a tree, where some nodes are *marked*.
We use a *marked* ancestor data structure.

Consider a tree, where some nodes are *marked*.

For a given query node, we wish to find the first marked ancestor.
We use a marked ancestor data structure.

Consider a tree, where some nodes are marked.

For a given query node, we wish to find the first marked ancestor.
We use a *marked ancestor* data structure.

Consider a tree, where some nodes are *marked*.

For a given query node, we wish to find the first marked ancestor.
We use a marked ancestor data structure.

Consider a tree, where some nodes are marked.

For a given query node, we wish to find the first marked ancestor.

Also, we want to be able to mark and unmark nodes.
We use a marked ancestor data structure.

Consider a tree, where some nodes are marked.

For a given query node, we wish to find the first marked ancestor.

Also, we want to be able to mark and unmark nodes.
We use a marked ancestor data structure.

Consider a tree, where some nodes are marked.

For a given query node, we wish to find the first marked ancestor.

Also, we want to be able to mark and unmark nodes.
We use a *marked ancestor* data structure.

Consider a tree, where some nodes are *marked*. For a given query node, we wish to find the first marked ancestor.

Also, we want to be able to mark and unmark nodes.

\[O(\log \log n) \]

(un)mark and

\[O\left(\frac{\log n}{\log \log n}\right) \]

queries is possible.
[Alstrup et al., 1998]
We build 4 MA trees on the quadtree: one for each corner.
We build 4 MA trees on the quadtree: one for each corner.
We build 4 MA trees on the quadtree: one for each corner.

In the TL tree, we mark a cell of the quadtree if ...
We build 4 MA trees on the quadtree: one for each corner.

In the TL tree, we mark a cell of the quadtree if its top left corner is the center point of a region of size $\Theta(\|C\|)$.
We build 4 MA trees on the quadtree: one for each corner.

In the TL tree, we mark a cell of the quadtree if its top left corner the center point of a region of size $\Theta(|C|)$.
We build 4 MA trees on the quadtree: one for each corner.

In the TL tree, we mark a cell of the quadtree if its top left corner the center point of a region of size $\Theta(|C|)$.
We build 4 MA trees on the quadtree: one for each corner.

In the TL tree, we mark a cell of the quadtree if its top left corner the center point of a region of size $\Theta(|C|)$.

Now, given a query point in a small cell of the quadtree ...
We build 4 MA trees on the quadtree: one for each corner.

In the TL tree, we mark a cell of the quadtree if its top left corner is the center point of a region of size $\Theta(|C|)$.

Now, given a query point in a small cell of the quadtree . . .
We build 4 MA trees on the quadtree: one for each corner.

In the TL tree, we mark a cell of the quadtree if its top left corner the center point of a region of size $\Theta(|C|)$.

Now, given a query point in a small cell of the quadtree we can quickly find its first marked ancestor.
We build 4 MA trees on the quadtree: one for each corner.

In the TL tree, we mark a cell of the quadtree if its top left corner the center point of a region of size $\Theta(|C|)$.

Now, given a query point in a small cell of the quadtree . . .

. . . we can quickly find its first marked ancestor.
We build 4 MA trees on the quadtree: one for each corner.

In the TL tree, we mark a cell of the quadtree if its top left corner the center point of a region of size $\Theta(|C|)$.

Now, given a query point in a small cell of the quadtree . . .

Point location solved*, and in only $O\left(\frac{\log n}{\log \log n}\right)$ time!

* CAUTION! Many details have been swept under the rug. Be extremely careful not to trip when walking on the rug.
CONCLUSIONS
Sublogarithmic updates are indeed possible.
Sublogarithmic updates are indeed possible.

Disjointness seems to be important for our solution to work.
Sublogarithmic updates are indeed possible.

Disjointness seems to be important for our solution to work.

Much of the complexity comes from dealing with large spread.
Sublogarithmic updates are indeed possible.

Disjointness seems to be important for our solution to work.

Much of the complexity comes from dealing with large spread.

OPEN PROBLEM
Can the $O\left(\frac{\log n}{\log \log n}\right)$ bound be improved?
Sublogarithmic updates are indeed possible.

Disjointness seems to be important for our solution to work.

Much of the complexity comes from dealing with large spread.

OPEN PROBLEM
Can the $O\left(\frac{\log n}{\log \log n}\right)$ bound be improved?

OPEN PROBLEM
Can we deal with overlapping regions?
Sublogarithmic updates are indeed possible.

Disjointness seems to be important for our solution to work.

Much of the complexity comes from dealing with large spread.

OPEN PROBLEM
Can the $O\left(\frac{\log n}{\log \log n}\right)$ bound be improved?

OPEN PROBLEM
Can we deal with overlapping regions?

OPEN PROBLEM
Do realistic input assumptions help?
THANKS!
THANKS!
THANKS!
THANKS!