SOLUTIONS TO THE PROBLEMS OF THE AG EXAM OF JANUARY 92016

1 Let X and Y be affine varieties and let $f: X \rightarrow Y$ be a morphism.
1a Prove that a morphism $f: X \rightarrow Y$ is a closed embedding if and only if f^{*} : $k[Y] \rightarrow k[X]$ is surjective.
A closed subset of Y is given by a radical ideal in $k[Y]$ and conversely every radical ideal in $k[Y]$ defines a closed subset of Y. So f^{*} is a closed embedding if and only if for some radical ideal $I \subset k[Y], f^{*}$ factors through an isomorphism $k[Y] / I \cong k[X]$. This is equivalent to: f^{*} is surjective, for since $k[X]$ is reduced, $\operatorname{ker}(f)$ is then automatically a radical ideal.

1b Prove that if f^{*} is injective and $f^{*} k[Y] \subset k[X]$ is a localization, then f is an isomorphism onto a principal open subset.
Without loss of generality we may assume that $k[X]=S^{-1} k[Y]$, with $S \subset k[Y]$ a multiplicative subset. Then every $f \in k[X]$ can be written as g / h with $g \in k[Y]$ and $h \in S$. If we let f run over a finite collection of k-algebra generators f_{1}, \ldots, f_{n}, and write $f_{i}=g_{i} / h_{i}$, then we see that we can take for S the powers of $h:=h_{1} h_{2} \cdots h_{n}$ so that $k[X]=k[Y]\left[h^{-1}\right]$. This means that $X=Y_{h}$ is a principal open subset.

1c Is it true that every open embedding of X into Y is thus obtained? If yes, prove this, if no, give a counterexample.
No, a counterexample is described in (5.5) of the notes.
2a Prove that $t \in \mathbb{A}^{1} \mapsto\left[1: s: \cdots: s^{n}\right] \in \mathbb{P}^{n}$ extends to a closed embedding $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$.
The extension is given by $\left[S_{0}: S_{1}\right] \mapsto\left[S_{0}^{n}: S_{0}^{n-1} S_{1}: \cdots: S_{1}^{n}\right]$ and this is in fact the d-fold Veronese embedding. We proved in the notes that it is closed.

2b Prove that the Hilbert polynomial of the image of f is $n z+1$. What is the degree of the image of f ?
If we denote the homogeneous coordinates of \mathbb{P}^{n} by $\left[T_{0}: \cdots: T_{n}\right]$, then every homogeneous polynomial of degree d in T_{0}, \ldots, T_{n} restricts to \mathbb{A}^{2} as a homogeneous polynomial of degree $d n$ in S_{0} and S_{1}. All such polynomials are thus obtained, because any monomial of degree $d n$ in S_{0} and S_{1} can be written as a product of d monomials of degree n in S_{0} and S_{1}. So the graded coordinate ring of $f(C)$ has in degree d dimension $d n+1$. Hence its Hilbert function is $z \mapsto n z+1$. This is a polynomial of degree 1 with leading coeffcient n and so $f(C)$ has degree n.

3 Let be given integers $n>m \geq 0$ and regard \mathbb{A}^{m} as the closed subset of \mathbb{A}^{n} by putting the last $n-m$ coordinates equal to zero. Prove that $\mathbb{A}^{n}-\mathbb{A}^{m}$ is affine if and only if $n=m+1$.
For $n=m+1$, observe that $\mathbb{A}^{n}-\mathbb{A}^{n-1}$ is just the principal open subset $\mathbb{A}_{z_{n}}^{n}$ and hence affine. We next show that for $n>m+1$, the inclusion $j: \mathbb{A}^{n}-\mathbb{A}^{m} \subset \mathbb{A}^{n}$ induces an isomorphism $j^{*}: k\left[z_{1}, \ldots, z_{n}\right]=\mathcal{O}\left(\mathbb{A}^{n}\right) \cong \mathcal{O}\left(\mathbb{A}^{n}-\mathbb{A}^{m}\right)$ on the algebras of regular functions. So if $\mathbb{A}^{n}-\mathbb{A}^{m}$ were affine, then this would imply that j is an isomorphism, which is obviously not the case. To see this, let $f \in \mathcal{O}\left(\mathbb{A}^{n}-\mathbb{A}^{m}\right)$. Then for $i=m+1, \ldots, n, f$ is regular on the principal open $\mathbb{A}_{z_{i}}^{n}$ and so can be written as $z_{i}^{-r_{i}} g_{i}(z)$ with $r_{i} \geq 0$ and $g_{i} \in k\left[z_{1}, \ldots, z_{n}\right]$ not divisible by z_{i}. From the identity $z_{j}^{r_{j}} g_{i}=z_{i}^{r_{i}} g_{j}$, we see that g_{i} is divisible by $z_{i}^{r_{i}}$. This can only be if $r_{i}=0$. Hence $f \in k\left[z_{1}, \ldots, z_{n}\right]=k\left[\mathbb{A}^{n}\right]$ as asserted.

4 Let k and l be positive integers an let P be a projective space of dimension $n:=$ $k+l+1$.
4a Prove that the set $I_{k, l} \subset \operatorname{Gr}_{k}(P) \times \operatorname{Gr}_{l}(P)$ of pairs $\left([Q],\left[Q^{\prime}\right]\right) \in \operatorname{Gr}_{k}(P) \times \operatorname{Gr}_{l}(P)$ for which $Q \cap Q^{\prime} \neq \emptyset$ is a hypersurface in $\operatorname{Gr}_{k}(P) \times \operatorname{Gr}_{l}(P)$.
We may assume that $P=\mathbb{P}(V)$ with V a k-vector space of dimension $n+1=k+l+2$ so that we can identify $I_{k, l}$ with the subset of $\left([W],\left[W^{\prime}\right]\right) \in \operatorname{Gr}_{k+1}(V) \times \operatorname{Gr}_{l+1}(V)$ for which $\operatorname{dim}\left(W \cap W^{\prime}\right)>0$. This last condition is equivalent to $\left(\wedge^{k+1} W\right) \wedge\left(\wedge^{l+1} W^{\prime}\right)=$ 0 . The exterior product defines a bilinear map $\wedge^{k+1} V \times \wedge^{l+1} V \rightarrow \wedge^{n+1} V \cong k$ and hence defines a hypersurface $D \subset \mathbb{P}\left(\wedge^{k+1} V\right) \times \mathbb{P}\left(\wedge^{l+1} V\right)$ of bidegree $(1,1)$. Then $I_{k, l}$ is just the preimage of D under the product of Plücker embeddings $\operatorname{Gr}_{k+1}(V) \times$ $\operatorname{Gr}_{l+1}(V) \rightarrow \mathbb{P}\left(\wedge^{k+1} V\right) \times \mathbb{P}\left(\wedge^{l+1} V\right)$ and so is closed in $\operatorname{Gr}_{k+1}(V) \times \mathrm{Gr}_{l+1}(V)$. As it is given by a single equation, it is a hypersurface or empty or all of $\operatorname{Gr}_{k+1}(V) \times$ $\operatorname{Gr}_{l+1}(V)$ (for the latter space is irreducible). The last two cases are easily excluded.
$\mathbf{4 b}$ Let $\tilde{I}_{k, l} \subset \operatorname{Gr}_{k}(P) \times P \times \operatorname{Gr}_{l}(P)$ be the set of triples $(([Q], p,[R])$ with $p \in Q \cap R$. Prove that $\tilde{I}_{k, l}$ is closed in $\operatorname{Gr}_{k}(P) \times P \times \operatorname{Gr}_{l}(P)$.
The proof is similar: we have a (trilinear) map

$$
\wedge^{k+1} V \times V \times \wedge^{l+1} V \rightarrow \wedge^{k+2} V \oplus \wedge^{l+2} V, \quad(a, v, b) \mapsto(a \wedge v, v \wedge b)
$$

and for every linear form on $\wedge^{k+2} V \oplus \wedge^{l+2} V$ we obtain closed subset of $\mathbb{P}\left(\wedge^{k+2} V\right) \times$ $\mathbb{P}(V) \times \mathbb{P}\left(\wedge^{l+2} V\right)$. Denote by \tilde{D} the intersection of these closed subsets (a closed subset of $\mathbb{P}\left(\wedge^{k+2} V\right) \times \mathbb{P}(V) \times \mathbb{P}\left(\wedge^{l+2} V\right)$). Then $\tilde{I}_{k, l}$ is the preimage of \tilde{D} under the natural map $\operatorname{Gr}_{k+1}(V) \times \mathbb{P}(V) \times \operatorname{Gr}_{l+1}(V) \rightarrow \mathbb{P}\left(\wedge^{k+1} V\right) \times \mathbb{P}(V) \times \mathbb{P}\left(\wedge^{l+1} V\right)$ and hence closed in $\mathrm{Gr}_{k+1}(V) \times \mathbb{P}(V) \times \mathrm{Gr}_{l+1}(V)$.
$4 \mathbf{c}$ Prove that the projection onto the middle factor, $\pi_{P}: \tilde{I}_{k, l} \rightarrow P$, is Zariski locally trivial with fiber isomorphic to $\operatorname{Gr}_{k-1}\left(\mathbb{P}^{n-1}\right) \times \mathrm{Gr}_{l-1}\left(\mathbb{P}^{n-1}\right)$. Conclude that $\tilde{I}_{k, l}$ is a nonsingular subvariety of $\mathrm{Gr}_{k}(P) \times P \times \mathrm{Gr}_{l}(P)$ of codimension $n+1$.
Fix a hyperplane $V^{\prime} \subset V$ so that we have defined a hyperplane $P^{\prime}:=\mathbb{P}\left(V^{\prime}\right)$ in P. Its complement $U:=P-P^{\prime}$ is an affine open subset of P such that every $u \in U$ defines a one dimensional subspace $L_{u} \subset V$ not contained V^{\prime}. Every k-plane in P passing through u corresponds to a $(k+1)$-plane in V passing through L_{u} which will meet V^{\prime} in a k-plane. Conversely, a k-plane in V^{\prime} spanes with L_{u} a $(k+1)$-plane in V which defines a k-plane in P passing through u. Similarly for a l-plane in P passing through u. We thus find an isomorphism $\operatorname{Gr}_{k}\left(P^{\prime}\right) \times U \times \operatorname{Gr}_{l}\left(P^{\prime}\right) \cong \pi_{P}^{-1} U$ compatible with the projection onto U. It follows that $\tilde{I}_{k, l}$ is nonsingular and irreducible. Its codimension is equal to $\operatorname{dim} \operatorname{Gr}_{k}(P)+\operatorname{dim} \operatorname{Gr}_{l}(P)-\operatorname{dim} \operatorname{Gr}_{k}\left(P^{\prime}\right)-\operatorname{dim} \operatorname{Gr}_{l}\left(P^{\prime}\right)=$ $(k+1)(n-k)+(l+1)(n-l)-k(n-k)-l(n-l)=(n-k)+(n-l)=2 n-(k+l)=n+1$.

4d Prove that the projection $\pi: \tilde{I}_{k, l} \rightarrow \operatorname{Gr}_{k}(P) \times \mathrm{Gr}_{l}(P)$ has image $I_{k, l}$ and that there exists an open subset of $I_{k, l}$ over which π is a bijection. Conclude that $I_{k, l}$ is irreducible.
It is clear that $\pi\left(\tilde{I}_{k, l}\right)=I_{k, l}$ and so $I_{k, l}$ is irreducible. Denote by $J_{k, l} \subset I_{k, l}$ the set of pairs $\left([Q],\left[Q^{\prime}\right]\right) \in \operatorname{Gr}_{k}(P) \times \operatorname{Gr}_{l}(P)$ for which $Q \cap Q^{\prime}$ is of dimension >1. Clearly $\pi^{-1}\left([Q],\left[Q^{\prime}\right]\right)$ is a singleton if $\left([Q],\left[Q^{\prime}\right]\right) \in I_{k, l}-J_{k, l}$. So it suffices to show that $I_{k, l}-J_{k, l}$ is open-dense in $I_{k, l}$.

For the trivialization over $U \subset P$ as defined above, $\pi^{-1}\left(J_{k, l}\right) \cap \pi_{P}^{-1} U$ is identified with the subset of $\left([R], u,\left[R^{\prime}\right]\right) \in \operatorname{Gr}_{k}(P) \times U \times \operatorname{Gr}_{l}\left(P^{\prime}\right)$ for which $R \cap R^{\prime} \neq \emptyset$. Since this is a closed subset of $\left(\operatorname{Gr}_{k}(P) \times U \times \operatorname{Gr}_{l}(P)\right)$, it follows that $\pi^{-1}\left(J_{k, l}\right)$ is closed in $\tilde{I}_{k, l}$ (let U run over a standard open covering of P). It is clearly not all of $\tilde{I}_{k, l}$ and so
its complement is open-dense in $\tilde{I}_{k, l}$. Since P is a projective space, π is closed and hence $\left.\pi \pi^{-1}\left(J_{k, l}\right)\right)=J_{k, l}$ is closed in $I_{k, l}$. So the complement of $J_{k, l}$ is as required.

