Exercises for Cech Cohomology

Yulong Fu, Zhiyuan Wang

April 10th, 2014

1. X is a topological space, \mathscr{F} is a sheaf of abelian groups on X, \mathfrak{U} is an open covering of X, section $\alpha \in \Gamma(V, \mathscr{C}^p(\mathfrak{U}, \mathscr{F}))$, where $V \subset U_j$ for some $U_j \in \mathfrak{U}$. Now for any *p*-turple $i_0 < \ldots < i_{p-1}$, define $k : C^p \to C^{p-1}$ as

$$(k\alpha)_{i_0,...,i_{p-1}} = \alpha_{j,i_0,...,i_{p-1}}$$

Check that for any $p \ge 1$, we have

$$(kd+dk)(\alpha) = \alpha ,$$

where d is the coboundary map.

2. Let $X = \mathbb{A}_k^2 = \operatorname{Spec}(k[x,y])$, and let $U = X - \{(0,0)\}$. Using a suitable cover of U by open affine subsets, show that $H^1(U, \mathcal{O}_U)$ is isomorphic to the k-vector space spanned by $\{x^iy^j | i, j < 0\}$. In particular, it is infinite-dimensional.