MIRROR SYMMETRY FOR LOG CALABI-YAU SURFACES I

MARK GROSS, PAUL HACKING, AND SEAN KEEL

Abstract

We give a canonical synthetic construction of the mirror family to pairs (Y, D) where Y is a smooth projective surface and D is an anti-canonical cycle of rational curves. This mirror family is constructed as the spectrum of an explicit algebra structure on a vector space with canonical basis and multiplication rule defined in terms of counts of rational curves on Y meeting D in a single point. We call elements of the canonical basis theta functions, and their introduction here is the crucial new technical tool for achieving our construction.

Contents

Introduction 2
0.1. The main theorems 2
0.2. The svmplectic heuristid 4
0.3. Outline of the proof 6
0.4. Applications 9
0.5. Acknowledgements. 12

1. Basics 12
1.1. Looiienga pairs 12
1.2. Tropical Looiienga pairs 13
1.3. The Mumford degeneration and Givental's construction 17
2. Modified Mumford degenerations 21
2.1. The uncorrected degeneration 21
2.2. Scattering diagrams on B 26
2.3. Broken lines 29
2.4. The algebra structure 36
3. The canonical scattering diagram 37
3.1. Definition 37
3.2. Consistencv: Overview of the proof 42
3.3. Consistency: Reduction to the Gross-Siebert locus 44
3.4. Step V: The proof of Theorem [3.25] and the connection with GPS09] 58
4. Smoothness: Around the Gross-Siebert locus 63
5. The relative torus 69
6. Extending the familv over boundarv strata 70
6.1. Theorem 0.2 in the case that $(Y . D)$ has a toric model 70
6.2. Proof of Theorems 0.1 and 0.2 in general 74
6.3. The case that (Y, D) is positive 77
References 80

INTRODUCTION

0.1. The main theorems. Throughout the paper (Y, D) with $D=D_{1}+\cdots+D_{n}$ will denote a smooth projective surface over an algebraically closed field \mathbb{k} of characteristic zero, with $D \in\left|-K_{Y}\right|$ a singular nodal curve. The surface Y is necessarily a rational surface, and D is either an irreducible rational nodal curve, or a cycle of $n \geq 2$ smooth rational curves. We call (Y, D) a Looijenga pair for, as far as we know, their rich geometry was first investigated in L81. We cyclically order the components of D and take indices modulo n. By assumption there is a holomorphic symplectic 2 -form Ω, unique up to scaling, on $Y \backslash D$, with simple poles along D, and thus $U:=Y \backslash D$ is a \log Calabi-Yau surface.

Our main result is a canonical synthetic construction of the mirror family to such a pair. The construction gives a canonical (and in many cases modular) embedded smoothing of the n-vertex $\mathbb{V}_{n} \subset \mathbb{A}^{n}$, defined as, for $n \geq 3$, the n-cycle of coordinate planes in \mathbb{A}^{n} :

$$
\mathbb{V}_{n}:=\mathbb{A}_{x_{1}, x_{2}}^{2} \cup \mathbb{A}_{x_{2}, x_{3}}^{2} \cup \cdots \cup \mathbb{A}_{x_{n}, x_{1}}^{2} \subset \mathbb{A}_{x_{1}, \ldots, x_{n}}^{n}
$$

(See (1.4) and (1.5) for the definition of \mathbb{V}_{1} and \mathbb{V}_{2}.) This family is in general parameterized roughly by the formal completion of the affine toric variety Spec $\mathbb{k}[\mathrm{NE}(Y)]$ along the union of toric boundary strata corresponding to contractions $f: Y \rightarrow \bar{Y}$. Here $\operatorname{NE}(Y)$ denotes the monoid $\mathrm{NE}(Y)_{\mathbb{R}} \cap A_{1}(Y, \mathbb{Z})$ where $\mathrm{NE}(Y)_{\mathbb{R}} \subset A_{1}(Y, \mathbb{R})$ is the cone generated by effective curve classes. This is just an approximate statement of our result, as $\mathrm{NE}(Y)$ is not in general finitely generated.

More precisely, let $B_{0}(\mathbb{Z})$ be the set of pairs (E, n) where E is a divisor on some blowup of Y along which Ω has a pole and n is a positive integer. Set $B(\mathbb{Z}):=$ $B_{0}(\mathbb{Z}) \cup\{0\}$. Later we will describe this set as the set of integer points in a natural integral affine manifold, the dual intersection complex of the pair (Y, D). Let $v_{i} \in B(\mathbb{Z})$ be the pair $\left(D_{i}, 1\right)$. Choose $\sigma_{P} \subset A_{1}(Y, \mathbb{R})$ a strictly convex rational polyhedral cone containing $\mathrm{NE}(Y)_{\mathbb{R}}$, let $P:=\sigma_{P} \cap A_{1}(Y, \mathbb{Z})$ be the associated monoid, and set $R:=\mathbb{k}[P]$ to be the associated \mathbb{k}-algebra.

For each monomial ideal $I \subset R$, consider the free $R_{I}:=R / I$-module

$$
\begin{equation*}
A_{I}:=\bigoplus_{q \in B(\mathbb{Z})} R_{I} \cdot \vartheta_{q} \tag{0.1}
\end{equation*}
$$

Let $\mathfrak{m} \subset R$ denote the maximal monomial ideal. Let $T^{D}:=\mathbb{G}_{m}^{n}$ be the torus with character group $\chi\left(T^{D}\right)$ having basis $e_{D_{i}}$ indexed by the components $D_{i} \subset D$. There is a homomorphism $T^{D} \rightarrow \operatorname{Spec} \mathbb{k}\left[P^{\mathrm{gp}}\right]$ induced by $C \mapsto \sum\left(C \cdot D_{i}\right) e_{D_{i}}$, so T^{D} acts on Spec R_{I}. In 55 an action of T^{D} on A_{I} is also constructed. Fix $(Y, D), D=D_{1}+\cdots+D_{n}$, as above.

Theorem 0.1. Let $I \subset R$ be a monomial ideal with $\sqrt{I}=\mathfrak{m}$. There is a canonical T^{D}-equivariant finitely generated R_{I}-algebra structure on A_{I}, determined by relative Gromov-Witten invariants of (Y, D) counting rational curves meeting D in a single point. This induces a flat T^{D}-equivariant map

$$
f: X_{I}:=\operatorname{Spec} A_{I} \rightarrow \operatorname{Spec} R_{I}
$$

with closed fibre \mathbb{V}_{n}. By taking the limit over all such I, this yields a formal flat family

$$
\mathfrak{f}: \mathfrak{X}_{\mathfrak{m}} \rightarrow \mathfrak{S}_{\mathfrak{m}}:=\operatorname{Spf} \widehat{R}
$$

where \widehat{R} is the completion of R with respect to the ideal \mathfrak{m}. The scheme-theoretic singular locus of \mathfrak{f} does not surject onto the base, so \mathfrak{f} is a formal smoothing of \mathbb{V}_{n}.

We use the notation ϑ_{q} for generators of our algebra, as the construction fits into a more general family of constructions which includes, as a special case, theta functions on abelian varieties. Tyurin conjectured the existence of canonical theta functions (i.e., a basis of global sections) for polarized K3 surfaces and Kontsevich and Soibelman made similar speculations. Our results are log analogs of Tyurin's conjecture. In work in progress we apply similar ideas to obtain Tyurin's conjecture in the K3 case as well, and construct canonical bases for cluster algebras, to cite two other generalizations. These are large topics and will be expanded on elsewhere. See also GSTheta for more motivation from mirror symmetry, and upcoming papers GHKS and [K3.

Continuing with $(Y, D), P$ and R as above, our second main theorem is:
Theorem 0.2. There is a unique smallest radical monomial ideal $J \subset R$ with the following properties:
(1) For every monomial ideal I with $J \subset \sqrt{I}$ there is a finitely generated $R_{I^{-}}$ algebra structure on A_{I} compatible with the $R_{I+\mathfrak{m}^{N} \text {-algebra structure on }} A_{I+\mathfrak{m}^{N}}$ of Theorem 0.1 for all $N>0$.
(2) If the intersection matrix $\left(D_{i} \cdot D_{j}\right)$ is not negative semi-definite then $J=0$. In general, the zero locus $V(J) \subset \operatorname{Spec} R$ contains the union of the closed toric strata corresponding to faces F of σ_{P} such that F does not contain the class of some component of D.
(3) Let \widehat{R} denote the J-adic completion of R and $\mathfrak{S}_{J}:=\operatorname{Spf} \widehat{R}$ the associated formal scheme. The algebras A_{I} determine a canonical T^{D}-equivariant formal flat family of affine surfaces

$$
\mathfrak{f}: \mathfrak{X}_{J} \rightarrow \mathfrak{S}_{J}
$$

with fibre \mathbb{V}_{n} over 0 . The ϑ_{q} determine a canonical embedding $\mathfrak{X}_{J} \subset \mathbb{A}^{\max (n, 3)} \times$ \mathfrak{S}_{J}.

Remark 0.3. When $\mathrm{NE}(Y) \subset P^{\prime} \subset P \subset A_{1}(Y)$, then $J^{\prime} \subset J$ and the formal family \mathcal{X} for P comes from the family for P^{\prime} by base-change. In this sense the family is independent of the choice of P.

Remark 0.4. Note that in the case that the intersection matrix $\left(D_{i} \cdot D_{j}\right)$ is not negative semi-definite (which includes the case that D supports an ample divisor), Theorem 0.2 tells us that our construction gives a family over $\operatorname{Spec} R$, so in particular the construction is algebraic.

In this paper, we will not address the question as to what sense our construction can be proved to be a mirror family. We expect, however, that our families constructed by the above theorems are mirror to $U=Y \backslash D$ in the sense of homological mirror symmetry in the case $\mathbb{k}=\mathbb{C}$. Further justification for our construction to yield the mirror family comes from the heuristic description of the construction in terms of symplectic geometry.

While our construction owes a great deal to prequel work of Gross and Siebert GS07, itself building on ideas of Kontsevich and Soibelman in KS06, the real innovation in this paper is the introduction of theta functions. This is a fundamentally new piece of technology, and plays a crucial role in the construction, which would be impossible without the existence of such functions. The key point is that it is easy to build deformations of the punctured n-vertex $\mathbb{V}_{n}^{o}:=\mathbb{V}_{n} \backslash\{0\}$, but it is difficult to extend these to deformations of \mathbb{V}_{n}. This is effectively done by using theta functions to embed a suitably chosen deformation of \mathbb{V}_{n}^{o} in affine space, where the closure may then be taken.
0.2. The symplectic heuristic. Much of what we do in this paper, following the philosophy of the Gross-Siebert program, is to tropicalize the SYZ picture SYZ96. Thus it is helpful to review informally this picture in the context of mirrors to Looijenga
pairs (Y, D). The SYZ picture will be a heuristic philosophical guide, and hence we make no effort to be rigorous. Here we follow the exposition from A07 concerning SYZ on the complement of an anti-canonical divisor, itself a generalization of ideas of Cho and Oh for interpreting the Landau-Ginzburg mirror of a toric variety in terms of counting Maslov index two holomorphic disks CO06. For the most part we follow Auroux's notation, except that we use Y instead of his X, and our X is his M.

We fix a Kähler form ω on Y, and a nowhere vanishing holomorphic 2-form Ω on $U:=Y \backslash D$. Now suppose we have a fibration $f: U \rightarrow B$ by special Lagrangian 2-tori (i.e., a fibre L of f satisfies $\left.\operatorname{Im} \Omega\right|_{L}=\left.\omega\right|_{L}=0$). Then the SYZ mirror X of (U, ω) is the dual torus fibration $\check{f}: X \rightarrow B$. This can be thought of as a moduli space of pairs (L, ∇) consisting of a special Lagrangian fibre L of f equipped with a unitary connection ∇ modulo gauge equivalence, or equivalently a holonomy map hol $_{\nabla}: H_{1}(L, \mathbb{Z}) \rightarrow U(1) \subset \mathbb{C}^{*}$. The complex structure on X is subtle, specified by so-called instanton corrections.

In this picture we can define local holomorphic functions on X associated to a basis of $H_{2}(Y, L, \mathbb{Z})$ (in a neighbourhood of a fibre of \check{f} corresponding to a non-singular fibre L of f) as follows. For $A \in H_{2}(Y, L, \mathbb{Z})$ define

$$
\begin{equation*}
z^{A}:=\exp \left(-2 \pi \int_{A} \omega\right) \operatorname{hol}_{\nabla}(\partial A): X \rightarrow \mathbb{C}^{*} \tag{0.2}
\end{equation*}
$$

By choosing a splitting of $H_{2}(Y, L, \mathbb{Z}) \rightarrow H_{1}(L, \mathbb{Z})$ we can pick out local coordinates on X which define a complex structure. See A07, Lemma 2.7. Note that as the fibre L varies, the relative homology group $H_{2}(Y, L, \mathbb{Z})$ forms a local system over $B_{0} \subset$ B, where B_{0} is the subset of points with non-singular fibres. This local system has monodromy, and as a consequence, the functions z^{A} are only well-defined locally.

However, there are also well-defined global functions, $\vartheta_{1}, \ldots, \vartheta_{n}$ on X. These are defined locally in neighbourhoods of fibres of \check{f} corresponding to fibres of f not bounding holomorphic disks contained in U, via a (rough) expression

$$
\begin{equation*}
\vartheta_{i}=\sum_{\beta \in H_{2}(Y, L, \mathbb{Z})} n_{\beta} z^{\beta}, \tag{0.3}
\end{equation*}
$$

where n_{β} is a count of so-called Maslov index two disks with boundary on L representing the class β and intersecting D transversally in one point lying in D_{i}. (We note that in our setting the Maslov index μ of a holomorphic disk $f: \Delta \rightarrow Y$ with boundary lying on a special Lagrangian torus $L \subset Y$ is given by $\mu=2 \operatorname{deg} f^{*} D$. See A07, Lemma 3.1.) In the case that D is ample, there are, for generic L, only finitely many such disks; it is not known how to treat the general case in this symplectic setting.

For ϑ_{i} to make sense the moduli space of Maslov index 2 disks with boundary on L must deform smoothly with the Lagrangian L. This fails for Lagrangians that
bound holomorphic disks contained in U (Maslov index zero disks). This is a real codimension one condition on L, and thus defines canonical walls in the affine manifold B. When we cross the wall the ϑ_{i} are discontinuous. But the discontinuity is corrected by a holomorphic change of variable in the local coordinates z^{β}, according to A07, Proposition 3.9:

$$
\begin{equation*}
z^{\beta} \rightarrow z^{\beta} \cdot h\left(z^{\alpha}\right)^{[\partial \beta] \cdot[\partial \alpha]} \tag{0.4}
\end{equation*}
$$

where here $\alpha \in H_{2}\left(Y, L_{0}, \mathbb{Z}\right)$ represents the class of the Maslov index zero disk with boundary on L_{0} a Lagrangian fibre over a point on the wall, and $h(q)$ is a generating function counting such holomorphic disks. Thus we can define a new complex manifold, with the same local coordinates, by composing the obvious gluing induced by identifications of fibres of the local system on B_{0} with fibres $H_{2}(Y, L, \mathbb{Z})$ with the automorphism (0.4). These regluings are the instanton corrections, and the modified manifold X should be the mirror. By construction it comes with canonical global holomorphic functions ϑ_{i}. In particular, the sum $W=\sum_{i} \vartheta_{i}$ is a well-defined global function, the Landau-Ginzburg potential.
0.3. Outline of the proof. We now outline how we realise the symplectic SYZ heuristic in terms of algebraic geometry. There are three principal issues to consider:

- What information about a putative SYZ fibration can be seen inside algebraic geometry?
- What is the analogue of a Maslov index two disk in algebraic geometry?
- How do we obtain the mirror by gluing together varieties?

The philosophy for dealing with the first and third issues was developed by Gross and Siebert in GS07. For the first item, while we cannot build an SYZ fibration $f: U \rightarrow B$ in general, we can roughly describe B as a combinatorial object. Given the Looijenga pair (Y, D), we build a space B homeomorphic to \mathbb{R}^{2} along with a decomposition Σ of B into cones. We construct (B, Σ) as the dual intersection complex of (Y, D) : For each double point of D, we take a copy of the first quadrant in \mathbb{R}^{2}, with each axis labelled by the two irreducible components of D (assuming D is not irreducible) passing through the double point. We then identify edges of these cones if they are labelled with the same irreducible component of D. We thus get a topological space abstractly homeomorphic to \mathbb{R}^{2} subdivided into cones. This is (B, Σ). In $\$ 1.2$, we show how we can put an additional structure on B, namely the structure of an affine manifold with singularities. Indeed, we can give $B_{0}:=B \backslash\{0\}$ a system of coordinate charts whose transition maps are integral affine linear transformations. The affine structure does not extend across the origin unless (Y, D) is in fact a toric pair, in which case we recover the fan Σ defining Y.

The manifold B can be viewed as the base of the SYZ fibration "seen from a great distance." In general the base of an SYZ fibration has the structure of an affine manifold with singularities. Singular fibres of the fibration occur over the singular points. One would expect $f: U \rightarrow B$ to have a number of singular fibres in general, hence B will have a number of singular points. So the above construction moves all these singular points to the origin.

Next, let us consider the third item. Fixing (Y, D) with $D=D_{1}+\cdots+D_{n}$, let $P \subset A_{1}(Y, \mathbb{Z})$ be a finitely generated monoid containing the classes of all effective curves on Y, obtained by choosing a strictly convex rational polyhedral cone $\sigma_{P} \subset A_{1}(Y, \mathbb{R})$ containing the Mori cone. Let \mathfrak{m} be the maximal monomial ideal in the ring $\mathbb{k}[P], I$ a monomial ideal with radical \mathfrak{m}, and let $R_{I}=\mathbb{k}[P] / I$.

We will describe the basic pieces we will glue together to describe a scheme over $S_{I}:=\operatorname{Spec} R_{I}$ whose special fibre is $\mathbb{V}_{n}^{o}:=\mathbb{V}_{n} \backslash\{0\}$. Assume that the components D_{i} are numbered in cyclic order, with indices taken modulo n. We can define an open cover of \mathbb{V}_{n}^{o} by taking sets, for $1 \leq i \leq n$,

$$
U_{i}=V\left(x_{i-1} x_{i+1}\right) \subset \mathbb{A}_{x_{i-1}, x_{i+1}}^{2} \times\left(\mathbb{G}_{m}\right)_{x_{i}}
$$

Note as subsets of \mathbb{V}_{n}, they are disjoint except for

$$
U_{i, i+1}:=U_{i} \cap U_{i+1}=\left(\mathbb{G}_{m}\right)_{x_{i}, x_{i+1}}^{2}
$$

In \mathbb{V}_{n} they are glued in the obvious way, i.e., via the canonical inclusions

$$
U_{i, i+1}=\left\{x_{i+1} \neq 0\right\} \subset U_{i}, \quad U_{i, i+1}=\left\{x_{i} \neq 0\right\} \subset U_{i+1}
$$

A deformation of \mathbb{V}_{n}^{o} over S_{I} is obtained by gluing thickenings of the U_{i}

$$
\begin{equation*}
U_{i, I}:=V\left(x_{i-1} x_{i+1}-z^{\left[D_{i}\right]} x_{i}^{-D_{i}^{2}}\right) \subset S_{I} \times \mathbb{A}_{x_{i-1}, x_{i+1}}^{2} \times\left(\mathbb{G}_{m}\right)_{x_{i}} \tag{0.5}
\end{equation*}
$$

where $z^{\left[D_{i}\right]} \in \mathbb{k}[P]$ is the corresponding monomial. The overlaps are relative tori, $U_{i, i+1, I}=S_{I} \times \mathbb{G}_{m}^{2}$, and the gluings are the obvious ones. The details are given in 2.1, This gluing gives a flat family $X_{I}^{o} \rightarrow S_{I}$, which can be viewed as being analogous to the naive complex structure on the mirror described as the moduli of smooth special Lagrangian fibres with $U(1)$ connection.

There is no reason in general to believe that $X_{I}^{o} \rightarrow S_{I}$ can be extended to a flat deformation $X_{I} \rightarrow S_{I}$ of \mathbb{V}_{n}. The reason is that such an X_{I} should be an affine scheme, and hence have many functions, while X_{I}^{o} as constructed tends to have few functions. The only case where X_{I}^{o} extends to give a deformation of \mathbb{V}_{n} is when (Y, D) is a toric pair. In this case, we recover an infinitesimal version of Givental's mirror family, which then easily extends to Givental's mirror construction. We review this case in $\$ 1.3$

To rectify this problem, we need to translate the instanton corrections of the symplectic heuristic. We do this using the notion of scattering diagram, here a variant of similar notions introduced in [KS06] and [GS07].

For us, a scattering diagram \mathfrak{D} will be a collection of pairs $\left(\mathfrak{d}, f_{\mathfrak{d}}\right)$ where \mathfrak{d} is a ray emanating from the origin of B with rational slope, and $f_{\mathfrak{J}}$ is a kind of function attached to the ray. Any scattering diagram will dictate how to modify both the definition of the open sets $U_{i, I}$ and the gluings of $U_{i, I}$ with $U_{i+1, I}$. The precise details of this modification are given in $\$ 2.2$. Briefly, the rays define automorphisms of the open sets $U_{i, i+1, I}$ analogous to (0.4), and are used to modify the gluing.

While any scattering diagram can be used to obtain a modified flat deformation $X_{I, \mathfrak{D}}^{o}$, we need to choose \mathfrak{D} correctly to have a chance of extending this deformation to \mathbb{V}_{n}. The symplectic heuristic can be used to motivate the choice of the canonical scattering diagram. The functions $f_{\mathfrak{0}}$ chosen are generating functions for certain Gromov-Witten invariants, intuitively counting finite maps $\mathbb{A}^{1} \rightarrow U$. Heuristically, each holomorphic disk contributing can be approximated by a proper rational curve meeting D in a single point.

Thus the canonical scattering diagram encodes the chamber structure seen in the symplectic heuristic. But there still remains the question of extending $X_{I, \mathfrak{D}}^{o}$ to a flat deformation of \mathbb{V}_{n}. To do so, we need to construct enough functions on $X_{I, \mathfrak{D}}^{o}$. This is where our concept of theta function comes in. The symplectic heuristic suggests that there should be a canonical choice of holomorphic functions on $X_{I, \mathfrak{D}}^{o}$ arising from a count of Maslov two holomorphic disks. Rather than trying to find an algebrogeometric analogue of a Maslov two holomorphic disk, we instead define the counts using tropical geometry. In particular, we use the notion of broken line, introduced in [G09], to provide the count. A broken line is essentially a tropical analogue of a Maslov index two disk. They are piecewise linear paths which only bend when they cross rays of the scattering diagram \mathfrak{D}, in ways prescribed by the functions attached to the rays.

For any point $p \in B$ with integral coordinates, we can use a count of broken lines to define a function on $U_{i, I}$ for any i. This procedure is described in $\$ 2.3$ Since this procedure is dependent on the scattering diagram \mathfrak{D}, we can then ask whether these functions on the various $U_{i, I}$ glue. We say \mathfrak{D} is consistent if they always glue. If these functions do glue, then we call the resulting global function on $X_{I, \mathfrak{D}}^{o}$ a theta function, writing it as ϑ_{p}.

The bulk of the argument in this paper occurs in where we prove that the canonical scattering diagram described above is in fact consistent. This argument is rather involved, so we leave it to 3.2 to give an overview of the full argument for
consistency. Crucial to the argument is a reduction to methods of [PS using the main results of GPS09.

Once consistency is proved, this gives global functions ϑ_{p} on $X_{I, \mathcal{D}}^{o}$ for each $p \in B$ with integral coordinates. Let v_{i} denote the first integral point along the ray of Σ corresponding to the divisor D_{i}, and write $\vartheta_{i}:=\vartheta_{v_{i}}$. Then we can use the functions $\vartheta_{1}, \ldots, \vartheta_{n}$ to embed (in the case that $n \geq 3$) $X_{I, \mathfrak{D}}^{o}$ in $\mathbb{A}^{n} \times S_{I}$. Taking the closure of the image gives the desired deformation $X_{I} \rightarrow S_{I}$ of \mathbb{V}_{n}.

This construction essentially proves the first main theorem, Theorem 0.1 The statement about the scheme-theoretic singular locus of f is dealt with in 44 There we again make a connection with the techniques of GS07. The crucial point is to show the singularity $0 \in \mathbb{V}^{n}$ is formally smoothed, and for this, we need to work in a family where we have a local model for the behaviour near 0, much as Gross and Siebert have in GS07.

More work is required for Theorem 0.2. We need to show that the construction above, which really only produces a family over the completion of Spec $\mathbb{k}[P]$ at the zero-dimensional torus orbit of this scheme, extends across completions along larger strata. Since the coordinate rings of the families constructed above are generated by theta functions, we proceed by studying the products of theta functions. In general, one expects the product of two theta functions to be a formal series of theta functions. However, in many cases one can control the terms sufficiently in these products to obtain the desired extensions. This relies on a tropical interpretation of the product of theta functions, given in 2.4 as well as the existence of a torus action on our families, given in $\$ 5$. This torus action only exists because of the canonical nature of our scattering diagrams. Complete details for the arguments are given in the last section, 86
0.4. Applications. Here we will briefly indicate the results of further study of our mirror construction, to be given in sequel papers.

There are three broad classes of behaviour for our construction, depending on the properties of the intersection matrix $\left(D_{i} \cdot D_{j}\right)$.

The intersection matrix is not negative semi-definite. We call this the positive case. It holds iff U is the minimal resolution of an affine surface, see Lemma 6.9. In this case, the cone $\mathrm{NE}(Y)_{\mathbb{R}}$ is rational polyhedral, so we may take $P=\mathrm{NE}(Y)$, and the ideal J of Theorem 0.2 equals 0 . Thus our construction defines an algebraic family over Spec $\mathbb{k}[\mathrm{NE}(Y)]$, with smooth generic fibre. We will show in Part II that the restriction of this family to the structure torus

$$
\mathcal{X} \rightarrow T_{Y}:=\operatorname{Pic}(Y) \otimes \mathbb{G}_{m}=\operatorname{Spec} \mathbb{k}\left[A_{1}(Y)\right] \subset \operatorname{Spec} \mathbb{k}[\operatorname{NE}(Y)]
$$

is the universal family of deformations of $U=Y \backslash D$.
More precisely, we will show independently of the positivity of the intersection matrix that our formal family has a simple and canonical (fibrewise) compactification to a formal family $(\mathcal{Z}, \mathcal{D})$ of Looijenga pairs (with $\mathcal{X}=\mathcal{Z} \backslash \mathcal{D}$). In the positive case this extends naturally over all of $\operatorname{Spec} R$, and its restriction $(\mathcal{Z}, \mathcal{D}) \rightarrow T_{Y}$ comes with a trivialization of the boundary $\mathcal{D}=D_{*} \times T_{Y}$ realizing it as the universal family of Looijenga pairs (Z, D_{Z}) deformation equivalent to (Y, D) together with an isomorphism $D_{Z} \xrightarrow{\sim} D_{*}$. In particular, choosing such an isomorphism $D \xrightarrow{\sim} D_{*}$ for our original pair (Y, D) canonically identifies it with a fibre of the family $(\mathcal{Z}, \mathcal{D}) / T_{Y}$. More importantly, the restrictions of the theta functions ϑ_{q} to $U \subset \mathcal{X}$ endow the affine surface $U=Y \backslash D$ with canonical functions.

The fact that (Y, D) appears as a fibre is perhaps a bit surprising as, after all, we set out to construct the mirror and have obtained the original surface back. Note however that dual Lagrangian torus fibrations in dimension 2 are topologically equivalent by Poincaré duality, so this is consistent with the SYZ formulation of mirror symmetry.

To illustrate, in Example 6.12 we explicitly compute the theta functions in the case (Y, D) is the del Pezzo of degree 5 together with a cycle of $5(-1)$-curves. In Example 6.13, we give the expression in the case of a triangle of lines on a cubic surface, deferring in this case the proof until Part II. In each of these cases there is a characterisation of the $\vartheta_{v_{i}}$ in terms of classical geometry.

Part III will obtain further results in the case that the intersection matrix is negative semi-definite. For this we need refinements of the general result of Theorem 0.2 in various special cases. For simplicity of exposition, assume that $\sigma_{P}=\mathrm{NE}(Y)_{\mathbb{R}}$ is a rational polyhedral cone, so that $S:=\operatorname{Spec} \mathbb{k}[P]=\operatorname{Spec} R$ is an affine toric variety. Associated to a contraction $f: Y \rightarrow \bar{Y}$ is a closed boundary stratum of $S_{f} \subset S$, with monomial ideal I_{f} generated by monomials z^{C} for curves not contracted to a point by f. The most interesting cases for deformation theory turn out to be when D itself is a fibre of f. This occurs if D is negative semi-definite. In this case Theorem 0.2 does not apply directly; however, the same methods, with $\mathbb{k}=\mathbb{C}$, produce a canonical extension of our family over the formal completion \widehat{S}^{\prime} of an analytic open neighborhood S^{\prime} of the zero-dimensional stratum of S along $S_{f} \cap S^{\prime}$.

We denote by X_{f} the fibre over a general point of $S_{f} \cap S^{\prime}$. Then X_{f} is a Gorenstein semi \log canonical surface, and the family $\left.\mathcal{X}\right|_{S_{f}}$ is a partial smoothing of the vertex \mathbb{V}_{n} to X_{f}. Furthermore, the family \mathcal{X}, restricted to a slice of S transverse to S_{f}, yields a formal smoothing of X_{f}. We now discuss the two main examples.

The intersection matrix is negative semi-definite but not definite. In this case, after inductively contracting (-1)-curves contained in D, we may assume that D is a cycle of
(-2)-curves or an irreducible rational nodal curve with $D^{2}=0$. Our construction only depends on the deformation type of (Y, D), so we can choose the complex structure on Y so that D is a fibre of an elliptic fibration $f: Y \rightarrow \mathbb{P}^{1}$. Then X_{f} has a unique singular point, a cone over an elliptic curve of degree n. The restriction of our family to the boundary stratum $\mathcal{X} \rightarrow S_{f} \cap S^{\prime}$ is the cone over Mumford's construction of the Tate curve, and our theta functions restrict to his toric realization of classical theta functions for elliptic curves. Moreover our family $\mathcal{X} \rightarrow S$ is defined over the analytic open set $S^{\prime}=\left\{x \in \operatorname{Spec} \mathbb{k}[P]| | z^{D}(x) \mid<1\right\} \subset S$, and the modular parameter of the elliptic curve is $q=\exp (2 \pi i \tau)=z^{D} \in \mathbb{R}[\operatorname{NE}(Y)]$. This in particular shows the family cannot be algebraic. Thus \mathcal{X} gives a smoothing of the cone over an elliptic curve of degree n, recovering in this way a result of Pinkham P74, §9. We will show in Part III that the fibrewise compactification of our family $(\mathcal{Z}, \mathcal{D}) \rightarrow \operatorname{Spf} \widehat{R}$, together with the theta functions (on $\mathcal{X}=\mathcal{Z} \backslash \mathcal{D}$) extends canonically over S^{\prime}. The restriction to $S^{\prime} \cap T_{Y}$ gives the universal family of pairs (Z, D) of a smooth anti-canonical elliptic curve on a del Pezzo surface, constructed in [L76] and M82], but now endowed with canonical theta functions not previously observed.

The intersection matrix is negative definite. In this case, there is a birational morphism $f: Y \rightarrow \bar{Y}$ contracting D to a cusp singularity $p \in \bar{Y}$. See Example 1.10 for background on cusp singularities. Cusps come in natural dual pairs, as observed in N80. In fact, as we'll see in Part III, this duality can be viewed as an early instance of mirror symmetry. We prove that the fibre X_{f} has a unique singularity, the dual cusp to $p \in \bar{Y}$, and we thus obtain in Part III the following:

Corollary 0.5 (Looijenga's conjecture). A 2-dimensional cusp singularity is smoothable if and only if the exceptional cycle of the dual cusp occurs as an anti-canonical cycle on a smooth projective rational surface.

This was conjectured by Looijenga in [81], where he also proved the forward implication. Partial results were obtained in [FM83] and [FP84]. The above procedure produces a formal smoothing of the cusp singularity X_{f}.

We will also show in forthcoming work that the families constructed are related to the \mathcal{X} cluster varieties constructed in [FG09. In particular, for such cluster varieties associated to a skew symmetric matrix of rank 2, we will show the fibres of the fibration of the \mathcal{X} cluster variety are (interiors of) Looijenga pairs. The cluster varieties are now divided into our three classes for Looijenga pairs described above (a fundamental division not observed in the cluster world). In the positive case we use our theta functions to prove the Fock-Goncharov dual basis conjecture [FG09], §4.1, and show that the canonical basis depends only on the underlying surface (which may have many different cluster structures). In the other cases the Fock-Goncharov conjecture is wildly
false (e.g., in the negative case, these fibres have no non-constant functions at all, while [FG09] conjectures an infinite basis of functions). However, our (formal) theta functions prove a formal version. Our results go beyond the Fock-Goncharov conjecture, as they include a canonical formula for the structure constants.
0.5. Acknowledgements. An initial (and ongoing) motivation for the project was to find a geometric compactification of moduli of polarized K3 surfaces. We received a good deal of initial inspiration in this direction from conversations with V. Alexeev. The project also owes a great deal to the first author's collaboration with B. Siebert. We learned a great many things from A. Neitzke, especially about the connections of our work with cluster algebras and moduli of local systems. Our thinking about Looijenga pairs was heavily influenced by conversations with R. Friedman and E. Looijenga. Many other people have helped us with the project, discussions with D. Allcock, D. Benzvi, V. Fock, D. Freed, A. Goncharov, R. Heitmann, D. Huybrechts, M. Kontsevich, A. Oblomkov, T. Perutz, M. Reid, A. Ritter, and Y. Soibelman were particularly helpful. We would also like to thank IHÉS for hospitality during the summer of 2009 when part of this research was done. The first author was partially supported by NSF grants DMS-0805328 and DMS-0854987. The second author was partially supported by NSF grant DMS-0968824 and DMS-1201439. The third author was partially supported by NSF grant DMS-0854747.

1. Basics

1.1. Looijenga pairs.

Definition 1.1. A Looijenga pair (Y, D) is a smooth projective surface Y together with a singular nodal curve $D \in\left|-K_{Y}\right|$.

Note that for a Looijenga pair, $p_{a}(D)=1$ by adjunction, so D is either an irreducible genus one curve with a single node, or a cycle of smooth rational curves. We will always write $D=D_{1}+\cdots+D_{n}$, with a cyclic ordering of the irreducible components, and take the indices modulo n.

We will need a few basic facts about Looijenga pairs, which we collect here.
Definition 1.2. Let (Y, D) be a Looijenga pair.
(1) A toric blow-up of (Y, D) is a birational morphism $\pi: \tilde{Y} \rightarrow Y$ such that if \tilde{D} is the reduced scheme structure on $\pi^{-1}(D)$, then \tilde{D} is an anti-canonical cycle of rational curves on \tilde{Y}.
(2) A toric model of (Y, D) is a birational morphism $(Y, D) \rightarrow(\bar{Y}, \bar{D})$ to a smooth toric surface \bar{Y} with its toric boundary \bar{D} such that $D \rightarrow \bar{D}$ is an isomorphism.

Note that if $\pi: \tilde{Y} \rightarrow Y$ is the blow-up of a node of D, then π is a toric blow-up.
Proposition 1.3. Given (Y, D) there exists a toric blowup (\tilde{Y}, \tilde{D}) which has a toric $\operatorname{model}(\tilde{Y}, \tilde{D}) \rightarrow(\bar{Y}, \bar{D})$.

Proof. First observe:
(1) Let $p: Y \rightarrow Y^{\prime}$ be the blowdown of a (-1)-curve not contained in D, and $D^{\prime}:=p_{*}(D) \subset Y^{\prime}$. If the proposition holds for $\left(Y^{\prime}, D^{\prime}\right)$ then it holds for (Y, D).
(2) Let $Y^{\prime \prime} \rightarrow Y$ be the blowup at a node of D, and $D^{\prime \prime} \subset Y^{\prime \prime}$ the reduced inverse image of D. The proposition holds for $\left(Y^{\prime \prime}, D^{\prime \prime}\right)$ if and only if it holds for (Y, D).
By using (1) and (2) repeatedly we may assume Y is minimal, and thus is either a ruled surface or is \mathbb{P}^{2}. In the latter case, by blowing up a node of D we reduce to the ruled case. So we have $q: Y \rightarrow \mathbb{P}^{1}$ a ruling. We next consider the number of components of D which are fibres of q. There cannot be more than two such components, for otherwise D cannot be a cycle. If there are precisely two such components, then D necessarily has precisely four components, and it is then easy to check that D is the toric boundary of Y, for a suitable choice of toric structure on Y. In this case the proposition obviously holds. Otherwise let $D^{\prime} \subset D$ be the union of components not contained in fibres. If D^{\prime} has a node, then we can blowup the node, blowdown the strict transform of the fibre through the node, increasing the number of components of D contained in fibres.

After carrying out this procedure for each node of D^{\prime}, we are then in one of two cases.

Case I. D has two components contained in fibres, and then we are done.
Case II. D consists of a fibre f and a non-singular irreducible two-section D^{\prime} of q. Note that since $D^{\prime}+f \sim-K_{Y}$ and Y is isomorphic to the Hirzebruch surface \mathbb{F}_{e} for some e, we can write Pic $Y=\mathbb{Z} C_{0} \oplus \mathbb{Z} f$, with $C_{0}^{2}=-e$ and $-K_{Y}=2 C_{0}+(e+2) f$. Thus $D^{\prime} \sim 2 C_{0}+(e+1) f$ and $C_{0} \cdot D^{\prime}=-e+1$. Since C_{0} is not contained in $D^{\prime}, e=0$ or 1 .

If $e=0$, then there is a second ruling $q^{\prime}: Y \rightarrow \mathbb{P}^{1}$, with D^{\prime} and f sections of this ruling. In this case, we follow the same procedure as above of blowing up nodes for this new ruling, arriving in Case I.

If $e=1$, then C_{0} is disjoint from D^{\prime}. Blowing down C_{0}, we obtain \mathbb{P}^{2}, and can then blowup one of the nodes of the image of $D^{\prime} \cup f$. Using this new ruled surface, we can again blowup a node and find ourselves back in Case I.
1.2. Tropical Looijenga pairs. We explain how to tropicalize a Looijenga pair, first recalling the following basic definition. Fix a lattice $M \cong \mathbb{Z}^{n}$. In what follows, we will always use the notation $M_{\mathbb{R}}=M \otimes_{\mathbb{Z}} \mathbb{R}, N=\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Z})$ and $N_{\mathbb{R}}=N \otimes_{\mathbb{Z}} \mathbb{R}$. We
denote by $\operatorname{Aff}(M)$ the group of affine linear transformations of the lattice M. Recall the following definitions from GS06].

Definition 1.4. An integral affine manifold B is a (real) manifold B with an atlas of charts $\left\{\psi_{i}: U_{i} \rightarrow M_{\mathbb{R}}\right\}$ such that $\psi_{i} \circ \psi_{j}^{-1} \in \operatorname{Aff}(M)$ for all i, j.

An integral affine manifold with singularities B is a (real) manifold B with an open subset $B_{0} \subset B$ which carries the structure of an integral affine manifold, and such that $\Delta:=B \backslash B_{0}$, the singular locus of B, is a locally finite union of locally closed submanifolds of codimension at least two.

If B is an integral affine manifold with singularities, there is a local system Λ_{B} on B_{0} consisting of flat integral vector fields: i.e., if y_{1}, \ldots, y_{n} are local integral affine coordinates, then Λ_{B} is locally given by linear combinations of the vector fields $\partial / \partial y_{1}, \ldots, \partial / \partial y_{n}$. If B is clear from context, we drop the subscript B.

Similarly, $\check{\Lambda}_{B}$ is the dual local system, locally generated by $d y_{1}, \ldots, d y_{n}$.
We will be primarily interested $\operatorname{in} \operatorname{dim} B=2$ in this paper, in which case Δ will consist, in all our examples, of a finite number of points. All integral affine manifolds we encounter will in fact be linear, in the sense that the coordinate transformations are in fact linear rather than just affine linear.

We associate to a Looijenga pair (Y, D) a pair (B, Σ), where B is homeomorphic to \mathbb{R}^{2} and has the structure of integral affine manifold with one singularity at the origin, and Σ is a decomposition of B into cones. The idea is that we pretend that (Y, D) is toric and we try to build the associated fan. More precisely, the construction is as follows.

For each node $p_{i, i+1}:=D_{i} \cap D_{i+1}$ of D we take a rank two lattice $M_{i, i+1}$ with basis v_{i}, v_{i+1}, and the cone $\sigma_{i, i+1} \subset M_{i, i+1} \otimes_{\mathbb{Z}} \mathbb{R}$ generated by v_{i} and v_{i+1}. We then glue $\sigma_{i, i+1}$ to $\sigma_{i-1, i}$ along the rays $\rho_{i}:=\mathbb{R}_{\geq 0} v_{i}$ to obtain a piecewise-linear manifold B homeomorphic to \mathbb{R}^{2} and a decomposition

$$
\Sigma=\left\{\sigma_{i, i+1} \mid 1 \leq i \leq n\right\} \cup\left\{\rho_{i} \mid 1 \leq i \leq n\right\} \cup\{0\} .
$$

We define an integral affine structure on $B \backslash\{0\}$ by defining charts $\psi_{i}: U_{i} \rightarrow M_{\mathbb{R}}$ (where $M=\mathbb{Z}^{2}$). Here

$$
U_{i}=\operatorname{Int}\left(\sigma_{i-1, i} \cup \sigma_{i, i+1}\right)
$$

and ψ_{i} is defined on the closure of U_{i} by

$$
\psi_{i}\left(v_{i-1}\right)=(1,0), \quad \psi_{i}\left(v_{i}\right)=(0,1), \quad \psi_{i}\left(v_{i+1}\right)=\left(-1,-D_{i}^{2}\right)
$$

with ψ_{i} linear on $\sigma_{i-1, i}$ and $\sigma_{i, i+1}$. The reason for choosing these particular vectors is that they form the one-dimensional rays of a fan defining a toric variety such that the divisor D_{i} corresponding to the ray generated by v_{i} has self-intersection D_{i}^{2}.

We note this construction makes sense even when $n=1$, i.e., the anti-canonical divisor D is an irreducible nodal curve. In this case there is one cone $\sigma_{1,1}$, and opposite sides of the cone are identified. (Moreover, the integral affine charts are defined using the integer $D_{1}^{2}-2$ instead of D_{1}^{2}. This is the degree of the normal bundle of the map from the normalization of D_{1} to Y.) However, this case will often complicate arguments in this paper, so we will usually replace Y with a surface obtained by blowing up the node of D, and replace D with the reduced inverse image of D under the blowup. This does not change the underlying integral affine manifold with singularities, but refines the decomposition Σ, exactly as in the toric case:

Definition 1.5. Given (B, Σ), a refinement is a pair $(B, \tilde{\Sigma})$, where $\tilde{\Sigma}$ is a decomposition of B into rational polyhedral cones refining Σ.

Lemma 1.6. There is a one-to-one correspondence between toric blow-ups of (Y, D) and refinements of (B, Σ). Furthermore, if (\tilde{Y}, \tilde{D}) is a non-singular toric blow-up of (Y, D), and $(\tilde{B}, \tilde{\Sigma})$ is the affine manifold with singularities constructed from (\tilde{Y}, \tilde{D}), then \tilde{B} and B are isomorphic as integral affine manifolds with singularities in such a way that $\tilde{\Sigma}$ is the corresponding refinement of Σ.

Proof. Let $\pi: \tilde{Y} \rightarrow Y$ be a toric blow-up. It follows easily from the condition that $\pi^{-1}(D)_{\text {red }}$ is an anti-canonical divisor that $\pi: \tilde{Y} \backslash \pi^{-1}(\operatorname{Sing}(D)) \rightarrow Y \backslash \operatorname{Sing}(D)$ is an isomorphism. Thus π is a blow-up along a subscheme supported on $\operatorname{Sing}(D)$. Let $x \in \operatorname{Sing}(D)$ be a double point of D, corresponding to a cone $\sigma \in \Sigma$. Note σ can be viewed as a rational polyhedral cone defining a non-singular toric variety $X_{\sigma} \cong \mathbb{A}^{2}$. Then étale locally near x, the pair (Y, D) is isomorphic to the pair $\left(X_{\sigma}, \partial X_{\sigma}\right)$. One can then check that in this local model, the only possible blow-ups satisfying the definition of toric blow-ups come from subdivisions of the cone σ, i.e., toric blow-ups of X_{σ}. Indeed, the exceptional divisors of toric blowups are the only divisors with \log discrepancy -1 . This gives the desired correspondence. The second statement is then easily checked.

Example 1.7. It is easy to see that if Y is a non-singular toric surface and $D=\partial Y$ is the toric boundary of D, then in fact the affine structure on B extends across the origin, identifying (B, Σ) with $\left(M_{\mathbb{R}}, \Sigma_{Y}\right)$, where Σ_{Y} is the fan for Y. Indeed, if $\rho_{j} \in \Sigma_{Y}$ corresponds to the divisor D_{j} and $\rho_{j}=\mathbb{R}_{\geq 0} v_{j}$ with $v_{j} \in M$ primitive, then it is a standard fact that

$$
v_{i-1}+\left(D_{i}\right)^{2} v_{i}+v_{i+1}=0
$$

Since Y is non-singular, there is always a linear identification $\varphi_{i}: M \xrightarrow{\sim} \mathbb{Z}^{2}$ taking v_{i-1} to $(1,0), v_{i}$ to $(0,1)$, and thus v_{i+1} must map to $\left(-1,-D_{i}^{2}\right)$. So on U_{i}, a chart for the
affine structure on B is $\psi_{i}^{\prime}=\varphi_{i}^{-1} \circ \psi_{i}: U_{i} \rightarrow M_{\mathbb{R}}$. The maps ψ_{i}^{\prime} glue to give an integral affine isomorphism $B \rightarrow M_{\mathbb{R}}$.

In fact, the converse is also true:
Lemma 1.8. If the affine structure on $B_{0}=B \backslash\{0\}$ extends across the origin, then Y is toric and $D=\partial Y$.

Proof. We first note that by Lemma 1.6, we can replace (Y, D) with a non-singular toric blow-up without affecting the affine manifold B. By Proposition 1.3, we can thus assume the existence of a toric model $\pi:(Y, D) \rightarrow(\bar{Y}, \bar{D})$. If \bar{D}_{i} is the image of D_{i} under this map, then $\bar{D}_{i}^{2} \geq D_{i}^{2}$.

We first claim that (Y, D) is isomorphic to (\bar{Y}, \bar{D}) if and only if equality holds for every i. Indeed, if equality holds for a given i, then π can't contract any curves which intersect D_{i}. On the other hand, π can't contract any curves contained in $Y \backslash D$ since then D would not be an anti-canonical cycle.

Now assume that (Y, D) is not toric, so that π is not an isomorphism. Now in general, $B \backslash \rho_{1}$ has a coordinate chart $\psi: B \backslash \rho_{1} \rightarrow M_{\mathbb{R}}$, constructed by gluing together coordinate charts for $\sigma_{1,2}, \ldots, \sigma_{n-1, n}, \sigma_{n, 1}$. Note that $\bar{D}_{i}^{2}>D_{i}^{2}$ for at least one i, and by choosing ρ_{1} appropriately, we can assume that this is the case for some $i \neq 1$. By comparing this chart ψ with the corresponding chart $\bar{\psi}$ constructed using (\bar{Y}, \bar{D}), one sees easily that $\psi\left(B \backslash \rho_{1}\right)$ is properly contained in $\bar{\psi}\left(B \backslash \rho_{1}\right)=M_{\mathbb{R}} \backslash \bar{\rho}_{1}$. Here $\bar{\rho}_{1}$ is the one-dimensional cone in the fan for \bar{Y} corresponding to \bar{D}_{1}. In fact, $\psi\left(B \backslash \rho_{1}\right)$ is a wedge (possibly non-convex). If the affine structure extended across the origin, then ψ would extend to an isomorphism $\psi: B \rightarrow M_{\mathbb{R}}$, which is impossible.

Example 1.9. Let Y be a del Pezzo surface of degree 5. Thus Y is isomorphic to the blowup of \mathbb{P}^{2} in 4 points in general position. The surface Y contains exactly 10 (-1)-curves. It is easy to find an anti-canonical cycle D of length 5 among these 10 curves.

In this case, consider $B \backslash \rho_{1}$. Each chart $\psi_{i}: U_{i} \rightarrow M_{\mathbb{R}}$ can be composed with an integral linear function on $M_{\mathbb{R}}$ in such a way that the charts $\psi_{2}, \psi_{3}, \psi_{4}$ and ψ_{5} glue to give a chart $\psi: B \backslash \rho_{1} \rightarrow M_{\mathbb{R}}$. This can be done, for example, with $\psi\left(v_{1}\right)=(1,0), \quad \psi\left(v_{2}\right)=(0,1), \quad \psi\left(v_{3}\right)=(-1,1), \quad \psi\left(v_{4}\right)=(-1,0), \quad \psi\left(v_{5}\right)=(0,-1)$. We can then take a chart $\psi^{\prime}: U_{5} \cup U_{1} \rightarrow M_{\mathbb{R}}$ which agrees with ψ on $\sigma_{5,1}$, and hence takes the values

$$
\psi^{\prime}\left(v_{5}\right)=(0,-1), \quad \psi^{\prime}\left(v_{1}\right)=(1,-1), \quad \psi^{\prime}\left(v_{2}\right)=(1,0)
$$

see Figure 1.1

Figure 1.1.
Thus B, as an affine manifold, can be constructed by cutting $M_{\mathbb{R}}$ along the positive real axis, and then identifying the two copies of the cone $\sigma_{1,2}$ via an integral linear transformation.

Example 1.10. Suppose given a Looijenga pair (Y, D) with $D_{i}^{2} \leq-2$ for all i and D is negative definite (which is equivalent to $D_{i}^{2} \leq-3$ for some i). Then we have a contraction $p: Y \rightarrow \bar{Y}$ with \bar{Y} having a single cusp singularity. This case will lead to a proof of Looijenga's conjecture on smoothability of cusp singularities in Part III. We can describe (B, Σ) as follows. Let $M \cong \mathbb{Z}^{2}$ and take v_{0}, v_{1} to be a basis for M, and define v_{i} for $i \in \mathbb{Z}$ by the relation

$$
v_{i-1}+\left(D_{i \bmod n}^{2}\right) v_{i}+v_{i+1}=0
$$

We define an infinite fan $\tilde{\Sigma}$ in $M_{\mathbb{R}}$ to be the cones generated by v_{i} and $v_{i+1}, i \in \mathbb{Z}$. It is easy to check that these cones do indeed form a fan and that the support of the fan $|\tilde{\Sigma}|$ is a strictly convex open cone. If we define $T \in \operatorname{SL}(M)$ by $T\left(v_{0}\right)=v_{n}$ and $T\left(v_{1}\right)=v_{n+1}$, then $T\left(v_{i}\right)=v_{i+n}$ for each i. Necessarily T takes $|\tilde{\Sigma}|$ to itself, so the boundary rays of $|\tilde{\Sigma}|$ are real eigenspaces for T. Hence T is hyperbolic, i.e., $\operatorname{Tr} T>2$.

We now obtain (B, Σ) by dividing out $|\tilde{\Sigma}|$ by the action of T.
For more details about this case, see Part III.
1.3. The Mumford degeneration and Givental's construction. The toric case of Theorem 0.1 yields Givental's construction for mirrors of toric varieties in the surface case, and can also be seen as a special case of a construction due to Mumford Mum,
which we now recall in a form convenient for our purposes. This should be regarded as a warmup for our general construction.

A toric monoid P is a (commutative) monoid whose Grothendieck group $P^{\text {gp }}$ is a finitely generated free abelian group and $P=P^{\mathrm{gP}} \cap \sigma_{P}$, where $\sigma_{P} \subseteq P^{\mathrm{gp}} \otimes_{\mathbb{Z}} \mathbb{R}$ is a convex rational polyhedral cone. Let $M=\mathbb{Z}^{n}$ be a lattice. Fix a fan Σ in $M_{\mathbb{R}}=M \otimes_{\mathbb{Z}} \mathbb{R}$, whose support, $|\Sigma|$, is convex. In what follows, we view $B=|\Sigma|$ as an affine manifold with boundary. We denote by $\Sigma_{\max }$ the set of maximal cones in Σ.

Definition 1.11. A Σ-piecewise linear function $\varphi:|\Sigma| \rightarrow P_{\mathbb{R}}^{g p}$ is a continuous function such that for each $\sigma \in \Sigma_{\max },\left.\varphi\right|_{\sigma}$ is given by an element $\varphi_{\sigma} \in \operatorname{Hom}_{\mathbb{Z}}\left(M, P^{\mathrm{gp}}\right)=$ $N \otimes_{\mathbb{Z}} P^{\mathrm{gp}}$.

For each codimension one cone $\rho \in \Sigma$ contained in two maximal cones $\sigma_{+}, \sigma_{-} \in \Sigma_{\max }$, we can write

$$
\varphi_{\sigma_{+}}-\varphi_{\sigma_{-}}=n_{\rho} \otimes \kappa_{\rho, \varphi}
$$

where $n_{\rho} \in N$ is the unique primitive element annihilating ρ and positive on σ_{+}, and $\kappa_{\rho, \varphi} \in P^{\mathrm{gp}}$. We call $\kappa_{\rho, \varphi}$ the bending parameter. Note (as the notation suggests) it depends only on the codimension one cone ρ (not on the ordering of σ_{+}, σ_{-}).

We say a Σ-piecewise linear function $\varphi:|\Sigma| \rightarrow P^{\text {gp }}$ is P-convex (strictly P-convex) if for every codimension one cone $\rho \in \Sigma, \kappa_{\rho, \varphi} \in P\left(\kappa_{\rho, \varphi} \in P \backslash P^{\times}\right.$, where P^{\times}is the group of invertible elements of P).

Example 1.12. Take a complete fan Σ in $M_{\mathbb{R}}$. This defines a toric variety $Y=Y_{\Sigma}$, which we assume is non-singular. We let $P \subset P^{\text {gp }}$ be given by the cone of effective curves,

$$
\mathrm{NE}(Y) \subset A_{1}(Y, \mathbb{Z})
$$

Each codimension one cone $\rho \in \Sigma$ corresponds to a one-dimensional toric stratum $D_{\rho} \subset \partial Y$, hence a class $\left[D_{\rho}\right] \in \mathrm{NE}(Y)=P$.

Lemma 1.13. There is a Σ-piecewise linear strictly P-convex function $\varphi: M \rightarrow P^{\mathrm{gp}}$ with

$$
\begin{equation*}
\kappa_{\rho, \varphi}=\left[D_{\rho}\right] \tag{1.1}
\end{equation*}
$$

for each codimension one cone $\rho \in \Sigma$. Up to a linear function, φ is unique.
Proof. We will only need this result in two dimensions, so we only prove it in this case. Let $\rho_{1}, \ldots, \rho_{s}$ be the rays in the fan Σ in cyclic order. It is sufficient to show that

$$
\sum_{i=1}^{s} n_{\rho_{i}} \otimes\left[D_{\rho_{i}}\right]=0
$$

in $N \otimes_{\mathbb{Z}} P^{\mathrm{gp}}$, where $n_{\rho_{i}}$ is chosen, say, to be positive on ρ_{i+1}. However, using a suitable choice of identification of $\bigwedge^{2} M \cong \mathbb{Z}$, we note that $n_{\rho_{i}}$ can be identified with the functional on M given by $m \mapsto m_{i} \wedge m$, where m_{i} is a primitive generator of ρ_{i}. Thus we need to show that

$$
\sum_{i=1}^{s} m_{i} \otimes\left[D_{p_{i}}\right]=0
$$

This we can show by evaluating the left-hand side on an element $n \in N$, getting

$$
\sum_{i=1}^{s}\left\langle n, m_{i}\right\rangle\left[D_{\rho_{i}}\right]
$$

However, this is precisely the divisor of zeroes and poles of z^{n}, and hence is zero in $P^{\mathrm{gp}}=A_{1}(Y, \mathbb{Z})$.

Given a Σ-piecewise linear and P-convex function $\varphi:|\Sigma| \rightarrow P^{g p}$ we can define a monoid $P_{\varphi} \subset M \times P^{\text {gp }}$ by

$$
\begin{equation*}
P_{\varphi}:=\{(m, \varphi(m)+p)|m \in| \Sigma \mid, p \in P\} . \tag{1.2}
\end{equation*}
$$

The convexity condition implies that P_{φ} is closed under addition. Furthermore, we have a natural inclusion $P \hookrightarrow P_{\varphi}$ given by $p \mapsto(0, p)$, which gives us a flat morphism

$$
f: \operatorname{Spec} \mathbb{k}\left[P_{\varphi}\right] \rightarrow \operatorname{Spec} \mathbb{k}[P]
$$

It is easy to see that a general fibre of f is isomorphic to the algebraic torus $\mathbb{k}[M]$: in fact, if we consider the big torus orbit $U=\operatorname{Spec} \mathbb{k}\left[P^{\text {gp }}\right] \subset \operatorname{Spec} \mathbb{k}[P], f^{-1}(U)=$ $U \times \operatorname{Spec} \mathbb{k}[M]$.

We now describe the fibres over other toric strata of $\operatorname{Spec} \mathbb{k}[P]$. Let $x \in \operatorname{Spec} \mathbb{k}[P]$ be a point in the torus orbit corresponding to a face $Q \subset P$. Then by replacing P with the localized monoid $P-Q$ obtained by inverting all elements of Q, we may assume that x is contained in the smallest toric stratum of $\operatorname{Spec} \mathbb{k}[P]$. Consider the composed map

$$
\bar{\varphi}:|\Sigma| \xrightarrow{\varphi} P^{\mathrm{gp}} \rightarrow P^{\mathrm{gp}} / P^{\times} .
$$

Note $\bar{\varphi}$ is also piecewise linear. Let $\bar{\Sigma}$ be the fan (of not necessarily strictly convex cones) whose maximal cones are the maximal domains of linearity of $\bar{\varphi}$. Then $f^{-1}(x)$ can be written as

$$
f^{-1}(x)=\operatorname{Spec} \mathbb{k}[\bar{\Sigma}] .
$$

Here,

$$
\mathbb{k}[\bar{\Sigma}]=\bigoplus_{m \in M \cap|\Sigma|} \mathbb{k} z^{m}
$$

with multiplication given by

$$
z^{m} \cdot z^{m^{\prime}}= \begin{cases}z^{m+m^{\prime}} & \text { if } m, m^{\prime} \text { lie in a common cone of } \bar{\Sigma} \tag{1.3}\\ 0 & \text { otherwise }\end{cases}
$$

In particular, the irreducible components of $f^{-1}(x)$ are the toric varieties $\operatorname{Spec} \mathbb{k}[\sigma \cap M]$ for $\sigma \in \bar{\Sigma}_{\text {max }}$.

In the particular case that $\operatorname{rank} M=2$ and Σ defines a non-singular complete surface with n toric divisors, suppose φ is strictly convex. If x is a point of the smallest toric stratum of Spec $\mathbb{k}[P]$, then $f^{-1}(x)$ is just $\mathbb{V}_{n} \subset \mathbb{A}^{n}$, the reduced cyclic union of coordinate \mathbb{A}^{2} 's:

$$
\mathbb{V}_{n}=\mathbb{A}_{x_{1}, x_{2}}^{2} \cup \mathbb{A}_{x_{2}, x_{3}}^{2} \cup \cdots \cup \mathbb{A}_{x_{n}, x_{1}}^{2} \subset \mathbb{A}_{x_{1}, \ldots, x_{n}}^{n}
$$

We call \mathbb{V}_{n} the vertex, or more specifically, the n-vertex.
We will need in the sequel the degenerate case of the n-vertex for $n=2$. This is a union of two affine planes and can be described as the double cover

$$
\begin{equation*}
\mathbb{V}_{2}=\operatorname{Spec} \mathbb{k}\left[x_{1}, x_{2}, y\right] /\left(y^{2}-x_{1}^{2} x_{2}^{2}\right)=\mathbb{A}_{x_{1}, x_{2}}^{2} \cup \mathbb{A}_{x_{2}, x_{1}}^{2} . \tag{1.4}
\end{equation*}
$$

Of course, this does not appear as a central fibre of a Mumford degeneration. Analogously, one can define

$$
\begin{equation*}
\mathbb{V}_{1}=\operatorname{Spec} \mathbb{k}[x, y, z] /\left(x y z-x^{2}-z^{3}\right), \tag{1.5}
\end{equation*}
$$

the affine cone over a nodal cubic.
Example 1.14. In Example 1.12, with the choice of φ given by Lemma 1.13, the family

$$
\operatorname{Spec} \mathbb{k}\left[P_{\varphi}\right] \rightarrow \operatorname{Spec} \mathbb{k}[\mathrm{NE}(Y)]
$$

in fact gives the family of mirror manifolds to the toric variety Y, as constructed by Givental Giv.

In fact, the mirror of a toric variety also includes the data of a Landau-Ginzburg potential, which is a regular function. If Y is Fano, the potential is

$$
W=\sum_{\rho} z^{\left(m_{\rho}, \varphi\left(m_{\rho}\right)\right)}
$$

where we sum over all rays $\rho \in \Sigma$, and $m_{\rho} \in M$ denotes the primitive generator of ρ. If Y is not Fano, the potential receives corrections which can be viewed as coming from degenerate holomorphic disks on Y with irreducible components mapping into D.

2. Modified Mumford degenerations

In this section, we fix (Y, D) a Looijenga pair, and let (B, Σ) be the tropicalisation of (Y, D) defined in $\$ 1.2$. The fan Σ contains rays $\rho_{1}, \ldots, \rho_{n}$ corresponding to divisors D_{1}, \ldots, D_{n}, ordered cyclically. As usual, we write the two-dimensional cones of Σ as $\sigma_{i, i+1}$ being the cone with edges ρ_{i} and ρ_{i+1}, with indices taken modulo n.

We explain how to generalize Mumford's degeneration, to give a canonical formal deformation of $\mathbb{V}_{n}^{o}=\mathbb{V}_{n} \backslash\{0\}$ associated to (Y, D) if $n \geq 3$. Locally on B_{0} the picture is toric and we have Mumford's degenerations described in \$1.3, As Mumford's construction is functorial, the deformations built locally patch canonically together: this is a minor variation on the ideas of GS07. In particular, $\S \$ 2.1$ and 2.2 are variations of ideas in GS07. Here are the details.
2.1. The uncorrected degeneration. We fix some notation. For any locally constant sheaf \mathcal{F} on B_{0}, and any simply connected subset $\tau \subset B_{0}$ we write \mathcal{F}_{τ} for the stalk of this local system at any point of τ (as any two such stalks are canonically identified by parallel transport). In particular, we apply this for the sheaf Λ of integral constant vector fields, as well as for the sheaf $\Lambda_{\mathbb{R}}:=\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$.

For each cone $\tau \in \Sigma$ with $\operatorname{dim} \tau=1$ or 2 , we write $\tau^{-1} \Sigma$ for the localized fan of convex (but not strictly convex) cones in $\Lambda_{\tau, \mathbb{R}}$ described as follows. If $\operatorname{dim} \tau=2$, then $\tau^{-1} \Sigma$ just consists of the single cone $\Lambda_{\tau, \mathbb{R}}$. If $\operatorname{dim} \tau=1$, then $\tau^{-1} \Sigma$ consists of three cones: the tangent line to τ and the two half-spaces bounded by the tangent line to τ.

Let $P \subseteq P^{\mathrm{gp}}$ be a toric monoid as in $\$ 1.3$
Definition 2.1. A ($P_{\mathbb{R}}^{\mathrm{gP}}$-valued) Σ-piecewise linear multivalued function on B is a collection $\varphi=\left\{\varphi_{i}\right\}$ with φ_{i} a Σ-piecewise linear function on U_{i} with values in $P_{\mathbb{R}}^{\mathrm{gp}}$.

Note this is equivalent to giving a $\rho_{i}^{-1} \Sigma$-piecewise linear function $\varphi_{i}: \Lambda_{\mathbb{R}, \rho_{i}} \rightarrow P_{\mathbb{R}}^{\mathrm{gp}}$ for each ray $\rho_{i} \in \Sigma$. Two such functions $\varphi, \varphi^{\prime}$ are said to be equivalent if $\varphi_{i}-\varphi_{i}^{\prime}$ is linear for each i. Note the equivalence class of φ is determined by the collection of bending parameters $\kappa_{\rho, \varphi} \in P^{\mathrm{gp}}$. We say the function is convex (strictly convex) if $\kappa_{\rho, \varphi} \in P\left(\kappa_{\rho, \varphi} \in P \backslash P^{\times}\right)$for each ρ.

We drop the modifiers Σ and P when they are clear from context.

The collection $\left\{\varphi_{i}\right\}$ determines a local system \mathcal{P} on B_{0} as follows. First, $\left.\mathcal{P}\right|_{U_{i}} \cong$ $\Lambda_{U_{i}} \times \underline{P}^{\mathrm{gp}}$, where the latter factor is the constant local system with fibre P^{gp}. On $U_{i} \cap U_{i+1}$, we glue $\left.\left(\Lambda_{U_{i}} \times \underline{P}^{\mathrm{gp}}\right)\right|_{U_{i} \cap U_{i+1}}$ to $\left.\left(\Lambda_{U_{i+1}} \times \underline{P}^{\mathrm{gp}}\right)\right|_{U_{i} \cap U_{i+1}}$ via

$$
(v, p) \mapsto\left(v, p+d\left(\varphi_{i+1}-\varphi_{i}\right)(v)\right)
$$

Here we are evaluating the differential of the linear function $\varphi_{i+1}-\varphi_{i}$ (defined on $\left.U_{i} \cap U_{i+1}\right)$ on the integral tangent vector v to get an element of P^{gp}. We also define

$$
\mathcal{P}_{\mathbb{R}}:=\mathcal{P} \otimes_{\mathbb{Z}} \mathbb{R}
$$

Note we have a canonical exact sequence

$$
\begin{equation*}
0 \rightarrow \underline{P}^{\mathrm{gp}} \rightarrow \mathcal{P} \xrightarrow{r} \Lambda \rightarrow 0 \tag{2.1}
\end{equation*}
$$

of local systems on B_{0}.
Remark 2.2. We can view the sheaf \mathcal{P} as arising also from the following construction. We can construct an affine manifold \mathbb{P}_{0} which comes along with the structure of $P_{\mathbb{R}}^{\mathrm{gp}}$ principal bundle $\pi: \mathbb{P}_{0} \rightarrow B_{0}$ and a piecewise linear section $\varphi: B_{0} \rightarrow \mathbb{P}_{0}$ as follows: we glue $U_{i} \times P_{\mathbb{R}}^{\mathrm{gp}}$ to $U_{i+1} \times P_{\mathbb{R}}^{\mathrm{gp}}$ along $\left(U_{i} \cap U_{i+1}\right) \times P_{\mathbb{R}}^{\mathrm{gp}}$ by

$$
(x, p) \rightarrow\left(x, p+\varphi_{i+1}(x)-\varphi_{i}(x)\right)
$$

By construction we have local sections $x \mapsto\left(x, \varphi_{i}(x)\right)$ which patch to give a piecewise linear section φ. One checks immediately the isomorphism class (of the $P_{\mathbb{R}}^{\mathrm{gp}}$-principal bundle together with the section) depends only on the equivalence class of $\left\{\varphi_{i}\right\}$.

It is also easy to see that $\mathcal{P} \cong \pi_{*} \Lambda_{\mathbb{P}_{0}} \cong \varphi^{-1} \Lambda_{\mathbb{P}_{0}}$ on B_{0}.
Example 2.3. Our standard example, fundamental to this paper, will be as follows. Suppose P is a monoid which comes with a homomorphism $\eta: \mathrm{NE}(Y) \rightarrow P$ of monoids.

Choose φ by specifying φ_{i} on U_{i} by the formula

$$
\kappa_{\rho_{i}, \varphi_{i}}=\eta\left(\left[D_{i}\right]\right)
$$

Such a φ is well-defined up to linear functions, and always exists. This is always convex, and is strictly convex provided $\eta\left(\left[D_{i}\right]\right)$ is not invertible for any i.

Now suppose given a piecewise linear multi-valued P-convex function φ on B. We now explain how Mumford's construction determines a canonical formal deformation of \mathbb{V}_{n}^{o}, restricting to the case $n \geq 3$ for ease of exposition.

For each $\tau \in \Sigma$ with $\operatorname{dim} \tau>0, \varphi$ determines a canonically defined $\tau^{-1} \Sigma$-piecewise linear section $\varphi_{\tau}: \Lambda_{\mathbb{R}, \tau} \rightarrow \mathcal{P}_{\mathbb{R}, \tau}$ of the projection $\mathcal{P}_{\mathbb{R}, \tau} \rightarrow \Lambda_{\mathbb{R}, \tau}$. If $U_{i} \cap \tau \neq \emptyset$, we use the representative φ_{i} on U_{i} and extend it linearly on each cone in the fan $\tau^{-1} \Sigma$ to obtain a P-convex piecewise linear function on $\tau^{-1} \Sigma$, which we also write as φ_{i}. Then the section φ_{τ} is defined as in Remark 2.2 by $x \mapsto\left(x, \varphi_{i}(x)\right)$, using the splitting $\mathcal{P}_{\mathbb{R}, \tau}=\Lambda_{\mathbb{R}, \tau} \times P_{\mathbb{R}}^{\mathrm{gp}}$. We note a different choice of representative of φ_{i} leads to a different choice of splitting and the same section φ_{τ}, so this section is well-defined.

Now define the toric monoid $P_{\varphi_{\tau}} \subset \mathcal{P}_{\tau}$ by

$$
\begin{equation*}
P_{\varphi_{\tau}}:=\left\{q \in \mathcal{P}_{\tau} \mid q=p+\varphi_{\tau}(m) \text { for some } p \in P, m \in \Lambda_{\tau}\right\} . \tag{2.2}
\end{equation*}
$$

By the definition of convex, we have canonical inclusions

$$
\begin{equation*}
P_{\varphi_{\rho}} \subset P_{\varphi_{\sigma}} \subset \mathcal{P}_{\rho} \tag{2.3}
\end{equation*}
$$

whenever $\rho \subset \sigma \in \Sigma$. If $\rho \in \Sigma$ is a ray with $\rho \subset \sigma_{ \pm} \in \Sigma_{\max }$ we have the equality

$$
\begin{equation*}
P_{\varphi_{\sigma_{+}}} \cap P_{\varphi_{\sigma_{-}}}=P_{\varphi_{\rho}} . \tag{2.4}
\end{equation*}
$$

Definition 2.4 (Monomial ideals). A (monoid) ideal of a monoid P is a subset $I \subset P$ such that $p \in I, q \in P$ implies $p+q \in I$. An ideal determines a monomial ideal in the monoid ring $\mathbb{k}[P]$, generated by monomials z^{p} for $p \in I$. We also denote this ideal by I, hopefully with no confusion. As a consequence, we shall sometimes write certain ideal operations either additively or multiplicatively, i.e., for $J \subset P$,

$$
k J=\left\{p_{1}+\cdots+p_{k} \mid p_{i} \in J, 1 \leq i \leq k\right\}
$$

and the corresponding monomial ideal is J^{k}.
Let $\mathfrak{m}=P \backslash P^{\times}$. This is the unique maximal ideal of P, defining a monomial ideal $\mathfrak{m} \subset \mathbb{k}[P]$. Note $\mathbb{k}[P] / \mathfrak{m} \cong \mathbb{k}\left[P^{\times}\right]$.

We say an ideal $I \subset P$ is \mathfrak{m}-primary if $\sqrt{I}=\mathfrak{m}$, in which case the same holds for the associated monomial ideal $I \subset \mathbb{k}[P]$.

We note that in this paper we will only consider toric monoids P defined by cones $\sigma_{P} \subseteq P^{\mathrm{gp}} \otimes_{\mathbb{Z}} \mathbb{R}$. Such monoids are always finitely generated, so that $\mathbb{k}[P]$ is Noetherian. If σ_{P} is strictly convex, then \mathfrak{m} is the maximal ideal corresponding to the unique torus fixed point of Spec $\mathbb{k}[P]$.

Fix an ideal $I \subset P$, and let

$$
R_{I}:=\mathbb{k}[P] / I
$$

We define for $\tau \in \Sigma, \operatorname{dim} \tau>0$, the ring

$$
R_{\tau, I}:=\mathbb{k}\left[P_{\varphi_{\tau}}\right] \otimes_{R} R_{I},
$$

noting that P acts naturally on $P_{\varphi_{\tau}}$ by addition. So $\operatorname{Spec} R_{\tau, I}$ is a base-change of the Mumford degeneration induced by φ_{τ} on the localized fan $\tau^{-1} \Sigma$.

One observes
Proposition 2.5. Let v_{i} denote the primitive generator of the tangent ray to ρ_{i}, for each i. Then

$$
\begin{equation*}
\frac{R_{I}\left[X_{i-1}, X_{i}^{ \pm}, X_{i+1}\right]}{\left(X_{i-1} X_{i+1}-z^{\kappa_{\rho, \varphi}} X_{i}^{-D_{\rho}^{2}}\right)} \cong R_{\rho_{i}, I} \tag{2.5}
\end{equation*}
$$

via the map

$$
X_{j} \mapsto z^{\varphi_{\rho_{i}}\left(v_{j}\right)}, \quad j \in\{i-1, i, i+1\} .
$$

Furthermore, there are natural maps

$$
\psi_{\rho_{i},-}: R_{\rho_{i}, I} \rightarrow R_{\sigma_{i-1, i}, I}, \quad \psi_{\rho_{i},+}: R_{\rho_{i}, I} \rightarrow R_{\sigma_{i, i+1}, I}
$$

induced by the inclusions $P_{\varphi_{\rho}} \subseteq P_{\varphi_{\sigma_{ \pm}}}$which induce isomorphisms

$$
\left(R_{\rho_{i}, I}\right)_{X_{i-1}} \cong R_{\sigma_{i-1, i}, I}, \quad\left(R_{\rho_{i}, I}\right)_{X_{i+1}} \cong R_{\sigma_{i, i+1}, I}
$$

Proof. We need to check that the ideal on the left-hand side is mapped to zero, as the rest is obvious. Note by construction of $B, v_{i-1}+D_{\rho}^{2} v_{i}+v_{i+1}=0$ as elements of Λ_{ρ}, so one sees in fact that $\varphi_{\rho}\left(v_{i-1}\right)+\varphi_{\rho}\left(v_{i+1}\right)=\kappa_{\rho_{i}, \varphi}-D_{\rho}^{2} \varphi_{\rho}\left(v_{i}\right)$. The result then follows easily.

Remark 2.6. Since $\operatorname{Spec} R_{\rho_{i}, I} \rightarrow \operatorname{Spec} R_{I}$ is a base-change of the Mumford degeneration, we can in fact say what a fibre of this morphism is over a point x in the smallest toric stratum of $\operatorname{Spec} \mathbb{k}[P]$, i.e., a point in $\operatorname{Spec} R_{\mathfrak{m}}$. This depends on whether $\kappa_{\rho_{i}, \varphi} \in P$ is invertible or not. If it is not invertible, then the fibre is Spec $\mathbb{k}\left[\rho_{i}^{-1} \Sigma\right] \cong$ Spec $\mathbb{k}\left[X_{i-1}, X_{i+1}, X_{i}^{ \pm 1}\right] /\left(X_{i-1} X_{i+1}\right)$. If $\kappa_{\rho_{i}, \varphi}$ is invertible, then the fibre is Spec $\mathbb{k}\left[\mathbb{Z}^{2}\right]$. In this latter case, if $\rho_{i} \subset \sigma$, in fact the map $R_{\rho_{i}, I} \rightarrow R_{\sigma, I}$ induced by the inclusion $P_{\varphi_{\rho_{i}}} \subseteq P_{\varphi_{\sigma}}$ is an isomorphism.

Somewhat more generally, if $J \subset P$ is a radical ideal with $\kappa_{\rho_{i}, \varphi} \in J$, then in fact $R_{\rho_{i}, J} \cong \operatorname{Spec} R_{J}\left[\rho_{i}^{-1} \Sigma\right]$.

For $\tau \in \Sigma, \operatorname{dim} \tau \geq 1$, set

$$
U_{\tau, I}:=\operatorname{Spec} R_{\tau, I} .
$$

The maps $\psi_{\rho_{i}, \pm}$ induce open immersions $U_{\sigma_{i-1, i}, I} \hookrightarrow U_{\rho_{i}, I}$ and $U_{\sigma_{i, i+1}} \hookrightarrow U_{\rho_{i}, I}$. Denoting the image of each of these immersions as $U_{\rho_{i}, \sigma_{i-1, i}, I}$ and $U_{\rho_{i}, \sigma_{i, i+1}, I}$ respectively, we note that

$$
\begin{equation*}
U_{\rho_{i}, \sigma_{i-1, i}, I} \cap U_{\rho_{i}, \sigma_{i, i+1}, I} \cong \operatorname{Spec}\left(R_{\rho_{i}, I}\right)_{X_{i-1} X_{i+1}} \cong\left(\mathbb{G}_{m}\right)^{2} \times \operatorname{Spec}\left(R_{I}\right)_{z^{\kappa} \rho_{i}, \varphi} \tag{2.6}
\end{equation*}
$$

Note that if $\kappa_{\rho_{i}, \varphi} \in \sqrt{I}$ then the localization $(\mathbb{k}[P] / I)_{z^{\kappa \rho_{i}, \varphi}}$ is zero, and the intersection is empty.

We can now define our analogue of the Mumford degeneration.
Construction 2.7. Suppose that the number of irreducible components n of D satisfies $n \geq 3$, that φ is a PL multi-valued function, and $I \subset P$ an ideal such that $\kappa_{\rho, \varphi} \in \sqrt{I}$ for all rays $\rho \in \Sigma$. Then there are canonical identifications of open subsets

$$
U_{\rho_{i}, I} \supset U_{\rho_{i}, \sigma_{i, i+1}, I} \cong U_{\sigma_{i, i+1}, I} \cong U_{\rho_{i+1}, \sigma_{i, i+1}, I} \subset U_{\rho_{i+1}, I}
$$

which generate an equivalence relation on $\coprod_{i} U_{\rho_{i}, I}$, and the quotient by this equivalence relation defines a scheme X_{I}^{o} over $\operatorname{Spec} R_{I}$.

One checks easily that the canonical isomorphisms of

$$
U_{\rho_{i}, \sigma_{i, i+1}, I} \subseteq U_{\rho_{i}, I} \text { and } U_{\rho_{i+1}, \sigma_{i, i+1}, I} \subseteq U_{\rho_{i+1}, I}
$$

satisfy the requirements for gluing data for schemes along open subsets, see e.g., H77, Ex. II 2.12.

Remark 2.8. X_{I}^{o} only depends on the equivalence class of φ, since the monoids $P_{\varphi_{\tau}}$ are canonically defined, independently of the choice of representative for φ.

We first analyze this construction in the purely toric case:
Lemma 2.9. For (Y, D) toric and φ a single-valued convex function on $B=M_{\mathbb{R}}, X_{I}^{o}$ is an open subscheme of the Mumford degeneration $\operatorname{Spec} \mathbb{k}\left[P_{\varphi}\right] / I \mathbb{k}\left[P_{\varphi}\right]$, and

$$
H^{0}\left(X_{I}^{o}, \mathcal{O}_{X_{I}^{o}}\right)=\mathbb{k}\left[P_{\varphi}\right] / I \mathbb{k}\left[P_{\varphi}\right]
$$

Proof. Note that for $\tau \in \Sigma$, the monoid $P_{\varphi_{\tau}}$ is isomorphic to the localization of P_{φ} along the face $\{(m, \varphi(m)) \mid m \in \tau \cap M\}$. Thus Spec $\mathbb{k}\left[P_{\varphi_{\tau}}\right]$ is an open subset of Spec $\mathbb{k}\left[P_{\varphi}\right]$ and $\operatorname{Spec} \mathbb{k}\left[P_{\varphi_{\tau}}\right] \otimes_{\mathbb{k}[P]} \mathbb{k}[P] / I$ is an open subset of $\operatorname{Spec} \mathbb{k}\left[P_{\varphi}\right] / I \mathbb{k}\left[P_{\varphi}\right]$. Furthermore, the gluing procedure constructing X_{I}^{o} is clearly compatible with these inclusions, so X_{I}^{o} is an open subscheme of $\operatorname{Spec} \mathbb{k}\left[P_{\varphi}\right] / I \mathbb{k}\left[P_{\varphi}\right]$. Next, looking at the fibre over a closed point, one sees easily that the underlying topological space of these fibres is obtained just by removing the zero-dimensional torus orbit from the corresponding fibre of the Mumford degeneration. The closed fibres of the Mumford degeneration are S_{2} by A02, 2.3.19. Thus by Lemma 2.10 the result follows.

Lemma 2.10. Let $\pi: \mathcal{X} \rightarrow S$ be a flat family of surfaces such that the fibre $\mathcal{X}_{\text {s }}$ satisfies Serre's condition S_{2} for each $s \in S$. Let $i: \mathcal{X}^{\circ} \subset \mathcal{X}$ be the inclusion of an open subset such that the complement has finite fibres. Then $i_{*} \mathcal{O}_{\mathcal{X}}=\mathcal{O}_{\mathcal{X}}$. Similarly, if \mathcal{F} is a coherent sheaf on S then $i_{*}\left(\mathcal{O}_{\mathcal{X}^{0}} \otimes \pi^{*} \mathcal{F}\right)=\mathcal{O}_{\mathcal{X}} \otimes \pi^{*} \mathcal{F}$.

Proof. For the first statement see, e.g., H04, Lemma A.3, (the assumption that the fibres are semi log canonical is not used). The second statement follows from the first by dévissage.

Definition 2.11. Let $B_{0}(\mathbb{Z})$ denote the set of points of B_{0} with integral coordinates in an integral affine chart. We also write $B(\mathbb{Z})=B_{0}(\mathbb{Z}) \cup\{0\}$.

Given the description of Remark 2.6, the following lemma is obvious.
Lemma 2.12. Suppose we are given a convex multi-valued piecewise linear function φ and a radical monomial ideal $J \subset P$ such that $\kappa_{\rho, \varphi} \in J$ for all rays $\rho \in \Sigma$. Then if $x \in$ $\operatorname{Spec} R_{J}$ is a closed point, the fibre of $X_{J}^{o} \rightarrow \operatorname{Spec} R_{J}$ over x is $(\operatorname{Spec} \mathbb{k}[\Sigma]) \backslash\{0\}$. Here,
$\mathbb{k}[\Sigma]$ denotes the \mathbb{k}-algebra with $a \mathbb{k}$-basis $\left\{z^{m} \mid m \in B(\mathbb{Z})\right\}$ with multiplication given exactly as in (1.3), and 0 is the closed point whose ideal is generated by $\left\{z^{m} \mid m \neq 0\right\}$. In particular, the fibre is isomorphic to \mathbb{V}_{n}^{o}. Furthermore, with $R_{J}[\Sigma]:=R_{J} \otimes_{\mathbb{k}} \mathbb{k}[\Sigma]$,

$$
X_{J}^{o} \cong\left(\operatorname{Spec} R_{J}[\Sigma]\right) \backslash\left(\operatorname{Spec} R_{J}\right) \times\{0\}
$$

2.2. Scattering diagrams on B. Next we translate into algebraic geometry the instanton corrections. To construct our mirror family we will use the canonical scattering diagram $\mathfrak{D}^{\text {can }}$ defined in 3.1 (which is the translation of the instanton corrections associated to Maslov index zero disks), but as the regluing process works for any scattering diagram (and we will make use of this greater generality in [K3]), we carry it out for an arbitrary scattering diagram.

We continue with the notation of the previous sections, with $(Y, D),(B, \Sigma), P$, and φ given. We also fix a monomial ideal $J \subset P$ such that $J=\sqrt{J}$. Denote by \widehat{R} the completion of $\mathbb{k}[P]$ with respect to the ideal J, and for any $\tau \in \Sigma, \tau \neq 0$, denote by

$$
\widehat{\mathbb{k}\left[P_{\varphi_{\tau}}\right]}
$$

the completion of the ring $\mathbb{k}\left[P_{\varphi_{\tau}}\right]$ with respect to the ideal $J \mathbb{k}\left[P_{\varphi_{\tau}}\right]$.
We will now define a scattering diagram, which encodes a modification of the construction of X_{I}^{o}.

Definition 2.13. A scattering diagram for the data $(B, \Sigma), P, \varphi$, and J is a set

$$
\mathfrak{D}=\left\{\left(\mathfrak{d}, f_{\mathfrak{O}}\right)\right\}
$$

where
(1) $\mathfrak{d} \subset B$ is a ray in B with endpoint the origin with rational slope. \mathfrak{d} may coincide with a ray of Σ, or lie in the interior of a two-dimensional cone of Σ.
(2) Let $\tau_{\mathfrak{d}} \in \Sigma$ be the smallest cone containing \mathfrak{d}. Then $f_{\mathfrak{d}}$ is a formal sum

$$
f_{\mathfrak{d}}=1+\sum_{p} c_{p} z^{p} \in \widehat{\mathbb{k}\left[P_{\varphi_{\tau_{\mathfrak{o}}}}\right]}
$$

for $c_{p} \in \mathbb{k}$ and p running over elements of $P_{\varphi_{\tau_{0}}}$ such that $r(p) \neq 0$ and $r(p)$ is tangent to \mathfrak{d}. Here r is defined by (2.1). We further require that \mathfrak{d} be an outgoing ray, in which case $r(p)$, viewed as a tangent vector at an interior point of \mathfrak{d}, always points towards the origin, or an incoming ray, in which case $r(p)$ always points away from the origin.
(3) If $\operatorname{dim} \tau_{\mathfrak{v}}=2$ or if $\operatorname{dim} \tau_{\mathfrak{v}}=1$ and $\kappa_{\tau_{\mathfrak{v}}, \varphi} \notin J$, then $f_{\mathfrak{d}} \equiv 1 \bmod J$.
(4) For any ideal $I \subset P$ with $\sqrt{I}=J$, there are only a finite number of $\left(\mathfrak{d}, f_{\mathfrak{d}}\right) \in \mathfrak{D}$ such that $f_{\mathfrak{o}} \not \equiv 1 \bmod I \mathbb{k}\left[P_{\varphi_{\tau_{0}}}\right]$.

Construction 2.14. We now explain how a scattering diagram \mathfrak{D} is used to modify the construction of X_{I}^{o}. Suppose we are given a scattering diagram \mathfrak{D} for the data $(B, \Sigma), P, \varphi$ and J, and an ideal I with $\sqrt{I}=J$. We assume that $\kappa_{\rho, \varphi} \in J$ for all rays $\rho \in \Sigma$ and that $n \geq 3$ as in Construction 2.7.

We will use the scattering diagram \mathfrak{D} to both modify the definition of the rings $R_{\rho_{i}, I}$ as well as the gluings of the schemes defined by these rings. First, we modify the definition of $R_{\rho_{i}, I}$, setting

$$
\begin{equation*}
R_{\rho_{i}, I}:=\frac{R_{I}\left[X_{i-1}, X_{i}^{ \pm 1}, X_{i+1}\right]}{\left(X_{i-1} X_{i+1}-z^{\kappa_{\rho_{i}, \varphi}} X_{i}^{-D_{\rho_{i}}^{2}} f_{\rho_{i}}\right)} \tag{2.7}
\end{equation*}
$$

Here $f_{\rho_{i}}$ is an element of $R_{I}\left[X_{i}^{ \pm 1}\right]$ defined by

$$
f_{\rho_{i}}=\prod_{\substack{\left(\mathfrak{O}, f_{\mathfrak{o}}\right) \in \mathcal{D} \\ \mathfrak{0}=\rho_{i}}} f_{\mathfrak{\mathcal { O }}} \quad \bmod I \mathbb{k}\left[P_{\varphi_{\rho_{i}}}\right]
$$

identifying X_{i} with $z^{\varphi_{\rho_{i}}\left(v_{i}\right)}$ as in Proposition 2.5,
Retaining the definition $R_{\sigma, I}=\mathbb{k}\left[P_{\varphi_{\sigma}}\right] \otimes_{R} R_{I}$ for $\operatorname{dim} \sigma=2$ from the previous subsection, we note that there are maps

$$
\psi_{\rho_{i},-}: R_{\rho_{i}, I} \rightarrow R_{\sigma_{i-1, i}, I}, \quad \psi_{\rho_{i},+}: R_{\rho_{i}, I} \rightarrow R_{\sigma_{i, i+1}, I}
$$

given by

$$
\begin{array}{ll}
\psi_{\rho_{i},-}\left(X_{i}\right)=z^{\varphi_{\rho_{i}}\left(v_{i}\right)}, & \psi_{\rho_{i},-}\left(X_{i-1}\right)=z^{\varphi_{\rho_{i}}\left(v_{i-1}\right)}, \quad \psi_{\rho_{i},-}\left(X_{i+1}\right)=f_{\rho_{i}} \psi^{\varphi_{\rho_{i}}\left(v_{i+1}\right)}, \\
\psi_{\rho_{i},+}\left(X_{i}\right)=z^{\varphi_{\rho_{i}}\left(v_{i}\right)}, & \psi_{\rho_{i},+}\left(X_{i-1}\right)=f_{\rho_{i}} z^{\varphi_{\rho_{i}}\left(v_{i-1}\right)}, \tag{2.8}
\end{array} \psi_{\rho_{i},+}\left(X_{i+1}\right)=z^{\varphi_{\rho_{i}}\left(v_{i+1}\right)} .
$$

Furthermore, $\psi_{\rho_{i}, \pm}$ induce isomorphisms

$$
\psi_{\rho_{i},+}:\left(R_{\rho_{i}, I}\right)_{X_{i+1}} \rightarrow R_{\sigma_{i, i+1}, I}, \quad \psi_{\rho_{i},-}:\left(R_{\rho_{i}, I}\right)_{X_{i-1}} \rightarrow R_{\sigma_{i-1, i}, I}
$$

Set for $\tau \in \Sigma \backslash\{0\}$

$$
U_{\tau, I}:=\operatorname{Spec} R_{\tau, I} .
$$

One checks easily that the natural map $U_{\rho, I} \rightarrow \operatorname{Spec} R_{I}$ is flat. The maps $\psi_{\rho_{i}, \pm}$ induces canonical embeddings $U_{\sigma_{i-1, i}, I}, U_{\sigma_{i, i+1}, I} \hookrightarrow U_{\rho_{i}, I}$, and we denote their image by $U_{\rho_{i}, \sigma_{i-1, i}, I}$ and $U_{\rho_{i}, \sigma_{i, i+1}, I}$ respectively. Note that (2.6) continues to hold.

Next, consider $\left(\mathfrak{d}, f_{\mathfrak{J}}\right) \in \mathfrak{D}$ with $\tau_{\mathfrak{d}}=\sigma \in \Sigma_{\max }$. Let γ be a path in B_{0} which crosses \mathfrak{d} transversally at time t_{0}. Then define

$$
\theta_{\gamma, \boldsymbol{0}}: R_{\sigma, I} \rightarrow R_{\sigma, I}
$$

by

$$
\theta_{\gamma, \mathfrak{p}}\left(z^{p}\right)=z^{p} f_{\mathfrak{d}}^{\left\langle n_{\mathfrak{\imath}}, r(p)\right\rangle}
$$

Figure 2.1. The path γ. The solid lines indicate the fan, the dotted lines are additional rays in \mathfrak{D}. The solid lines may also support rays in \mathfrak{D}
where $n_{\mathfrak{d}} \in \Lambda_{\sigma}^{*}$ is primitive and satisfies, with m a non-zero tangent vector of \mathfrak{d},

$$
\left\langle n_{\mathfrak{d}}, m\right\rangle=0, \quad\left\langle n_{\mathfrak{d}}, \gamma^{\prime}\left(t_{0}\right)\right\rangle<0
$$

Note that $f_{\mathfrak{d}}$ is invertible in $R_{\sigma, I}$ since $f_{\mathfrak{d}} \equiv 1 \bmod J \mathbb{k}\left[P_{\varphi_{\sigma}}\right]$, so $f_{\mathfrak{d}}-1$ is nilpotent in $R_{\sigma, I}$.

Let $\mathfrak{D}_{I} \subset \mathfrak{D}$ be the finite set of rays $\left(\mathfrak{d}, f_{\mathfrak{v}}\right)$ with $f_{\mathfrak{d}} \not \equiv 1 \bmod I \mathbb{k}\left[P_{\varphi_{\tau_{\mathfrak{\jmath}}}}\right]$. For a path γ wholly contained in the interior of $\sigma \in \Sigma_{\max }$ and crossing elements of \mathfrak{D}_{I} transversally, we define

$$
\theta_{\gamma, \mathfrak{D}}:=\theta_{\gamma, \mathfrak{D}_{n}} \circ \cdots \circ \theta_{\gamma, \mathfrak{D}_{1}}
$$

where γ crosses precisely the elements $\left(\mathfrak{d}_{1}, f_{\mathfrak{D}_{1}}\right), \ldots,\left(\mathfrak{D}_{n}, f_{\mathfrak{D}_{n}}\right)$ of \mathfrak{D}_{I}, in the given order. Note that if two rays $\mathfrak{d}_{i}, \mathfrak{d}_{i+1}$ in fact coincide as subsets of B, then $\theta_{\gamma, \mathfrak{D}_{i}}$ and $\theta_{\gamma, \mathfrak{d}_{i+1}}$ commute, so the ordering is not important for overlapping rays.

To construct $X_{I, \mathfrak{D}}^{o}$, we modify the gluings of the sets $U_{\rho, I}$ along the open subsets $U_{\rho, \sigma, I}$. For each i, we have canonical identifications of open subsets

$$
U_{\rho_{i}, I} \supset U_{\rho_{i}, \sigma_{i, i+1}, I} \cong U_{\sigma_{i, i+1}, I} \cong U_{\rho_{i+1}, \sigma_{i, i+1}, I} \subset U_{\rho_{i+1}, I}
$$

We can modify this identification via any automorphism of $U_{\sigma_{i, i+1}}$. We do this by choosing a path $\gamma:[0,1] \rightarrow B$ whose image is contained in the interior of $\sigma_{i, i+1}$, with $\gamma(0)$ a point in $\sigma_{i, i+1}$ close to ρ_{i} and $\gamma(1) \in \sigma_{i, i+1}$ close to ρ_{i+1}, chosen so that γ crosses every ray $\left(\mathfrak{d}, f_{\mathfrak{d}}\right)$ of \mathfrak{D}_{I} with $\tau_{\mathfrak{d}}=\sigma_{i, i+1}$ exactly once, see Figure 2.1.

We then obtain an automorphism

$$
\theta_{\gamma, \mathfrak{D}}: R_{\sigma_{i, i+1}, I} \rightarrow R_{\sigma_{i, i+1}, I},
$$

hence an isomorphism

$$
\theta_{\gamma, \mathfrak{D}}: U_{\rho_{i+1}, \sigma_{i, i+1}, I} \rightarrow U_{\rho_{i}, \sigma_{i, i+1}, I}
$$

Gluing together the open sets $U_{\rho_{i}, \sigma_{i, i+1}, I} \subset U_{\rho_{i}, I}$ and $U_{\rho_{i+1}, \sigma_{i, i+1}, I} \subset U_{\rho_{i+1}, I}$ via $\theta_{\gamma, \mathfrak{D}}$, we obtain a scheme $X_{I, \mathfrak{D}}^{o}$.
2.3. Broken lines. We continue to fix a rational surface with anti-canonical cycle (Y, D) as usual, giving (B, Σ), as well as a monoid P, a P-convex function φ on B, $J \subset P$ an ideal with $\sqrt{J}=J$, and a scattering diagram \mathfrak{D} for this data. Broken lines were introduced in G09 and their theory was further developed in CPS.

Definition 2.15. Let B be an integral affine manifold. An integral affine map γ : $\left(t_{1}, t_{2}\right) \rightarrow B$ from an open interval $\left(t_{1}, t_{2}\right)$ is a continuous map such that for any integral affine coordinate chart $\psi: U \rightarrow \mathbb{R}^{n}$ of $B, \psi \circ \gamma: \gamma^{-1}(U) \rightarrow \mathbb{R}^{n}$ is integral affine, i.e., is given by $t \mapsto t v+b$ for some $v \in \mathbb{Z}^{n}$ and $b \in \mathbb{R}^{n}$.

Note that for an integral affine map, $\gamma^{\prime}(t) \in \Lambda_{B, \gamma(t)}$.
Definition 2.16. A broken line γ in B for $q \in B_{0}(\mathbb{Z})$ with endpoint $Q \in B_{0}$ is a proper continuous piecewise integral affine map $\gamma:(-\infty, 0] \rightarrow B_{0}$, together with, for each $L \subset$ $(-\infty, 0]$ a maximal connected domain of linearity of γ, a choice of monomial $m_{L}=c_{L} z^{q_{L}}$ where $c_{L} \in \mathbb{k}$ and $q_{L} \in \mathbb{k}\left[\Gamma\left(L,\left.\gamma^{-1}(\mathcal{P})\right|_{L}\right)\right]$, satisfying the following properties.
(1) For the unique unbounded domain of linearity $L,\left.\gamma\right|_{L}$ goes off to infinity in a cone $\sigma \in \Sigma_{\max }$ as $t \rightarrow-\infty$, and $q \in \sigma$. Furthermore, using the identification of the stalk \mathcal{P}_{x} for $x \in \sigma$ with $\mathcal{P}_{\sigma}, m_{L}=z^{\varphi_{\sigma}(q)}$.
(2) For each L and $t \in L,-r\left(q_{L}\right)=\gamma^{\prime}(t)$. Also $\gamma(0)=Q \in B_{0}$.
(3) Let $t \in(-\infty, 0)$ be a point at which γ is not linear, passing from domain of linearity L to L^{\prime}. If $\gamma(t) \in \tau \in \Sigma$, then $\mathcal{P}_{\gamma(t)}=\mathcal{P}_{\tau}$, so that we can view $q_{L} \in \mathcal{P}_{\tau}$ and $r\left(q_{L}\right) \in \Lambda_{\tau}$. Let $\mathfrak{d}_{1}, \ldots, \mathfrak{d}_{p} \in \mathfrak{D}$ be the rays of \mathfrak{D} that contain $\gamma(t)$, with attached functions $f_{\mathfrak{D}_{j}}$. Let $n=n_{\mathfrak{D}_{j}}$ be the element of Λ_{τ}^{*} used to define $\theta_{\gamma, \mathfrak{D}_{j}}$. Expand

$$
\begin{equation*}
\prod_{j=1}^{p} f_{\mathfrak{J}_{j}}^{\left\langle n, r\left(q_{L}\right)\right\rangle} \tag{2.9}
\end{equation*}
$$

as a formal power series in $\widehat{\mathbb{k}\left[P_{\varphi_{\tau}}\right]}$. Then there is a term $c z^{q}$ in this sum with

$$
m_{L^{\prime}}=m_{L} \cdot\left(c z^{q}\right)
$$

Remark 2.17. Using the notation of item (3) above, by item (2) of the definition,

$$
\begin{equation*}
\left\langle n, r\left(q_{L}\right)\right\rangle>0 \tag{2.10}
\end{equation*}
$$

This is vital to interpret (2.9). Indeed, if τ is a ray, $f_{\mathfrak{D}_{i}}$ need not be invertible in $\widehat{\mathbb{k}\left[P_{\varphi_{\tau}}\right]}$, so (2.10) tells us that (2.9) makes sense in this ring.

The next lemma and corollary are crucial for interpreting the monomials m_{L} :
Lemma 2.18. Let $\sigma_{-}, \sigma_{+} \in \Sigma_{\max }$ be the two maximal cones containing the ray $\rho \in \Sigma$. If $q \in P_{\varphi_{\sigma_{-}}}$with $-r(q) \in \operatorname{Int}\left(\rho^{-1} \sigma_{+}\right) \subset \Lambda_{\rho} \otimes_{\mathbb{Z}} \mathbb{R}$, then

$$
q \in P_{\varphi_{\rho}}=P_{\varphi_{\sigma_{-}}} \cap P_{\varphi_{\sigma_{+}}}
$$

Proof. By the definitions there exist $p, \kappa_{\rho, \varphi} \in P$ and $n_{\rho} \in \Lambda_{\rho}^{*}$ annihilating the tangent space to ρ and positive on σ_{+}such that

$$
\begin{aligned}
q & =\varphi_{\sigma_{-}}(r(q))+p \\
\varphi_{\sigma_{+}}(-r(q)) & =\varphi_{\sigma_{-}}(-r(q))+\left\langle n_{\rho},-r(q)\right\rangle \kappa_{\rho, \varphi} .
\end{aligned}
$$

Since $\left\langle n_{\rho},-r(q)\right\rangle>0$,

$$
q=\varphi_{\sigma_{+}}(r(q))+p+\left\langle n_{\rho},-r(q)\right\rangle \kappa_{\rho, \varphi} \in P_{\varphi_{\sigma_{+}}}
$$

An immediate consequence of this lemma is
Corollary 2.19. (1) Let $\gamma:\left[t_{1}, t_{2}\right] \rightarrow B_{0}$ be integral affine. Suppose that $\gamma\left(t_{1}\right) \in$ $\tau_{1}, \gamma\left(t_{2}\right) \in \tau_{2}$. Suppose also we are given a section $q \in \Gamma\left(\gamma^{-1} \mathcal{P}\right)$ such that $-r(q)=\gamma^{\prime}(t)$ for each t. If

$$
q\left(t_{1}\right) \in P_{\varphi_{\tau_{1}}} \subset \mathcal{P}_{\tau_{1}}=\mathcal{P}_{\gamma\left(t_{1}\right)}
$$

then

$$
q\left(t_{2}\right) \in P_{\varphi_{\tau_{2}}} \subset \mathcal{P}_{\tau_{2}}=\mathcal{P}_{\gamma\left(t_{2}\right)}
$$

(2) If γ is a broken line, $t \in L$ a maximal domain of linearity with $\gamma(t) \in \tau$, then

$$
q_{L} \in P_{\varphi_{\tau}} \subset \mathcal{P}_{\tau}=\mathcal{P}_{\gamma(t)}
$$

Proof. The first item follows immediately from the lemma. The second item follows from the fact that if $t \ll 0$ lies in the unbounded domain of linearity with $\gamma(t) \in \sigma$, then $m_{L}=z^{\varphi_{\tau}(q)} \in P_{\varphi_{\sigma}}$ by construction. Then this holds for all t by item (1) and Definition 2.16, (3).

The convexity of φ puts further restrictions on the monomial decorations of a broken line.

Definition 2.20. Let $J \subset P$ be a proper monoid ideal. For $p \in J$ there exists a maximal $k \geq 1$ such that $p=p_{1}+\cdots+p_{k}$ with $p_{i} \in J$. We define $\operatorname{ord}_{J}(p)$ to be this maximum, and define $\operatorname{ord}_{J}(p)=0$ if $p \in P \backslash J$.

For $x \in \tau, q \in P_{\varphi_{\tau}}$, define $\operatorname{ord}_{J, x}(q):=\operatorname{ord}_{J}\left(q-\varphi_{\tau}(r(q))\right)$. This measures how high q is above the graph of φ_{τ}. If γ is a broken line and $t \in L$ a maximal domain of linearity, define

$$
\operatorname{ord}_{J, \gamma}(t)=\operatorname{ord}_{J, \gamma(t)}\left(q_{L}\right)
$$

using $\gamma(t) \in \tau$ and $q_{L} \in P_{\varphi_{\tau}} \subset \mathcal{P}_{\gamma(t)}$.
Lemma 2.21. Let γ be a broken line. Then if $t<t^{\prime}$,

$$
\operatorname{ord}_{J, \gamma}(t) \leq \operatorname{ord}_{J, \gamma}\left(t^{\prime}\right)
$$

with strict inequality if either t and t^{\prime} lie in different domains of linearity or for some $t^{\prime \prime}$ with $t<t^{\prime \prime}<t^{\prime}, \gamma\left(t^{\prime \prime}\right)$ lies in a ray $\rho \in \Sigma$ with bending parameter $\kappa_{\rho, \varphi} \in J$.

Proof. This is immediate from the definitions and the proof of Lemma 2.18,
Definition 2.22. For I an ideal in P with $\sqrt{I}=J$, let

$$
\operatorname{Supp}_{I}(\mathfrak{D}):=\bigcup_{\mathfrak{d}} \mathfrak{d}
$$

where the union is over all $\left(\mathfrak{d}, f_{\mathfrak{d}}\right) \in \mathfrak{D}$ such that $f_{\mathfrak{d}} \not \equiv 1 \bmod I \mathbb{k}\left[P_{\varphi_{\tau_{\mathfrak{O}}}}\right]$. By Definition 2.13, (4), this is a finite union.

Definition 2.23. Let I be an ideal of P with $\sqrt{I}=J$, and let $Q \in B \backslash \operatorname{Supp}_{I}(\mathfrak{D})$, $Q \in \tau \in \Sigma$. For $q \in B_{0}(\mathbb{Z})$, define

$$
\begin{equation*}
\operatorname{Lift}_{Q}(q):=\sum_{\gamma} \operatorname{Mono}(\gamma) \in \mathbb{k}\left[P_{\varphi_{\tau}}\right] / I \cdot \mathbb{k}\left[P_{\varphi_{\tau}}\right] \tag{2.11}
\end{equation*}
$$

where the sum is over all broken lines γ for q with endpoint Q, and $\operatorname{Mono}(\gamma)$ denotes the monomial attached to the last domain of linearity of γ. The fact that $\operatorname{Lift}_{Q}(q)$ lies in the stated ring follows from:

Lemma 2.24. Let $Q \in \sigma \in \Sigma_{\max }, q \in B_{0}(\mathbb{Z})$. Let I be an ideal with $\sqrt{I}=J$. Assume that $\kappa_{\rho, \varphi} \in J$ for at least one ray $\rho \in \Sigma$. Then the following hold:
(1) The collection of γ in Definition 2.23 with

$$
\operatorname{Mono}(\gamma) \notin I \cdot \mathbb{k}\left[P_{\varphi_{\sigma}}\right]
$$

is finite.
(2) If one boundary ray of the connected component of $B \backslash \operatorname{Supp}_{I}(\mathfrak{D})$ containing Q is a ray $\rho \in \Sigma$, then $\operatorname{Mono}(\gamma) \in \mathbb{k}\left[P_{\varphi_{\rho}}\right]$, and the collection of γ with

$$
\operatorname{Mono}(\gamma) \notin I \cdot \mathbb{k}\left[P_{\varphi_{\rho}}\right]
$$

is finite.

Proof. Note there is some k such that $J^{k} \subset I$ because $\mathbb{k}[P]$ is Noetherian. If γ is a broken line with $\operatorname{Mono}(\gamma) \notin I \cdot \mathbb{k}\left[P_{\varphi_{\sigma}}\right]$, then it is easy to see that γ crosses the rays of Σ in a cyclic order, and so in any set of at least n consecutive rays of Σ that it crosses, there is at least one ray ρ with $\kappa_{\rho, \varphi} \in J$. By Lemma 2.21, ord ${ }_{J, \gamma}$ increases every time γ crosses such a ray, and also every time γ bends at a ray \mathfrak{d} not contained in a ray of Σ. Once $\operatorname{ord}_{J, \gamma} \geq k, \operatorname{Mono}(\gamma) \in I \cdot \mathbb{k}\left[P_{\varphi_{\sigma}}\right]$. Hence there is an absolute bound on the number of rays of Σ that γ can cross, and the number of times γ can bend. Once the initial direction of γ is fixed, it's easy to see that the set of all possible broken lines satisfying the condition of (1) is finite, yielding the finiteness of (1).

The argument for the finiteness statement in (2), once the first part of (2) is established, is the same. For the first part of (2), consider a broken line γ contributing to $\operatorname{Lift}_{Q}(q)$. We take $Q \in \sigma_{+}$, in the notation of Lemma 2.18. Write $\operatorname{Mono}(\gamma)=c_{L} z^{q_{L}}$. If $r\left(q_{L}\right) \in \rho^{-1} \sigma_{+}$then the statement follows from Lemma 2.18. Otherwise (by the definition of broken line) γ crosses ρ, which is the last ray of Σ and the last ray of $\operatorname{Supp}_{I}(\mathfrak{D})$ it crosses before reaching Q. Now the result follows from Lemma 2.18 and the definition of broken line.

Definition 2.25. Assume that $\kappa_{\rho, \varphi} \in J$ for at least one ray $\rho \in \Sigma$. We say a scattering diagram \mathfrak{D} is consistent if for all ideals $I \subset P$ with $\sqrt{I}=J$ and for all $q \in B_{0}(\mathbb{Z})$, the following holds. Let $Q \in B_{0}$ be chosen so that the line joining the origin and Q has irrational slope, and $Q^{\prime} \in B_{0}$ similarly. Then:
(1) If $Q, Q^{\prime} \in \sigma \in \Sigma_{\text {max }}$, then we can view $\operatorname{Lift}_{Q}(q)$ and $\operatorname{Lift}_{Q^{\prime}}(q)$ as elements of $R_{\sigma, I}$, and as such, we have

$$
\operatorname{Lift}_{Q^{\prime}}(q)=\theta_{\gamma, \mathfrak{D}}\left(\operatorname{Lift}_{Q}(q)\right)
$$

for γ a path contained in the interior of σ connecting Q to Q^{\prime}.
(2) If $Q_{-} \in \sigma_{-}$and $Q_{+} \in \sigma_{+}$with $\sigma_{ \pm} \in \Sigma_{\max }$ and $\rho=\sigma_{+} \cap \sigma_{-}$a ray, and furthermore Q_{-}and Q_{+}are contained in connected components of $B \backslash \operatorname{Supp}_{I}(\mathfrak{D})$ whose closures contain ρ, then $\operatorname{Lift}_{Q_{ \pm}}(q) \in R_{\sigma_{ \pm}, I}$ are both images under $\psi_{\rho, \pm}$ of a single element

$$
\operatorname{Lift}_{\rho}(q) \in R_{\rho, I}
$$

Of course the definition is introduced so that the following holds:
Theorem 2.26. Let φ be a multivalued piecewise linear function on B such that $\kappa_{\rho, \varphi} \in$ J for all rays $\rho \in \Sigma$. Let \mathfrak{D} be a consistent scattering diagram and $I \subset P$ an ideal with $\sqrt{I}=J$. Set

$$
X_{I}:=\operatorname{Spec} \Gamma\left(X_{I, \mathfrak{D}}^{o}, \mathcal{O}_{X_{I, \mathfrak{D}}^{o}}^{o}\right)
$$

Since $X_{I, \mathfrak{D}}^{o}$ has the structure of a scheme over $\operatorname{Spec} R_{I}$, so does X_{I}, which we write as

$$
f_{I}: X_{I} \rightarrow \operatorname{Spec} R_{I}
$$

Then
(1) X_{I} contains $X_{I, \mathfrak{D}}^{o}$ as an open subset, f_{I} is flat with fibre over a closed point x of $\operatorname{Spec} R_{I}$ isomorphic to the n-vertex \mathbb{V}_{n}.
(2) For each $q \in B(\mathbb{Z})$, there is a section $\vartheta_{q} \in \Gamma\left(X_{I}, \mathcal{O}_{X_{I}}\right)$, and the set

$$
\left\{\vartheta_{q} \mid q \in B(\mathbb{Z})\right\}
$$

is a free R_{I}-module basis for $\Gamma\left(X_{I}, \mathcal{O}_{X_{I}}\right)$.
Proof. We define $\vartheta_{0}=1$. We now construct ϑ_{q} for $q \in B_{0}(\mathbb{Z})$: this is the main point of Definition 2.25. For each ray $\rho \in \Sigma$ contained in $\sigma_{ \pm} \in \Sigma_{\max }$, choose two points $Q_{\rho}^{ \pm} \in B$, one each in the two connected components of $B \backslash\left(\operatorname{Supp}_{I}(\mathfrak{D}) \cup \rho\right)$ which are adjacent to ρ, with $Q_{\rho}^{+} \in \sigma_{+}$and $Q_{\rho}^{-} \in \sigma_{-}$.

We first note that $\operatorname{Lift}_{Q_{\rho}^{ \pm}}(q)$ is a well-defined element of $R_{\sigma_{ \pm}, I}$, independent of the particular choice of $Q_{\rho}^{ \pm}$: given a choice say of $Q=Q_{\rho}^{+}$and another choice Q^{\prime}, we take a path γ connecting Q and Q^{\prime} wholly contained in the connected component of $B \backslash\left(\operatorname{Supp}_{I}(\mathfrak{D}) \cup \rho\right)$ containing Q and Q^{\prime}. By Definition 2.25, (1), it then follows that $\operatorname{Lift}_{Q}(q)=\operatorname{Lift}_{Q^{\prime}}(q)$.

By Definition 2.25, (2), we have an element $\operatorname{Lift}_{\rho}(q) \in R_{\rho, I}$ whose image under $\psi_{\rho, \pm}$ is $\operatorname{Lift}_{Q_{\rho}^{ \pm}}(q)$. It then follows via another application of Definition 2.25, (1), applied to the path of Figure 2.1. that if ρ, ρ^{\prime} are adjacent rays in Σ, then $\operatorname{Lift}_{\rho}(q)$ and $\operatorname{Lift}_{\rho^{\prime}}(q)$ glue under the identification of open subsets of $U_{\rho, I}$ and $U_{\rho^{\prime}, I}$ given by $\theta_{\gamma, \mathfrak{D}}$. Thus all these elements of the rings $R_{\rho, I}$ for $\rho \in \Sigma$ glue to give a regular function on $X_{I, \mathfrak{D}}^{o}$, by construction of this latter space. This regular function is what we call ϑ_{q}. By the definition of $X_{I}, \vartheta_{q} \in \Gamma\left(X_{I}, \mathcal{O}_{X_{I}}\right)$.

Now note that $X_{J, \mathfrak{D}}^{o}=X_{J}^{o}$ as defined in $\$ 2.1$ Indeed, for any $\left(\mathfrak{d}, f_{\mathfrak{D}}\right) \in \mathfrak{D}$ with $\operatorname{dim} \tau_{\mathfrak{d}}=2$ we have $f_{\mathfrak{J}} \equiv 1 \bmod J$, so the open sets $U_{\rho_{i}, J}, U_{\rho_{i+1}, J}$ are glued trivially. Similarly, if $\operatorname{dim} \tau_{\mathcal{J}}=1$ then since $\kappa_{\rho, \varphi} \in J$, the rings $R_{\rho, I}$ as given in (2.7) and (2.5) coincide and are glued trivially. Thus with $I=J$, we see the gluing constructions Constructions 2.7 and 2.14 coincide.

Noting that with the assumption that $\kappa_{\rho, \varphi} \in J$ for all rays ρ,

$$
X_{J}^{o} \cong\left(\operatorname{Spec} R_{J}[\Sigma]\right) \backslash\left(\operatorname{Spec} R_{J}\right) \times\{0\}
$$

by Lemma 2.12, we see that the canonical map

$$
\bigoplus_{q \in B(\mathbb{Z})} R_{J} \cdot \vartheta_{q} \rightarrow \Gamma\left(X_{J}^{o}, \mathcal{O}_{X_{J}^{o}}\right)
$$

is an isomorphism. Indeed, by Lemma 2.10, $\Gamma\left(X_{J}^{o}, \mathcal{O}_{X_{J}^{o}}\right) \cong R_{J}[\Sigma]$. Furthermore, under this isomorphism, ϑ_{q} is clearly taken to $z^{q} \in R_{J}[\Sigma]$. This is because the only broken lines contributing to $\operatorname{Lift}_{Q}(q)$ modulo J for any Q is the straight line with endpoint Q, and this provides a contribution only if Q lies in the same maximal cone as q.

It follows also that $X_{J}:=\operatorname{Spec} \Gamma\left(X_{J}^{o}, \mathcal{O}_{X_{J}^{o}}\right)=\operatorname{Spec} R_{J}[\Sigma]$ is flat over $\operatorname{Spec} R_{J}$ and the fiber over a closed point x is given by $\operatorname{Spec} \mathbb{k}[\Sigma]$.

Now let I be a J-primary ideal. Let $i: X_{J}^{o} \subset X_{J}$ be the inclusion. Define a ringed space X_{I}^{\prime} with underlying topological space X_{J} by $\mathcal{O}_{X_{I}^{\prime}}:=i_{*} \mathcal{O}_{X_{I, \mathbb{D}}^{o}}$. Then the natural map $\mathcal{O}_{X_{I}^{\prime}} \rightarrow \mathcal{O}_{X_{J}}$ is surjective by the existence of the lifts ϑ_{q}. Thus $X_{I}^{\prime} / \operatorname{Spec} R_{I}$ is a flat deformation of $X_{J} / \operatorname{Spec} R_{J}$ by Lemma 2.27 below. Now since X_{J} is affine it follows that X_{I}^{\prime} is also affine, so $X_{I}^{\prime}=X_{I}:=\operatorname{Spec} \Gamma\left(X_{I, \mathfrak{D}}^{o}, \mathcal{O}_{X_{I, \mathfrak{D}}^{o}}\right)$.

We showed above that the ϑ_{q} form a R_{J}-module basis of $\Gamma\left(X_{J}, \mathcal{O}_{X_{J}}\right)$. Now since $X_{I} / \operatorname{Spec} R_{I}$ is a flat infinitesimal deformation of $X_{J} / \operatorname{Spec} R_{J}$ it follows that the ϑ_{q} form a R_{I}-module basis of $\Gamma\left(X_{I}, \mathcal{O}_{X_{I}}\right)$, see Lemma 2.28 below.

Lemma 2.27. Let X_{0} / S_{0} be a flat family of surfaces such that the fibres satisfy Serre's condition S_{2}. Let $i: X_{0}^{o} \subset X_{0}$ be the inclusion of an open subset such that the complement has finite fibres. Note that $i_{*} \mathcal{O}_{X_{0}^{o}}=\mathcal{O}_{X_{0}}$ by Lemma 2.10.

Let $S_{0} \subset S$ be an infinitesimal thickening of S_{0} and let $X^{o} \rightarrow S$ be a flat deformation of X_{0}^{o} / S_{0} over S. Define a family of ringed spaces $X \rightarrow S$ by $\mathcal{O}_{X}:=i_{*} \mathcal{O}_{X^{o}}$.

Then X / S is a flat deformation of X_{0} / S_{0} (that is, X / S is flat and $X_{0}=X \times_{S} S_{0}$) if and only if the map

$$
\begin{equation*}
\mathcal{O}_{X}:=i_{*} \mathcal{O}_{X^{o}} \rightarrow i_{*} \mathcal{O}_{X_{0}^{o}}=\mathcal{O}_{X_{0}} \tag{2.12}
\end{equation*}
$$

is surjective.
Proof. The condition is clearly necessary.
Conversely, suppose (2.12) is surjective. Let $\mathcal{I} \subset \mathcal{O}_{S}$ be the nilpotent ideal defining $S_{0} \subset S$. Let X_{n}^{o} / S_{n} denote the nth order infinitesimal thickening of X_{0} / S_{0} determined by X^{o} / S, that is, $\mathcal{O}_{X_{n}^{o}}=\mathcal{O}_{X^{o}} / \mathcal{I}^{n+1} \cdot \mathcal{O}_{X^{o}}$ and $\mathcal{O}_{S_{n}}=\mathcal{O}_{S} / \mathcal{I}^{n+1}$. Define X_{n} / S_{n} by $\mathcal{O}_{X_{n}}:=i_{*} \mathcal{O}_{X_{n}^{0}}$. Note that $\mathcal{O}_{X_{n}} \rightarrow \mathcal{O}_{X_{0}}$ is surjective because $\mathcal{O}_{X} \rightarrow \mathcal{O}_{X_{0}}$ is surjective by assumption. We show by induction on n that X_{n} / S_{n} is a flat deformation of X_{0} / S_{0}. For $n=0$ there is nothing to prove. Suppose the induction hypothesis is true for n. Since X_{n+1}^{o} / S_{n+1} is flat (being the restriction of the flat family X^{o} / S to S_{n+1}) we have a short exact sequence

$$
0 \rightarrow \mathcal{I}^{n+1} / \mathcal{I}^{n+2} \otimes \mathcal{O}_{X_{0}^{o}} \rightarrow \mathcal{O}_{X_{n+1}^{o}} \rightarrow \mathcal{O}_{X_{n}^{o}} \rightarrow 0
$$

Applying i_{*} we obtain an exact sequence

$$
0 \rightarrow i_{*}\left(\mathcal{I}^{n+1} / \mathcal{I}^{n+2} \otimes \mathcal{O}_{X_{0}^{o}}\right) \rightarrow \mathcal{O}_{X_{n+1}} \rightarrow \mathcal{O}_{X_{n}}
$$

By Lemma 2.10 the first term is equal to $\mathcal{I}^{n+1} / \mathcal{I}^{n+2} \otimes \mathcal{O}_{X_{0}}$. Moreover, the last arrow is surjective because $\mathcal{O}_{X_{n+1}} \rightarrow \mathcal{O}_{X_{0}}$ is surjective, $\mathcal{O}_{X_{n}} / \mathcal{I} \cdot \mathcal{O}_{X_{n}}=\mathcal{O}_{X_{0}}$ by the induction hypothesis, and \mathcal{I} is nilpotent. So we have an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{I}^{n+1} / \mathcal{I}^{n+2} \otimes \mathcal{O}_{X_{0}} \rightarrow \mathcal{O}_{X_{n+1}} \rightarrow \mathcal{O}_{X_{n}} \rightarrow 0 \tag{2.13}
\end{equation*}
$$

It follows that $\mathcal{O}_{X_{n+1}} / \mathcal{I}^{n+1} \cdot \mathcal{O}_{X_{n+1}}=\mathcal{O}_{X_{n}}$ (again using that $\mathcal{O}_{X_{n+1}} \rightarrow \mathcal{O}_{X_{0}}$ is surjective). Now by (Ma89, Theorem 22.3, p. 174, the exact sequence (2.13) shows that X_{n+1} / S_{n+1} is a flat deformation of X_{0} / S_{0}.

Lemma 2.28. Let $A \rightarrow B$ be a flat homomorphism of Noetherian rings and $I \subset A a$ nilpotent ideal. Suppose given a set S of elements of B such that the reductions of the elements of S form an A / I-module basis of $B / I B$. Then S is an A-module basis of B.

Proof. Since I is nilpotent and S generates $B / I B$ it is clear that S spans B. So we have an exact sequence

$$
0 \rightarrow K \rightarrow A^{S} \rightarrow B \rightarrow 0
$$

Tensoring with A / I we obtain an exact sequence

$$
0 \rightarrow K / I K \rightarrow(A / I)^{S} \rightarrow B / I B \rightarrow 0
$$

using flatness of B over A. We deduce that $K / I K=0$ by our assumption, hence $K=0$ because I is nilpotent.

Proposition 2.29. Let $X_{I} / S_{I}:=\operatorname{Spec} R_{I}$ be the family of Theorem 2.26. Then the relative dualizing sheaf $\omega_{X_{I} / S_{I}}$ is trivial. It is generated by the global section Ω given on local patches $U_{\rho_{i}, I}$ by $\mathrm{d} \log X_{i-1} \wedge \mathrm{~d} \log X_{i}=\mathrm{d} \log X_{i} \wedge \mathrm{~d} \log X_{i+1}$. Here we take the rays ρ_{j} in counter-clockwise order, after choosing an orientation on B, to obtain a consistent choice of signs.

Proof. By the adjunction formula for the closed embedding

$$
U_{\rho_{i}} \subset \mathbb{A}_{X_{i-1}, X_{i+1}}^{2} \times \mathbb{G}_{m, X_{i}} \times S_{I}
$$

the dualizing sheaf $\omega_{X_{I} / S_{I}}$ is freely generated over $U_{\rho_{i}}$ by the local section in the statement. These sections patch to give a generator Ω of $\omega_{X_{I, \mathcal{D}}^{o} / S_{I}}$ because the scattering automorphisms preserve the torus invariant differentials. Both $\omega_{X_{I} / S_{I}}$ and $\mathcal{O}_{X_{I}}$ satisfy the relative S_{2} property $i_{*} i^{*} \mathcal{F}=\mathcal{F}$ where $i: X_{I}^{o} \subset X_{I}$ is the inclusion (【H04, Appendix), hence $\omega_{X_{I} / S_{I}}$ is freely generated by Ω.
2.4. The algebra structure. In the previous section, we saw that the R_{I}-algebra

$$
A_{I}=\Gamma\left(X_{I, \mathfrak{D}}^{o}, \mathcal{O}_{X_{I, \mathfrak{D}}^{o}}\right)
$$

defining the flat deformation X_{I} has a R_{I}-module basis of theta functions $\left\{\vartheta_{m} \mid m \in\right.$ $B(\mathbb{Z})\}$. Here we derive a description of the multiplication rule on R_{I} using the geometry of the integral affine manifold B. Besides being an attractive combinatorial description of the multiplication rule, we will use this (in the case of the canonical scattering diagram $\mathfrak{D}^{\text {can }}$) in $\sqrt[6]{6}$ to prove that our deformation extends over completions of larger strata of Spec $\mathbb{k}[P]$.

Definition 2.30. For a broken line γ with endpoint $Q \in \tau \in \Sigma$, define $s(\gamma) \in \Lambda_{\tau}$, $c(\gamma) \in \mathbb{k}[P]$ by demanding that

$$
\operatorname{Mono}(\gamma)=c(\gamma) \cdot z^{\varphi_{\tau}(s(\gamma))}
$$

Write Limits $(\gamma)=(q, Q)$ if γ is a broken line for q and has endpoint $Q \in B$.
Remark 2.31. Recall that B_{0} in fact has the structure of an integral linear manifold. One feature of such manifolds is that for any simply connected set $U \subset B_{0}$, there is is a canonical linear immersion $U \rightarrow \Lambda_{\mathbb{R}, U}$, compatible with parallel transport inside U.

In particular, if q is a point of B_{0} with $q \in \sigma \in \Sigma$, and $\tau \subset \sigma$, then the canonical embedding of a neighbourhood of τ in $\Lambda_{\tau, \mathbb{R}}$ identifies q with a point of $\Lambda_{\tau, \mathbb{R}}$.

Theorem 2.32. Let $q_{1}, q_{2} \in B(\mathbb{Z})$. In the canonical expansion

$$
\vartheta_{q_{1}} \cdot \vartheta_{q_{2}}=\sum_{q \in B(\mathbb{Z})} \alpha_{q} \vartheta_{q},
$$

where $\alpha_{q} \in R_{I}$ for each q, we have

$$
\alpha_{q}=\sum_{\substack{\left(\gamma_{1}, \gamma_{2}\right) \\ \operatorname{Limits}\left(\gamma_{i}\right)=\left(q_{i}, z\right) \\ s\left(\gamma_{1}\right)+s\left(\gamma_{2}\right)=q}} c\left(\gamma_{1}\right) c\left(\gamma_{2}\right)
$$

Here $z \in B_{0}$ is a point very close to q contained in a cell τ, and we identify q with a point of Λ_{τ} using Remark 2.31.

Proof. To identify the coefficient of ϑ_{q}, choose a point $z \in B$ very close to q, and describe the product using the lifts of $z^{q_{1}}, z^{q_{2}}$ at z :

$$
\left(\operatorname{Lift}_{z}\left(q_{1}\right)\right)\left(\operatorname{Lift}_{z}\left(q_{2}\right)\right)=\sum_{q^{\prime}} \alpha_{q^{\prime}} \operatorname{Lift}_{z}\left(q^{\prime}\right)
$$

Now observe first that there is only one broken line γ with endpoint z and $s(\gamma)=q \in$ Λ_{τ} : this is the broken line whose image is $z+\mathbb{R}_{\geq 0} q$. Indeed, the final segment of such a γ is on this ray, and this ray meets no scattering rays, so the broken line cannot bend.

Thus the coefficient of $\operatorname{Lift}_{z}(q)$ on the right-hand side of the above equation can be read off by looking at the coefficient (in R_{I}) of $z^{\varphi_{\tau}(q)}$. This gives the desired description.

3. The canonical scattering diagram

3.1. Definition. Here we give the precise definition of $\mathfrak{D}^{\text {can }}$. As explained in the introduction, it is, roughly speaking, defined in terms of maps $\mathbb{A}^{1} \rightarrow Y \backslash D$, which are algebro-geometric analogues of the holomorphic disks used for instanton corrections in the symplectic heuristic. We begin by recalling necessary facts about relative GromovWitten invariants used to count these curves.

Definition 3.1. Let (\tilde{Y}, \tilde{D}) be a rational surface with \tilde{D} an anti-canonical cycle of rational curves, and let C be an irreducible component of \tilde{D}. Consider a class $\beta \in$ $A_{1}(\tilde{Y}, \mathbb{Z})$ such that

$$
\beta \cdot \tilde{D}_{i}= \begin{cases}k_{\beta} & \tilde{D}_{i}=C \tag{3.1}\\ 0 & \tilde{D}_{i} \neq C\end{cases}
$$

for some $k_{\beta}>0$. Let F be the closure of $\tilde{D} \backslash C$, and let

$$
\tilde{Y}^{o}:=\tilde{Y} \backslash F, \quad C^{o}:=C \backslash F .
$$

Let $\overline{\mathfrak{M}}\left(\tilde{Y}^{o} / C^{o}, \beta\right)$ be the moduli space of stable relative maps of genus zero curves representing the class β with tangency of order k_{β} at an unspecified point of C^{o}. (See [Li00], Li02] for the algebraic definition for these relative Gromov-Witten invariants, and [LR01] [IP03] for the original symplectic definitions.) We refer to β informally as an \mathbb{A}^{1}-class. The virtual dimension of this moduli space is

$$
-K_{\tilde{Y}} \cdot \beta+(\operatorname{dim} \tilde{Y}-3)-\left(k_{\beta}-1\right)=0
$$

Here the first two terms give the standard dimension formula for the moduli space of stable rational curves in \tilde{Y} representing the class β, and the term $k_{\beta}-1$ is the change in dimension given by imposing the k_{β}-fold tangency condition. The moduli space carries a virtual fundamental class. Furthermore, we have
Lemma 3.2. $\overline{\mathfrak{M}}\left(\tilde{Y}^{o} / C^{o}, \beta\right)$ is proper over \mathbb{k}.
Proof. This follows as in the proof of GPS09, Theorem 4.2. In brief, let R be a valuation ring with residue field K, with $S=\operatorname{Spec} R, T=\operatorname{Spec} K$. We would like to extend a morphism $T \rightarrow \overline{\mathfrak{M}}\left(\tilde{Y}^{o} / C^{o}, \beta\right)$ to S. We know that the moduli space $\overline{\mathfrak{M}}(\tilde{Y} / C, \beta)$ is proper, so we obtain a family of relative stable maps $\mathcal{C} \rightarrow S$ to \tilde{Y}. We just need to show that in fact the image of the closed fibre \mathcal{C}_{0} lies in \tilde{Y}^{o}. However, the argument in the proof of GPS09, Theorem 4.2 shows that if the image of \mathcal{C}_{0} intersects F, then \mathcal{C}_{0} must be of genus at least 1 , which is not the case.

Given this, we define

$$
N_{\beta}:=\int_{\left[\overline{\mathfrak{M}}\left(\tilde{Y}^{o} / C^{o}, \beta\right)\right]^{v i r}} 1 .
$$

Morally, one should view N_{β} as counting maps from affine lines to $\tilde{Y} \backslash \tilde{D}$ whose closures represent the class β.

In what follows, we fix as usual the pair (Y, D), with tropicalisation (B, Σ), and φ the function given by Example 2.3 for some choice of $\eta: \mathrm{NE}(Y) \rightarrow P$.

Definition 3.3. Fix a ray $\mathfrak{d} \subset B$ with endpoint the origin, with rational slope. If \mathfrak{d} coincides with a ray of Σ, set $\Sigma^{\prime}:=\Sigma$; otherwise, let Σ^{\prime} be the refinement of Σ obtained by adding the ray \mathfrak{d}. This gives a toric blow-up $\pi: \tilde{Y} \rightarrow Y$ (the identity in the first case) by Lemma 1.6. Let $C \subset \pi^{-1}(D)$ be the irreducible component corresponding to \mathfrak{d}.

Let $\tau_{\mathfrak{d}} \in \Sigma$ be the smallest cone containing \mathfrak{d}. Let $m_{\mathfrak{d}} \in \Lambda_{\tau_{\mathfrak{d}}}$ be a primitive generator of the tangent space to \mathfrak{d}, pointing away from the origin. Define

$$
f_{\mathfrak{0}}:=\exp \left[\sum_{\beta} k_{\beta} N_{\beta} z^{\eta\left(\pi_{*}(\beta)\right)-\varphi_{\tau_{\mathfrak{0}}}\left(k_{\beta} m_{\mathfrak{d}}\right)}\right]
$$

Here the sum is over all classes $\beta \in A_{1}(\tilde{Y}, \mathbb{Z})$ satisfying (3.1). Note that if $N_{\beta} \neq 0$, then necessarily $\overline{\mathfrak{M}}\left(\tilde{Y}^{o} / C^{o}, \beta\right)$ is non-empty, and thus $\beta \in \mathrm{NE}(\tilde{Y})$, so $\pi_{*}(\beta) \in \mathrm{NE}(Y)$. We note that Σ^{\prime} can be replaced with a further refinement, as \tilde{Y}^{o} / C^{o}, and so the numbers N_{β}, does not depend on the particular choice of refinement.

We define

$$
\mathfrak{D}^{\text {can }}:=\left\{\left(\mathfrak{d}, f_{\mathfrak{d}}\right) \mid \mathfrak{d} \subset B \text { a ray of rational slope }\right\} .
$$

We call a class $\beta \in A_{1}(\tilde{Y}, \mathbb{Z})$ an \mathbb{A}^{1}-class if $N_{\beta} \neq 0$.
Note that all rays of the canonical scattering diagram are outgoing.
Remark 3.4. In theory, one should be able to use logarithmic Gromov-Witten invariants (GS11] or AC11]) to define N_{β} without the technical trick of blowing up and working on an open variety. This would be done by working relative to D, and counting rational curves of class β with one point mapping to the boundary with specified orders of tangency with each boundary divisor, with non-zero order of tangency with either one divisor D_{i} or two adjacent divisors D_{i}, D_{i+1}. However, we do not yet know that this way of defining N_{β} coincides with the method given above, and the definition given above was used in the arguments of [GPS09, on which we rely.

Lemma 3.5. Let $J \subset P$ be an ideal with $\sqrt{J}=J$. Suppose the map $\eta: \mathrm{NE}(Y) \rightarrow P$ satisfies the following conditions:
(1) For any ray $\mathfrak{d} \subset B$ of rational slope, let $\pi: \tilde{Y} \rightarrow Y$ be the corresponding blowup. We require that if $\operatorname{dim} \tau_{\mathfrak{0}}=2$ or $\operatorname{dim} \tau_{\mathfrak{d}}=1$ and $\kappa_{\tau_{\mathfrak{0}}, \varphi} \notin J$ then for any \mathbb{A}^{1}-class β contributing to $f_{\mathfrak{d}}$, we have $\eta\left(\pi_{*}(\beta)\right) \in J$.
(2) For any ideal I with $\sqrt{I}=J$, there are only a finite number of \mathfrak{d} and \mathbb{A}^{1}-classes β such that $\eta\left(\pi_{*}(\beta)\right) \notin I$.
Then $\mathfrak{D}^{\text {can }}$ is a scattering diagram for the data $(B, \Sigma), P, \varphi$, and J.
Proof. Note that

$$
z^{\eta\left(\pi_{*}(\beta)\right)-\varphi_{\tau_{\mathfrak{0}}}\left(k_{\beta} m_{\mathfrak{\jmath}}\right)} \in I \mathbb{k}\left[P_{\varphi_{\tau_{0}}}\right]
$$

if and only if $\eta\left(\pi_{*}(\beta)\right) \in I$. So the hypotheses of the lemma imply conditions (2)-(4) of Definition 2.13 ,

Example 3.6. Let $\sigma \subset A_{1}(Y) \otimes_{\mathbb{Z}} \mathbb{R}$ be a strictly convex rational polyhedral cone containing $\mathrm{NE}(Y)$. (This can be obtained as the dual of a strictly convex rational polyhedral cone in $\operatorname{Pic}(Y) \otimes_{\mathbb{Z}} \mathbb{R}$ which spans this latter space and is contained in the nef cone.) Let $P=\sigma \cap A_{1}(Y)$. Since σ is strictly convex, $P^{\times}=0$. For any \mathfrak{m} primary ideal $I, P \backslash I$ is a finite set. Let $\eta: \mathrm{NE}(Y) \rightarrow P$ be the inclusion. Then the finiteness hypotheses of the above Lemma hold for $J=\mathfrak{m}$ (note that the conditions (3.1) determine $\beta \in A_{1}(\tilde{Y})$ given $\pi_{*}(\beta)$).

Example 3.7. We return to the example (Y, D) of a del Pezzo surface together with a cycle of $5(-1)$-curves studied in Example 1.9 Let $P=\mathrm{NE}(Y)$ and η be the identity. Let $J=\mathfrak{m} \subset P$ and $I \subset P$ be an ideal with $\sqrt{I}=J$. Then $\mathfrak{D}^{\text {can }}$ consists of five rays:

$$
\mathfrak{D}^{\text {can }}=\left\{\left(\rho_{i}, 1+z^{\left[E_{i}\right]-\varphi_{\rho_{i}}\left(v_{i}\right)}\right) \mid 1 \leq i \leq 5\right\} .
$$

Here E_{i} is the unique (-1)-curve in Y which is not contained in D and meets D_{i} transversally, and v_{i} is the primitive generator of the ray ρ_{i} corresponding to D_{i}. To derive this formula from the above definition of the canonical scattering diagram one needs to show that the only possible stable relative maps contributing to $\mathfrak{D}^{\text {can }}$ are multiple covers of the E_{i} 's, and that a k-fold multiple cover contributes a GromovWitten invariant of $(-1)^{k-1} / k^{2}$. It is easier to compute this using the main result of GPS09, which is done by way of Theorem 3.25. See Example 3.26,

If we accept this description of $\mathfrak{D}^{\text {can }}$, then we can describe all broken lines and the multiplication law given by this diagram.

We first note that no broken line can wrap around $0 \in B$, i.e., if a broken line leaves a cone $\sigma \in \Sigma_{\max }$, it will never return to that cone. It is enough to check this for a straight line (as the bending in any broken line is always away from the origin), and this is easily verified, using e.g., Figure 1.1.

Figure 3.1. The different types of broken lines in Example 3.7.
Next, since the only scattering rays are the rays $\rho \in \Sigma$, if $q, Q \in \sigma \in \Sigma_{\max }$, then the obvious straight line is the unique broken line for q with endpoint Q. Thus if we describe ϑ_{q} in the open subset of $X_{I, \mathfrak{D} \text { can }}^{o}$ corresponding to σ, ϑ_{q} is just the monomial $z^{\varphi_{\sigma}(q)}$. It follows that

$$
\vartheta_{v_{i}}^{a} \vartheta_{v_{i+1}}^{b}=\vartheta_{a v_{i}+b v_{i+1}}
$$

for $a, b \geq 0$. In particular, the $\vartheta_{v_{i}}$'s generate the $\mathbb{k}[P] / I$-algebra $\Gamma\left(X_{I}, \mathcal{O}_{X_{I}}\right)$, and the algebra structure is determined once we compute $\vartheta_{v_{i}} \cdot \vartheta_{v_{i+2}}$.

We consider a broken line for v_{i}. One checks the following, using Figure 1.1 and the above description of $\mathfrak{D}^{\text {can }}$: The broken line can cross at most two rays of Σ, and it bends at most once, at the last ray of Σ that it crosses. See Figure 3.1. From this one deduces using Theorem 2.32,

$$
\begin{equation*}
\vartheta_{v_{i-1}} \vartheta_{v_{i+1}}=z^{\left[D_{i}\right]}\left(\vartheta_{v_{i}}+z^{\left[E_{i}\right]}\right) \tag{3.2}
\end{equation*}
$$

The term $z^{\left[D_{i}\right]} \cdot \vartheta_{v_{i}}$ corresponds to two straight broken lines for v_{i-1}, v_{i+1}, with endpoint the point v_{i} of ρ_{i}. The term $z^{\left[D_{i}\right]} \cdot z^{\left[E_{i}\right]}$ is the coefficient of $1=\vartheta_{0}$. To compute this we use the invariance of broken lines, and so choose a generic point Q near 0 and compute the coefficient α_{0} of ϑ_{0} using pairs γ_{i} as in Theorem 2.32 whose final directions are opposite, i.e., $s\left(\gamma_{1}\right)+s\left(\gamma_{2}\right)=0$. If we take $Q \in \sigma_{i, i+1}$, then there is exactly one term contributing to $\alpha_{0}: \gamma_{1}$ will bend once where it crosses ρ_{i}, and γ_{2} is straight.

One can check that the five equations (3.2) define X_{I}. These equations are algebraic, and in fact define a flat family over Spec $\mathbb{k}[\mathrm{NE}(Y)]$. (This is always the case in the nonnegative semi-definite case, see Corollary 6.11).

Our goal now is to prove consistency of $\mathfrak{D}^{\text {can }}$, as stated in the following (the final step in the construction of our mirror family):

Theorem 3.8. Suppose that we are given a map $\eta: \mathrm{NE}(Y) \rightarrow P$ such that φ is defined as in Example 2.3 by $\kappa_{\rho, \varphi}=\eta\left(\left[D_{\rho}\right]\right)$. Suppose furthermore the following conditions hold:
(I) For any \mathbb{A}^{1}-class $\beta, \eta\left(\pi_{*}(\beta)\right) \in J$;
(II) For any ideal I with $\sqrt{I}=J$, there are only a finite number of \mathbb{A}^{1}-classes β such that $\eta\left(\pi_{*}(\beta)\right) \notin I$.
(III) $\eta\left(\left[D_{i}\right]\right) \in J$ for at least one boundary component $D_{i} \subset D$.

Then $\mathfrak{D}^{\text {can }}$ is a consistent scattering diagram.
We include here an observation we will need later showing that the canonical scattering diagram only depends on the deformation class of (Y, D).

Lemma 3.9. Let $(\mathcal{Y}, \mathcal{D}) \rightarrow S$ be a flat family of pairs over a connected base S, with each fibre $\left(\mathcal{Y}_{s}, \mathcal{D}_{s}\right)$ being a non-singular rational surface with anti-canonical cycle. Suppose further that there is a trivialization $\mathcal{D} \cong D \times S$. Then for any $s, s^{\prime} \in S$, $\left(\mathcal{Y}_{s}, \mathcal{D}_{s}\right)$ and $\left(\mathcal{Y}_{s^{\prime}}, \mathcal{D}_{s^{\prime}}\right)$ induce the same canonical scattering diagram, after making an identification of $A_{1}\left(\mathcal{Y}_{s}, \mathbb{Z}\right)$ with $A_{1}\left(\mathcal{Y}_{s^{\prime}}, \mathbb{Z}\right)$ via parallel transport with respect to the Gauss-Manin connection along any path from s to s^{\prime}.

Proof. It is enough to show that the numbers N_{β} are deformation invariants in the above sense, i.e., if we are given a family $\pi:(\tilde{\mathcal{Y}}, \tilde{\mathcal{D}}) \rightarrow S$ with each fibre as in Definition 3.1, with an irreducible component $\mathcal{C} \subset \tilde{\mathcal{D}}$, then the number

$$
N_{\beta, s}:=\int_{\left[\overline{\mathfrak{M}}\left(\tilde{\mathcal{Y}}_{s}^{o} / \mathcal{C}_{s}^{o}, \beta\right)\right]^{v i r}} 1
$$

is independent of s. Indeed, once this is shown, then if $N_{\beta, s} \neq 0$, necessarily β defines a class in $\operatorname{NE}\left(\mathcal{Y}_{s}\right)$, as well as in $\operatorname{NE}\left(\mathcal{Y}_{s^{\prime}}\right)$, under the chosen identification. This invariance follows from the standard argument that (relative) Gromov-Witten invariants are deformation invariants, with a little care because our target spaces are open. For this, one considers the moduli space $\overline{\mathfrak{M}}\left(\tilde{\mathcal{Y}}^{o} / \mathcal{C}^{o}, \beta\right)$ of stable maps to $\tilde{\mathcal{Y}}^{o}$ relative to \mathcal{C}^{o} and whose composition with π is constant. Then one has a map $\psi: \overline{\mathfrak{M}}\left(\tilde{\mathcal{Y}}^{o} / \mathcal{C}^{o}, \beta\right) \rightarrow S$ whose fibre over s is $\overline{\mathfrak{M}}\left(\tilde{\mathcal{Y}}_{s}^{o} / \mathcal{C}_{s}^{o}, \beta\right)$. Letting ξ be the inclusion of this fibre in $\overline{\mathfrak{M}}\left(\tilde{\mathcal{Y}}^{o} / \mathcal{C}^{o}, \beta\right)$, deformation invariance will follow if we know that

$$
\xi^{!}\left[\overline{\mathfrak{M}}\left(\tilde{\mathcal{Y}}^{o} / \mathcal{C}^{o}, \beta\right)\right]^{v i r}=\left[\overline{\mathfrak{M}}\left(\tilde{\mathcal{Y}}_{s}^{o} / \mathcal{C}_{s}^{o}, \beta\right)\right]^{v i r}
$$

and ψ is proper. The first statement is standard in Gromov-Witten theory. The second point, the properness of ψ, follows exactly as in the proof of Lemma 3.2,
3.2. Consistency: Overview of the proof. We will describe in detail the intuition behind each step of the proof of consistency. In the next subsection, we will work somewhat more generally with a more general scattering diagram \mathfrak{D} for certain steps, as this will be needed in [K3] for the K3 case. However, for the discussion here let us assume we are only studying the consistency of the canonical scattering diagram.

Step I. We can replace (Y, D) with a toric blow-up of (Y, D). This is straightforward - toric blowups just correspond to refinements of Σ, but do not change broken lines or scattering diagrams.

Step II. We can assume that (Y, D) has a toric model and P is a finitely generated submonoid of $A_{1}(Y, \mathbb{Z})$ containing $\mathrm{NE}(Y)$, with η the inclusion. By Step I and Proposition 1.3, we can assume (Y, D) has a toric model. We can then always factor η as $\mathrm{NE}(Y) \xrightarrow{\bar{\eta}} \bar{P} \xrightarrow{\psi} P$ where \bar{P} is a finitely generated submonoid of $A_{1}(Y, \mathbb{Z})$ containing $\mathrm{NE}(Y)$ with $\bar{\eta}$ the inclusion. In this case there are two canonical scattering diagrams, $\overline{\mathfrak{D}}$ and \mathfrak{D} defined using $\bar{\eta}: \mathrm{NE}(Y) \rightarrow \bar{P}$ and $\eta: \mathrm{NE}(Y) \rightarrow P$ respectively. Then \mathfrak{D} can be obtained from $\overline{\mathfrak{D}}$ essentially just by applying ψ to each exponent appearing in each function $f_{\mathfrak{d}}$.

In this case we show that if consistency holds for $\overline{\mathfrak{D}}$ then it holds for \mathfrak{D}. The idea is that given a broken line γ for $\overline{\mathfrak{D}}$, we can get something like a broken line for \mathfrak{D} by applying ψ to the exponents of monomials attached to γ. However, this isn't necessarily a broken line for \mathfrak{D}. Indeed, there might be two different broken lines for $\overline{\mathfrak{D}}$, say γ_{1} and γ_{2}, which after we apply ψ give broken lines with the same sequence of attached exponents. These should not arise as distinct broken lines for \mathfrak{D}, and we have to combine the monomials attached to these broken lines. This requires a certain amount of book-keeping.

Step III. Reduction to the Gross-Siebert locus. By step II we can assume we have a toric model $p: Y \rightarrow \bar{Y}$. Let H be an ample divisor on \bar{Y}. Shrinking P if necessary, we can assume that P has a face whose intersection with $\mathrm{NE}(Y)$ is $\mathrm{NE}(Y) \cap\left(p^{*} H\right)^{\perp}$. Let G be the monomial ideal which is the complement of this face, E the subgroup of $P^{\text {gp }}$ generated by $P \backslash G$. The main work in this step is to show that we can replace P by $P+E$. This requires a bit of analysis of the rays $\left(\rho_{i}, f_{\rho_{i}}\right)$ of $\mathfrak{D}^{\text {can }}$. In particular, we need to understand the contribution to $f_{\rho_{i}}$ coming from the exceptional curves of p meeting D_{i}.

After doing this, we have $P^{\times}=E$, so now $X_{I, \mathfrak{D}}^{o}$ lives over the thickening of a torus T^{gs} we call the Gross-Siebert locus.

Step IV. Pushing the singularities to infinity. This is the crucial step, and we explain carefully the intution here. In GS07, Gross and Siebert considered a smoothing construction associated to an integral affine manifold with singularities where (in the
two-dimensional case) the singularities occurred only in the interior of edges of a polyhedral decomposition of B, rather than at the vertices. The case at hand, with one singularity at the origin, does not fit into that framework. In particular, in the GrossSiebert world, the singularities must have monodromy of the form $\left(\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right)$ for some $k>0$, with the tangent line to the edge containing the singularity being the invariant direction; in analogy with the Kodaira classification, we call this an I_{k} singularity. Indeed, one expects a cycle of k two-spheres as fibre over such a point in the SYZ picture.

Here, we can view such a surface as being obtained by factoring the complicated singularity $0 \in B$ into I_{k} singularities along the edges of Σ. We should have an $I_{k_{i}}$ singularity on the ray ρ_{i} where k_{i} is the number of exceptional divisors of $p: Y \rightarrow \bar{Y}$ intersecting D_{i}. This process can be described as follows. Let $(\bar{B}, \bar{\Sigma})$ be the fan associated to (\bar{Y}, \bar{D}). There is a piecewise linear isomorphism

$$
\nu: B \rightarrow \bar{B}
$$

which identifies each cone in Σ with the corresponding cone in $\bar{\Sigma}$. This is an isomorphism of integral affine manifolds outside of ρ_{i}, but it is not affine along ρ_{i}. There is a natural one-parameter family of integral affine manifolds interpolating between the two structures by a process Kontsevich and Soibelman KS06 call moving worms. Precisely, choose points $y_{i} \in \rho_{i} \backslash\{0\}$. Let $\Delta:=\left\{y_{i} \mid 1 \leq i \leq n\right\}, B_{0}^{\prime}:=B \backslash \Delta$. Put a new affine structure on B_{0}^{\prime} compatible with the affine structures on the interior of each maximal cell by defining a Σ-piecewise linear function to be linear if its restriction to a small neighbourhood of $\left(y_{i},+\infty\right) \subset \rho_{i}$ in B_{0}^{\prime} is B-linear, and its restriction to a small neighbourhood of $\left[0, y_{i}\right) \subset \rho_{i}$ in B_{0}^{\prime} is \bar{B}-linear. Call the resulting integral affine manifold with singularities B^{\prime}. The map $\nu: B^{\prime} \rightarrow \bar{B}$ is a linear isomorphism near 0 This new manifold can be seen to have an $I_{k_{i}}$ singularity at y_{i}, with invariant direction ρ_{i}.

Now if we were to apply the algorithm of Gross and Siebert GS07 to B^{\prime}, one would find roughly that one obtains a scattering diagram which initially has two rays emanating from each singularity. The rays emanating from ρ_{i} are initially contained in ρ_{i}; one of these goes out to infinity and the other passes through the origin and then to infinity. Where all these rays meet at the origin, one must follow a procedure of Kontsevich and Soibelman [KS06] and add some additional rays to ensure that the composition of automorphisms associated to the rays about a loop centered at the origin is the identity. We then obtain a scattering diagram which can be shown is very close to the canonical scattering diagram, the only difference being the segments of the rays between the y_{i} and the origin.

We do not actually work with this affine manifold with singularities. Rather, we instead push the singularities y_{i} to infinity. In doing so, we replace B^{\prime} with \bar{B}. We transfer the canonical scattering diagram \mathfrak{D} to a scattering diagram $\overline{\mathfrak{D}}$ on \bar{B}, differing from \mathfrak{D} essentially only by changing the rays supported on the ρ_{i} 's in a simple way motivated by the above description. Once this is done, we show consistency of \mathfrak{D} is equivalent to consistency of $\overline{\mathfrak{D}}$. Now we no longer have to deal with any singularities.

It is much easier to determine consistency when there are no singularities. In particular, we appeal to a result in CPS, which shows that $\overline{\mathfrak{D}}$ is consistent provided that the composition of automorphisms associated to the rays about a loop centered at the origin is the identity. We say such a scattering diagram is compatible. The important point is that we can now make sense of such a statement: when we had a singularity at the origin, there was no common ring which the automorphisms associated to rays could act on. However, without a singularity at the origin, there are such rings, as appeared in GS07.

Step V. $\overline{\mathfrak{D}}$ satisfies the required compatibility condition. This step is really the punchline, explaining why the particular choice of the canonical scattering diagram \mathfrak{D} gives a diagram $\overline{\mathfrak{D}}$ which is compatible. We make use of GPS09 to link the enumerative definition of \mathfrak{D} to the notion of compatibility. Indeed, the definition of the canonical scattering diagram was originally obtained by working backwards from the enumerative description of GPS09. This connection is worked out in \$3.4
3.3. Consistency: Reduction to the Gross-Siebert locus. We now begin the proof of Theorem 3.8, following the outline given in 3.2 We will, however, prove a number of lemmas in a slightly more general context, as we will need some more general consistency results in K3]. We assume we are given $(Y, D), \eta: \mathrm{NE}(Y) \rightarrow P$ and φ defined as in Example 2.3, and a radical ideal $J \subseteq P$. Suppose we are given a scattering diagram \mathfrak{D} for this data; the application in this paper will be $\mathfrak{D}=\mathfrak{D}^{\text {can }}$. In particular, the hypotheses of Theorem 3.8 imply $\mathfrak{D}^{\text {can }}$ is a scattering diagram for this data.

Step I. Replacing (Y, D) with a toric blowup.
Proposition 3.10. Let $p:(\tilde{Y}, \tilde{D}) \rightarrow(Y, D)$ be a toric blowup. Then if we take $\tilde{\eta}:=\eta \circ p_{*}: \mathrm{NE}(\tilde{Y}) \rightarrow P$, then \mathfrak{D} can also be viewed as a scattering diagram for $B_{(\tilde{Y}, \tilde{D})}, P$. Furthermore, if \mathfrak{D} is consistent for this latter data, it is consistent for the data $B_{(Y, D)}, P$.

Proof. Decorate notation, writing for example $\tilde{B}, \tilde{\Sigma}$ for the singular affine manifold with subdivision into cones associated to (\tilde{Y}, \tilde{D}). By Lemma 1.6, we have a canonical identification of the underlying singular affine manifolds $B=\tilde{B}$, and $\tilde{\Sigma}$ is the refinement
of Σ obtained by adding one ray for each p-exceptional divisor. We have multi-valued piecewise linear functions φ on B and $\tilde{\varphi}$ on \tilde{B}. We can in fact choose representatives so that $\tilde{\varphi}=\varphi$. Indeed, $\kappa_{\rho, \tilde{\varphi}}=\eta\left(p_{*}\left(\left[\tilde{D}_{\rho}\right]\right)\right)$ where \tilde{D}_{ρ} is the irreducible component of \tilde{D} corresponding to ρ. But $p_{*}\left(\left[\tilde{D}_{\rho}\right]\right)=0$ if $\rho \notin \Sigma$, and $p_{*}\left(\left[\tilde{D}_{\rho}\right]\right)=\left[D_{\rho}\right]$ if $\rho \in \Sigma$. Thus $\tilde{\varphi}$ in fact has the same domains of linearity as φ, and the same bending parameters, so we can choose representatives which agree.

As a consequence, we note that the sheaves \mathcal{P} and $\tilde{\mathcal{P}}$ on B_{0} defined using φ and $\tilde{\varphi}$ coincide. Furthermore, if $\tilde{\tau} \subset \tilde{\sigma}$ are cones in $\tilde{\Sigma}$, with $\tau \in \Sigma$ the smallest cone containing $\tilde{\tau}$ and $\sigma \in \Sigma$ the smallest cone containing $\tilde{\sigma}$, there is a canonical identification of $P_{\varphi_{\tau}}$ with $P_{\tilde{\varphi}_{\tilde{\tau}}}$ and a canonical isomorphism

$$
\begin{equation*}
\tilde{R}_{\tilde{\tau}, I} \cong R_{\tau, I} \tag{3.3}
\end{equation*}
$$

note the slightly non-trivial case when $\operatorname{dim} \tilde{\tau}=1$ but $\operatorname{dim} \tau=2$, in which case we use the fact that $\kappa_{\tilde{\tau}, \tilde{\varphi}}=0$.

Using these identifications, we can view \mathfrak{D} as living on \tilde{B}, and as such, one sees from the definition that \mathfrak{D} is a scattering diagram for the data $\tilde{B}, P, \tilde{\varphi}$.

Now suppose $\sqrt{I}=J$. One observes that the set of broken lines contributing to $\operatorname{Lift}_{Q}(q)$ are the same whether we are working in B or \tilde{B}. Thus if $Q \in \tilde{\sigma} \in \tilde{\Sigma}_{\max }$, $\operatorname{Lift}_{Q}(q) \in \tilde{R}_{\tilde{\sigma}, I}$, defined using \tilde{B}, coincides under the isomorphism (3.3) with $\operatorname{Lift}_{Q}(q) \in$ $R_{\sigma, I}$. From this one sees easily that if \mathfrak{D} is consistent for \tilde{Y}, it is consistent for Y.

Corollary 3.11. Given Y, P, η, J satisfying the hypotheses of Theorem 3.8, then Theorem 3.8 holds for this data if it holds for the data $\tilde{Y}, P, \tilde{\eta}, J$.

Proof. By the proposition, one just needs to check that the canonical scattering diagrams defined using Y or \tilde{Y} are identical. Indeed, given a ray $\mathfrak{d} \subset B$, we can choose a refinement Σ^{\prime} of Σ which is also a refinement of $\tilde{\Sigma}$, giving maps $\tilde{\pi}: Y^{\prime} \rightarrow \tilde{Y}$ and $\pi: Y^{\prime} \rightarrow Y$. Then for an \mathbb{A}^{1}-class $\beta \in A_{1}\left(Y^{\prime}, \mathbb{Z}\right), \eta\left(\pi_{*}(\beta)\right)=\tilde{\eta}\left(\tilde{\pi}_{*}(\beta)\right)$, and so $f_{\mathfrak{d}}$ is the same for \tilde{Y} and Y.

Step II. Changing the monoid P.
We would like to change the monoid P, which was fairly arbitrary, to one with better properties. For this step, assume we are given monoid homomorphisms

$$
\mathrm{NE}(Y) \xrightarrow{\bar{\eta}} \bar{P} \xrightarrow{\psi} P
$$

with $\eta=\psi \circ \bar{\eta}$. Then η and $\bar{\eta}$ induce multi-valued piecewise linear functions φ and $\bar{\varphi}$ respectively, via Example 2.3, with $\varphi=\psi \circ \bar{\varphi}$. In particular, for any $\tau \in \Sigma \backslash\{0\}, \psi$ induces a map $\psi: \bar{P}_{\bar{\varphi}_{\tau}} \rightarrow P_{\varphi_{\tau}}$.

Suppose $\overline{\mathfrak{D}}$ is a scattering diagram for the data $B, \bar{P}, \overline{\mathfrak{m}}=\bar{P} \backslash \bar{P}^{\times}$. For each ray

$f_{\mathfrak{d}}$, but in general, this need not make sense even formally since ψ may take an infinite number of exponents occuring in f_{o} to a single element of P. However, we shall write $\psi\left(f_{\mathfrak{\mathfrak { j }}}\right)$ for such an expression if it does make sense as an element of $\widehat{\mathbb{k}\left[P_{\varphi_{\tau_{\mathfrak{0}}}}\right]}$. If $\psi\left(f_{\mathfrak{\mathfrak { d }}}\right)$ makes sense for each $\left(\mathfrak{d}, f_{\mathfrak{o}}\right) \in \overline{\mathfrak{D}}$, we write

$$
\psi(\overline{\mathfrak{D}})=\left\{\left(\mathfrak{d}, \psi\left(f_{\mathfrak{d}}\right)\right) \mid\left(\mathfrak{d}, f_{\mathfrak{d}}\right) \in \overline{\mathfrak{D}}\right\}
$$

Proposition 3.12. In the above situation, suppose $\overline{\mathfrak{D}}$ is a scattering diagram for the data $B, \bar{P}, \overline{\mathfrak{m}}=\bar{P} \backslash \bar{P}^{\times}$, such that $\mathfrak{D}=\psi(\overline{\mathfrak{D}})$ makes sense and is a scattering diagram for the data B, P, J, where J is a radical ideal in P. Assume that $\kappa_{\rho, \varphi} \in J$ for at least one ray $\rho \in \Sigma$. If $\overline{\mathfrak{D}}$ is consistent for $\bar{P}, \bar{\eta}, \overline{\mathfrak{m}}$, then \mathfrak{D} is consistent for P, η, J.

Proof. The monoids P and \bar{P} yield sheaves \mathcal{P} and $\overline{\mathcal{P}}$ over B_{0}. The map $\psi: \bar{P} \rightarrow P$ induces a map of sheaves $\psi: \overline{\mathcal{P}} \rightarrow \mathcal{P}$ using $\varphi=\psi \circ \bar{\varphi}$, and hence it also induces monoid homomorphisms $\psi: \bar{P}_{\bar{\varphi}_{\tau}} \rightarrow P_{\varphi_{\tau}}$.

Let $q \in B_{0}(\mathbb{Z})$. Then if $\bar{\gamma}$ is a broken line for q with endpoint Q with respect to the barred data, i.e., $\bar{P}, \overline{\mathcal{P}}$ etc., we can construct what we shall call $\psi(\bar{\gamma})$. This will be the data required for defining a broken line for the unbarred data. The underlying map of $\psi(\bar{\gamma})$ coincides with that of $\bar{\gamma}$. For the attached monomials, we simply apply ψ to the monomial $m_{L}(\bar{\gamma})$ attached to a domain of linearity L of $\bar{\gamma}$ to get the attached monomial for $\psi(\bar{\gamma})$. This is not a broken line for the unbarred data, as condition (3) of Definition 2.16 need not hold, precisely because $\psi: \overline{\mathcal{P}} \rightarrow \mathcal{P}$ need not be injective.

To rectify this, fix an ideal $I \subset P$ with $\sqrt{I}=J, Q \in \sigma \in \Sigma$, and let $\overline{\mathfrak{B}}$ be the set of broken lines $\bar{\gamma}$ for the barred data with endpoint Q such that $\psi(\operatorname{Mono}(\bar{\gamma})) \notin I \cdot \mathbb{k}\left[P_{\varphi_{\sigma}}\right]$. The same finiteness argument of Lemma 2.24 shows that $\overline{\mathfrak{B}}$ is a finite set. Note this uses the facts (1) at least one $\kappa_{\rho, \varphi} \in J$ and (2) all but a finite number of monomials appearing in \mathfrak{D} lie in I.

We define an equivalence relation on $\overline{\mathfrak{B}}$ by saying $\bar{\gamma}_{1} \sim \bar{\gamma}_{2}$ provided $\psi\left(\bar{\gamma}_{1}\right)$ and $\psi\left(\bar{\gamma}_{2}\right)$ coincide except possibly for the \mathbb{k}-valued coefficients of the monomials attached to the domains of linearity. Given an equivalence class $\xi \subset \overline{\mathfrak{B}}$ with respect to this equivalence relation, we will show there is exactly one broken line γ_{ξ} for the unbarred data such that

$$
\begin{equation*}
\sum_{\bar{\gamma} \in \xi} \psi(\operatorname{Mono}(\bar{\gamma}))=\operatorname{Mono}\left(\gamma_{\xi}\right) \tag{3.4}
\end{equation*}
$$

Furthermore, every broken line γ for the unbarred data with $\operatorname{Mono}(\gamma) \notin I \cdot \mathbb{k}\left[P_{\varphi_{\sigma}}\right]$ arises in this way.

Define γ_{ξ} to be the broken line with underlying piecewise linear map given by any element of ξ, with the following attached monomials. For any domain of linearity
$L=[s, t]$ for γ_{ξ}, choose a maximal subset $\xi_{L} \subset \xi$ of broken lines such that $\left.\bar{\gamma}_{1}\right|_{(-\infty, t]} \neq$ $\left.\bar{\gamma}_{2}\right|_{(-\infty, t]}$ for any $\bar{\gamma}_{1}, \bar{\gamma}_{2} \in \xi_{L}$. Then define

$$
m_{L}\left(\gamma_{\xi}\right)=\sum_{\bar{\gamma} \in \xi_{L}} m_{L}(\psi(\bar{\gamma}))
$$

One checks easily that γ_{ξ} is a broken line, now satisfying (3) of Definition 2.16, and (3.4) is satisfied since for L the last domain of linearity of γ_{ξ}, one takes $\xi_{L}=\xi$. Furthermore, it is easy to see that any broken line for the unbarred data with the same underlying map and attached monomials at most differing by their coefficients from γ_{ξ} must in fact coincide with γ_{ξ}. This shows the claim.

Since the broken lines in $\overline{\mathfrak{B}}$ only involve bending at a finite number of places and crossing rays of Σ only a finite number of times, there is some $k>0$ such that for any $\bar{\gamma} \in \overline{\mathfrak{B}}, \operatorname{Mono}(\bar{\gamma}) \in \mathbb{k}\left[\bar{P}_{\bar{\varphi}_{\tau}}\right]$ does not lie in $\overline{\mathfrak{m}}^{k} \cdot \mathbb{k}\left[\bar{P}_{\bar{\varphi}_{\tau}}\right]$. If we then take $\bar{I}=\overline{\mathfrak{m}}^{k}+\psi^{-1}(I)$, then it is clear from (3.4) that

$$
\psi\left(\overline{\operatorname{Lift}}_{Q}(q)\right)=\operatorname{Lift}_{Q}(q)
$$

where $\overline{\operatorname{Lift}}_{Q}(q)$ is the lift defined with respect to the ideal \bar{I} and the other barred data, and $\operatorname{Lift}_{Q}(q)$ is defined with respect to the unbarred data and the ideal I. Thus if consistency holds for the barred data, it holds for the unbarred data.

Step III. Reduction to the Gross-Siebert locus. As a consequence of Proposition 1.3 and Corollary 3.11, in order to prove Theorem 3.8 (i.e., with $\mathfrak{D}=\mathfrak{D}^{\text {can }}$), we may assume we have a toric model $p:(Y, D) \rightarrow(\bar{Y}, \bar{D})$ with $\bar{D}=\bar{D}_{1}+\cdots+\bar{D}_{n}$. Furthermore, by replacing (Y, D) with a deformation equivalent pair and using Lemma 3.9, we can assume that p is the blowup at distinct points $x_{i j}, 1 \leq j \leq \ell_{i}$, along \bar{D}_{i}, with exceptional divisors $E_{i j}$. Assume D_{i} is the proper transform of \bar{D}_{i}, corresponding to the ray $\rho_{i} \in \Sigma$.

By Proposition 3.12, we can replace P with a better suited choice of monoid. We shall do this as follows in the case that $\mathfrak{D}=\mathfrak{D}^{\text {can }}$. As in Example 3.6, the nef cone $\overline{\mathcal{K}}(Y) \subset$ $A^{1}(Y, \mathbb{R})$ contains a strictly convex rational polyhedral cone σ, so $\sigma^{\vee} \subset A_{1}(Y, \mathbb{R})$ is a strictly convex rational polyhedral cone containing $\mathrm{NE}(Y)$. The map $\eta: \mathrm{NE}(Y) \rightarrow P$ induces a map $\eta: A_{1}(Y, \mathbb{R}) \rightarrow P_{\mathbb{R}}^{\mathrm{gp}}$. Since P is toric, there is some rational polyhedral cone $\sigma_{P} \subset P_{\mathbb{R}}^{\mathrm{gp}}$ such that $P=\sigma_{P} \cap P^{\mathrm{gp}}$. In addition, let H be an ample divisor on \bar{Y}, so that $\mathrm{NE}(Y) \cap\left(p^{*} H\right)^{\perp}$ is a face of $\mathrm{NE}(Y)$, generated by the classes $\left[E_{i j}\right]$. Now take

$$
\sigma_{\bar{P}}=\eta^{-1}\left(\sigma_{P}\right) \cap \sigma^{\vee} \cap\left\{q \in A_{1}(Y, \mathbb{R}) \mid p^{*} H \cdot q \geq 0\right\}
$$

and take

$$
\bar{P}=\sigma_{\bar{P}} \cap A_{1}(Y, \mathbb{Z})
$$

As $\sigma_{\bar{P}}$ is strictly convex, $(\bar{P})^{\times}=\{0\}, \overline{\mathfrak{m}}=\bar{P} \backslash\{0\}$, and if \bar{I} is an $\overline{\mathfrak{m}}$-primary ideal, $\bar{P} \backslash \bar{I}$ is finite. Thus the hypotheses of Theorem 3.8 trivially hold for $\bar{\eta}: \mathrm{NE}(Y) \rightarrow \bar{P}$. By Proposition 3.12, we can replace P with \bar{P} to prove Theorem 3.8,

The above discussion shows that in order to complete a proof of consistency of $\mathfrak{D}^{\text {can }}$, (i.e., Theorem 3.8), we can operate under the following assumptions:

Assumptions 3.13. - There is a toric model

$$
p:(Y, D) \rightarrow(\bar{Y}, \bar{D})
$$

which blows up distinct points $x_{i j}$ on D_{i}, with exceptional divisors $E_{i j}$.

- $\eta: \mathrm{NE}(Y) \rightarrow P$ is an inclusion, and $P^{\times}=\{0\}$. Via Example 2.3, this gives the function φ.
- There is a face of P whose intersection with $\mathrm{NE}(Y)$ is $\mathrm{NE}(Y) \cap\left(p^{*} H\right)^{\perp}$. Let G be the prime monomial ideal given by the complement of this face. Note that $G \neq \mathfrak{m}$ unless p is an isomorphism.
- $J=\mathfrak{m}=P \backslash\{0\}$.
- \mathfrak{D} is a scattering diagram for the data P, φ and J.

We can define:
Definition 3.14. The Gross-Siebert locus is the open torus orbit T^{gs} of $\operatorname{Spec} \mathbb{k}[P] / G$.
We now want to extend our family to the formal completion of Spec $\mathbb{k}[P]$ along the toric boundary stratum associated to G, and then check the explicit equalities in Theorem [3.8 after restricting to the formal thickening of the Gross-Siebert locus. To do so requires showing that the diagram \mathfrak{D} we are working with ($\mathfrak{D}^{\text {can }}$ in this paper) is also a scattering diagram for the data P, η, G. In the case of $\mathfrak{D}^{\text {can }}$, this requires analyzing elements of this scattering diagram supported on the ρ_{i}.

We first perform this analysis for $\mathfrak{D}^{\text {can }}$; we will then continue our proof assuming that \mathfrak{D} shares this property.

For each ray ρ_{i} in Σ, we have a unique ray $\left(\rho_{i}, f_{\rho_{i}}\right) \in \mathfrak{D}^{\text {can }}$ with support ρ_{i}. The following describes $f_{\rho_{i}} \bmod G$.

Lemma 3.15. Given Assumption 3.13 with $\mathfrak{D}=\mathfrak{D}^{\text {can }}$, viewing $f_{\rho_{i}}$ as an element of $\mathbb{k}\left[P_{\varphi_{\rho_{i}}}\right] \otimes R_{I}$ with $\sqrt{I}=\mathfrak{m}$, we have

$$
f_{\rho_{i}}=g_{\rho_{i}} \prod_{j=1}^{\ell_{i}}\left(1+b_{i j} X_{i}^{-1}\right)
$$

where $b_{i j}=z^{\eta\left(\left[E_{i j}\right]\right)}$ and $g_{\rho_{i}} \equiv 1 \bmod G$. The $j^{\text {th }}$ term of the product is the contribution from \mathbb{A}^{1}-classes coming from multiple covers of the p-exceptional divisor $E_{i j}$, and $g_{\rho_{i}}$ is the product of contributions from all other \mathbb{A}^{1}-classes.

Proof. Note that in defining $f_{\rho_{i}}$ using the definition of the canonical scattering diagram, we take $\tilde{Y}=Y$. Now the only terms that contribute to $f_{\rho_{i}} \bmod G$ will involve classes $\beta \in \operatorname{NE}(Y) \subset A_{1}(Y)$ with $\eta(\beta) \notin G$, so in particular, such a β must be a linear combination $\sum_{j=1}^{\ell_{i}} c_{j}\left[E_{i j}\right]$, with $k_{\beta}=\sum c_{j}$. Furthermore, if $f: C \rightarrow Y$ contributes to $N_{\beta}, f(C)$ must be contained in $\bigcup_{i, j} E_{i j}$. Indeed, if $f(C)$ has an irreducible component D not contained in this set, then $\eta([D]) \in G$, so $\eta\left(f_{*}([C])\right) \in G$, as G is an ideal. But $\eta\left(f_{*}([C])\right)=\eta(\beta)$, which we have assumed is not an element of G.

Since $f(C)$ is connected and intersects D_{i}, we now see that the image of f is $E_{i j}$ for some j, and in particular, f is a degree k_{β} cover of $E_{i j}$. Then Theorem 6.1 of GPS09, tells us that the contribution from k_{β}-fold multiple covers of $E_{i j}$ is $(-1)^{k_{\beta}-1} / k_{\beta}^{2}$. From this we conclude that

$$
\begin{aligned}
f_{\rho_{i}} & =\exp \left(h+\sum_{k=1}^{\infty} \sum_{j=1}^{\ell_{i}} k\left(\frac{(-1)^{k-1}}{k^{2}}\right)\left(b_{i j} X_{i}^{-1}\right)^{k}\right) \\
& =\exp (h) \prod_{j=1}^{\ell_{i}}\left(1+b_{i j} X_{i}^{-1}\right)
\end{aligned}
$$

where $h \equiv 0 \bmod G$. We take $g_{\rho_{i}}=\exp (h)$.
Corollary 3.16. $\mathfrak{D}^{\text {can }}$ is a scattering diagram for the data $(B, \Sigma), P, \varphi$ and G.
Proof. Fixing an $I \subset P$ with $\sqrt{I}=G$, there exists a bound n such that $q \in P \backslash I$ implies $q \cdot p^{*} H<n$, where H is a fixed ample divisor on \bar{Y}. Thus if β is an \mathbb{A}^{1}-class with $\eta\left(\pi_{*}(\beta)\right) \in P \backslash I$, there are only a finite number of choices for $p_{*} \pi_{*} \beta$, and for each of these choices, there are only a finite number of choices of $\pi_{*} \beta$, except when $\pi_{*} \beta$ is a multiple of some $E_{i j}$. This shows condition (4) in Definition 2.13 of scattering diagrams, as well as condition (2). Note that $\kappa_{\rho_{i}, \varphi}=\left[D_{i}\right] \in G$ for each i so condition (3) is vacuous for $\operatorname{dim} \tau_{\mathfrak{0}}=1$. If $\operatorname{dim} \tau_{\mathfrak{0}}=2$, any contributing \mathbb{A}^{1}-class β satisfies $\pi_{*} \beta \in G$, so (3) holds.

Theorem 3.17. We follow the above notation. If $\mathfrak{D}^{\text {can }}$ is consistent as a scattering diagram for $(B, \Sigma), P, \varphi$, and G, then Theorem 3.8 is true.

Proof. This just follows from the series of reductions of Theorem 3.8 already made and the observation that if I^{\prime} is an \mathfrak{m}-primary ideal, then since $G \subset \mathfrak{m}$ one can find some k such that $k G \subset I^{\prime}$. To show consistency holds for the ideal I^{\prime}, we use the assumed consistency to observe consistency holds for the ideal $I=k G$, and this gives the desired result.

Remark 3.18. Given a consistent scattering diagram \mathfrak{D} for $(B, \Sigma), P, \varphi$, and G, and $\kappa_{\rho, \varphi} \in G$ for all rays $\rho \in \Sigma$, Theorem [2.26] shows that with $\sqrt{I}=G$,

$$
X_{I}:=\operatorname{Spec} \Gamma\left(X_{I, \mathfrak{D}}^{o}, \mathcal{O}_{X_{I, \mathfrak{D}}^{o}}^{o}\right)
$$

is flat over Spec $\mathbb{k}[P] / I$, and $X_{G}=\mathbb{V}_{n} \times \operatorname{Spec} \mathbb{k}[P] / G$.
Let $T^{\mathrm{gs}} \subset$ Spec $\mathbb{k}[P] / G$ be the Gross-Siebert locus, Definition 3.14] Note T^{gs} determines open subschemes of the thickenings $\operatorname{Spec} \mathbb{k}[P] / I$, which we will shall denote by T_{I}^{gs}.

We can describe the subscheme T_{I}^{gs} of $\operatorname{Spec} \mathbb{k}[P] / I$ as follows. Let $E \subset P^{\mathrm{gp}}$ be the lattice generated by the face $P \backslash G$. Then as a subset of Spec $\mathbb{k}[P] / G, T^{\mathrm{gs}} \cong \operatorname{Spec} \mathbb{k}[E]$. Furthermore, if we take the localization $P+E$ of P along the face $P \backslash G$, then T_{I}^{gs} as a subscheme of $\operatorname{Spec} \mathbb{k}[P] / I$ is $\operatorname{Spec} \mathbb{k}[P+E] /(I+E)$.

Note that $\mathfrak{m}_{P+E}=(P+E) \backslash E$, and $G=P \cap \mathfrak{m}_{P+E}$, so we can write $\mathbb{k}[E]=$ $\mathbb{k}[P+E] / \mathfrak{m}_{P+E}$.

We can now view φ as a multi-valued strictly $(P+E)$-convex function. Then we have the following obvious

Lemma 3.19. Suppose \mathfrak{D} is a consistent scattering diagram for the data $(B, \Sigma), P+E$, $\varphi, \mathfrak{m}_{P+E}$, and a scattering diagram for the data $(B, \Sigma), P, \varphi$, and G. Then \mathfrak{D} is also consistent as a scattering diagram for the latter data. In particular, by Theorem 3.17, Theorem 3.8 holds if $\mathfrak{D}^{\text {can }}$ is consistent as a scattering diagram for $P+E, \mathfrak{m}_{P+E}$.

For $\bar{I} \subset \mathfrak{m}_{P+E}$ an ideal with $\sqrt{\bar{I}}=\mathfrak{m}_{P+E}$, and $I=\bar{I} \cap P$, then $X_{I, \mathfrak{D}}^{o}$, which is flat over Spec $\mathbb{k}[P] / I$, when restricted to the open set $\operatorname{Spec} \mathbb{k}[P+E] / \bar{I}$ gives the flat family $X_{\bar{I}, \mathfrak{D}}^{o}$.

We now replace P by $P+E$ and J by \mathfrak{m}_{P+E} in what follows. We now summarize our current situation with the following assumptions:

Assumptions 3.20. - There is a toric model

$$
p:(Y, D) \rightarrow(\bar{Y}, \bar{D})
$$

which blows up distinct points $x_{i j}$ on $D_{i}, 1 \leq j \leq \ell_{i}$, with exceptional divisors $E_{i j}$.

- $\eta: \mathrm{NE}(Y) \rightarrow P$ is an inclusion. Via Example 2.3, this gives the function φ. $E=P^{\times}=P \cap\left(p^{*} H\right)^{\perp}$ is generated by the classes of exceptional curves of p. Let $G=P \backslash E=\mathfrak{m}_{P}$.
- \mathfrak{D} is a scattering diagram for the data P, φ and G. Furthermore, for each ray $\rho_{i} \in \Sigma$, the unique outgoing ray $\left(\rho_{i}, f_{\rho_{i}}\right) \in \mathfrak{D}$ satisfies

$$
f_{\rho_{i}}=g_{\rho_{i}} \prod_{j=1}^{\ell_{i}}\left(1+b_{i j} X_{i}^{-1}\right)
$$

with $g_{\rho_{i}} \equiv 1 \bmod G$ and $b_{i j}=z^{\left[E_{i j}\right]}$.
We note we have shown that $\mathfrak{D}=\mathfrak{D}^{\text {can }}$ achieves these assumptions.
Step IV. Pushing the singularities to infinity. We work with Assumptions 3.20, Consider the tropicalisation $(\bar{B}, \bar{\Sigma})$ of (\bar{Y}, \bar{D}). By Example 1.7. \bar{B} in fact has no singularity at the origin, and is affine isomorphic to $M_{\mathbb{R}}=\mathbb{R}^{2}$ (with $M=\mathbb{Z}^{2}$), while $\bar{\Sigma}$ is precisely the fan for \bar{Y}. In order to distinguish between constructions on (Y, D) and (\bar{Y}, \bar{D}), we decorate all existing notation with bars. For example, if $\tau \in \Sigma$, denote the corresponding cone of $\bar{\Sigma}$ by $\bar{\tau}$. Let $\bar{\varphi}$ be the multi-valued $P_{\mathbb{R}}^{\mathrm{gp}}$-valued function on \bar{B} such that

$$
\kappa_{\bar{\rho}, \bar{\varphi}}=p^{*}\left[\bar{D}_{\bar{\rho}}\right] .
$$

Note that by Lemma 1.13, we can assume $\bar{\varphi}$ is in fact a single-valued function on $M_{\mathbb{R}}$. This single-valuedness will be important to be able to apply the method of Kontsevich and Soibelman, Lemma 3.23

We now have sheaves $\overline{\mathcal{P}}$ on \bar{B}_{0} and \mathcal{P} on B_{0}, induced by the two functions $\bar{\varphi}$ and φ respectively.

Note that since $\bar{\varphi}$ is single-valued and \bar{B} has no singularities, $\overline{\mathcal{P}}$ is the constant sheaf with fibre $P^{\mathrm{gp}} \oplus M$.

There is a canonical piecewise linear map

$$
\nu: B \rightarrow \bar{B}
$$

which restricts to an integral affine isomorphism $\left.\nu\right|_{\sigma}: \sigma \rightarrow \bar{\sigma}$, where $\sigma \in \Sigma_{\max }$ and $\bar{\sigma} \in \bar{\Sigma}_{\text {max }}$ is the corresponding cell of $\bar{\Sigma}$. Note this map identifies $B(\mathbb{Z})$ with $\bar{B}(\mathbb{Z})$.

For each maximal cone $\sigma \in \Sigma_{\max }$, the derivative ν_{*} of ν induces a canonical identification of $\Lambda_{B, \sigma}$ with $\Lambda_{\bar{B}, \bar{\sigma}}$. This then gives an induced isomorphism of monoids:

$$
\begin{equation*}
\tilde{\nu}_{\sigma}: P_{\varphi_{\sigma}} \rightarrow P_{\bar{\varphi}_{\bar{\sigma}}} \tag{3.5}
\end{equation*}
$$

given by

$$
\varphi_{\sigma}(m)+p \mapsto \bar{\varphi}_{\bar{\sigma}}\left(\nu_{*}(m)\right)+p,
$$

for $p \in P$ and $m \in \Lambda_{\sigma}$. This identifies the $\mathbb{k}[P]$-algebras $\mathbb{k}\left[P_{\varphi_{\sigma}}\right]$ and $\mathbb{k}\left[P_{\bar{\varphi}_{\bar{\sigma}}}\right]$, and the completions $\widehat{\mathbb{k}\left[P_{\varphi_{\sigma}}\right]}$ and $\widehat{\mathbb{k}\left[P_{\bar{\varphi}_{\bar{\sigma}}}\right]}$.

Because the map ν is only piecewise linear around rays $\rho \in \Sigma$, there is only a piecewise linear identification of $P_{\varphi_{\rho}}$ with $P_{\bar{\varphi} \overline{\bar{p}}}$ and hence no identification of the corresponding rings. However, ν_{*} is still defined on the tangent space to ρ, and there is an identification

$$
\tilde{\nu}_{\rho}:\left\{\varphi_{\rho}(m)+p \mid m \text { is tangent to } \rho, p \in P\right\} \rightarrow\left\{\bar{\varphi}_{\bar{\rho}}(m)+p \mid m \text { is tangent to } \bar{\rho}, p \in P\right\}
$$

given by

$$
\varphi_{\rho}(m)+p \mapsto \bar{\varphi}_{\bar{\rho}}\left(\nu_{*}(m)\right)+p
$$

We now explain the Kontsevich-Soibelman lemma. This has to do with scattering diagrams on the smooth affine surface $M_{\mathbb{R}}=\mathbb{R}^{2}$ (such as $\left.\bar{B}=B_{(\bar{Y}, \bar{D})}\right)$. For this general discussion, we fix the data of a monoid Q which comes along with a map $r: Q \rightarrow M$. Let $\mathfrak{m}_{Q}=Q \backslash Q^{\times}$, and let $\widehat{\mathbb{k}[Q]}$ denote the completion of $\mathbb{k}[Q]$ with respect to the monomial ideal \mathfrak{m}_{Q}. (In our application we take $Q=P_{\bar{\varphi}}$ as defined in (1.2).)

We can then consider a variant of the notion of scattering diagram:
Definition 3.21. We define a scattering diagram for the pair $Q, r: Q \rightarrow M$. This is a set

$$
\mathfrak{D}=\left\{\left(\mathfrak{d}, f_{\mathfrak{d}}\right)\right\}
$$

where

- $\mathfrak{d} \subset M_{\mathbb{R}}$ is given by

$$
\mathfrak{d}=-\mathbb{R}_{\geq 0} m_{0}
$$

if \mathfrak{d} is an outgoing ray and

$$
\mathfrak{d}=\mathbb{R}_{\geq 0} m_{0}
$$

if \mathfrak{d} is an incoming ray, for some $m_{0} \in M \backslash\{0\}$.

- $f_{\mathfrak{0}} \in \widehat{\mathbb{k}[Q]}$.
- $f_{\mathfrak{d}} \equiv 1 \bmod \mathfrak{m}_{Q}$.
- $f_{\mathfrak{o}}=1+\sum_{p} c_{p} z^{p}$ for $c_{p} \in \mathbb{k}, r(p) \neq 0$ a positive multiple of m_{0}.
- For any $k>0$, there are only a finite number of rays $\left(\mathfrak{d}, f_{\mathfrak{d}}\right) \in \mathfrak{D}$ with $f_{\mathfrak{d}} \not \equiv 1$ $\bmod \mathfrak{m}_{Q}^{k}$.

Definition 3.22. Given a loop γ in $M_{\mathbb{R}}$ around the origin, we define the path ordered product

$$
\theta_{\gamma, \mathfrak{D}}: \widehat{\mathbb{k}[Q]} \rightarrow \widehat{\mathbb{k}[Q]}
$$

as follows. For each $k>0$, let $\mathfrak{D}[k] \subset \mathfrak{D}$ be the subset of rays $\left(\mathfrak{d}, f_{\mathfrak{D}}\right) \in \mathfrak{D}$ with $f_{\mathfrak{D}} \not \equiv 1$ $\bmod \mathfrak{m}_{Q}^{k}$. This set is finite. For $\mathfrak{d} \in \mathfrak{D}[k]$ with $\gamma\left(t_{0}\right) \in \mathfrak{d}$, define

$$
\theta_{\gamma, \mathfrak{d}}^{k}: \mathbb{k}[Q] / \mathfrak{m}_{Q}^{k} \rightarrow \mathbb{k}[Q] / \mathfrak{m}_{Q}^{k}
$$

by

$$
\theta_{\gamma, \mathfrak{d}}^{k}\left(z^{q}\right)=z^{q} f_{\mathfrak{d}}^{\left\langle n_{\mathfrak{d}}, r(q)\right\rangle}
$$

for $n_{\mathfrak{d}} \in M^{*}$ primitive satisfying, with m a non-zero tangent vector of \mathfrak{d},

$$
\left\langle n_{\mathfrak{d}}, m\right\rangle=0, \quad\left\langle n_{\mathfrak{d}}, \gamma^{\prime}\left(t_{0}\right)\right\rangle<0
$$

Then, if γ crosses the rays $\mathfrak{d}_{1}, \ldots, \mathfrak{d}_{n}$ in order with $\mathfrak{D}[k]=\left\{\mathfrak{d}_{1}, \ldots, \mathfrak{d}_{n}\right\}$, we can define

$$
\theta_{\gamma, \mathfrak{D}}^{k}=\theta_{\gamma, \mathfrak{o}_{n}}^{k} \circ \cdots \circ \theta_{\gamma, \mathfrak{D}_{1}}^{k} .
$$

We then define $\theta_{\gamma, \mathfrak{D}}$ by taking the limit as $k \rightarrow \infty$.
The following is a slight generalisation of a result of Kontsevich and Soibelman which appeared in KS06.

Theorem 3.23. Let \mathfrak{D} be a scattering diagram in the sense of Definition 3.21, Then there is another scattering diagram Scatter(\mathfrak{D}) containing \mathfrak{D} such that $\operatorname{Scatter}(\mathfrak{D}) \backslash \mathfrak{D}$ consists only of outgoing rays and $\theta_{\gamma, \operatorname{Scatter}(\mathfrak{D})}$ is the identity.

For a proof of this theorem essentially as stated here, see GPS09, Theorem 1.4. The result is unique if $\operatorname{Scatter}(\mathfrak{D}) \backslash \mathfrak{D}$ has at most one ray in each possible direction; we shall assume Scatter($(\mathfrak{D) ~ h a s ~ b e e n ~ c h o s e n ~ t o ~ h a v e ~ t h i s ~ p r o p e r t y . ~ T h i s ~ c a n ~ a l w a y s ~ b e ~}$ done.

We apply this in the following situation. We take Q to be the monoid $P_{\bar{\varphi}}$ which yields the Mumford degeneration associated to the data $(\bar{B}, \bar{\Sigma})$, $\bar{\varphi}$ (recalling $\bar{B}=M_{\mathbb{R}}$), defined by

$$
P_{\bar{\varphi}}=\{(m, \bar{\varphi}(m)+p) \mid m \in M, p \in P\} \subset M \times P^{\mathrm{gp}}
$$

This comes with a canonical map $r: P_{\bar{\varphi}} \rightarrow M$ by projection.
Definition 3.24. Suppose we are in the situation of Assumptions 3.20. We define a scattering diagram $\nu(\mathfrak{D})$ on \bar{B} as follows. For every ray $\left(\mathfrak{d}, f_{\mathfrak{D}}\right) \in \mathfrak{D}$ not equal to $\left(\rho_{i}, f_{\rho_{i}}\right)$ for some $i, \nu(\mathfrak{D})$ contains the ray $\left(\nu(\mathfrak{d}), \tilde{\nu}_{\tau_{\mathfrak{D}}}\left(f_{\mathfrak{d}}\right)\right)$, and for each ray $\left(\rho_{i}, f_{\rho_{i}}\right)$, $\nu(\mathfrak{D})$ contains two rays, $\left(\bar{\rho}_{i}, \tilde{\nu}_{\tau_{0}}\left(g_{\rho_{i}}\right)\right)$ and $\left(\bar{\rho}_{i}, \prod_{j=1}^{\ell_{i}}\left(1+b_{i j}^{-1} \bar{X}_{i}\right)\right)$.

We note that $\nu(\mathfrak{D})$ may not actually be a scattering diagram in the sense of Definition 3.21, as it is possible that $f_{\mathcal{O}} \notin \widehat{\mathbb{k}\left[P_{\bar{\varphi}}\right]}$: if $p \in P_{\varphi_{\tau}}$, then $\tilde{\nu}_{\tau}(p) \in P_{\bar{\varphi}_{\tau}}$ but need not lie in $P_{\bar{\varphi}}$.

In the case of $\mathfrak{D}=\mathfrak{D}^{\text {can }}$, we can use the Kontsevich-Soibelman lemma to describe $\nu\left(\mathfrak{D}^{\text {can }}\right)$. This will both show that $\nu\left(\mathfrak{D}^{\text {can }}\right)$ is a scattering diagram in the sense of

Definition 3.21 and that it satisfies an important additional property which will allow us to prove consistency. Let

$$
\begin{equation*}
\overline{\mathfrak{D}}_{0}=\left\{\left(\bar{\rho}_{i}, \prod_{j=1}^{\ell_{i}}\left(1+b_{i j}^{-1} \bar{X}_{i}\right)\right) \mid 1 \leq i \leq n\right\} . \tag{3.6}
\end{equation*}
$$

Let $\mathfrak{m}_{\bar{\varphi}}=P_{\bar{\varphi}} \backslash P_{\bar{\varphi}}^{\times}$as usual. Then by the strict convexity of $\bar{\varphi}, \bar{X}_{i} \in \mathfrak{m}_{\bar{\varphi}}$ so that $\overline{\mathfrak{D}}_{0}$ is a scattering diagram for the pair $P_{\bar{\varphi}}, r$ in the sense of Definition 3.21] Now define

$$
\overline{\mathfrak{D}}:=\operatorname{Scatter}\left(\overline{\mathfrak{D}}_{0}\right)
$$

where we require $\overline{\mathfrak{D}} \backslash \overline{\mathfrak{D}}_{0}$ to have only one outgoing ray in each direction (and no incoming rays).

The following will be Step V, which we defer until 3.4
Theorem 3.25. $\overline{\mathfrak{D}}=\nu\left(\mathfrak{D}^{\text {can }}\right)$. In particular, $\nu\left(\mathfrak{D}^{\text {can }}\right)$ is a scattering diagram in the sense of Definition 3.21 and $\theta_{\gamma, \overline{\mathcal{D}}} \equiv 1$ for a loop γ around the origin.

Example 3.26. Continuing with Example 3.7 note that the pair (Y, D) can be obtained from the toric pair (\bar{Y}, \bar{D}) defined by the fan $\bar{\Sigma}$ with rays generated by $(1,0)$, $(1,1),(0,1),(-1,0)$ and $(0,-1)$, corresponding to $\bar{D}_{1}, \ldots, \bar{D}_{5}$, by blowing up one point on each of \bar{D}_{4} and \bar{D}_{5}. This description determines $\overline{\mathfrak{D}}_{0}$ and hence $\overline{\mathfrak{D}}$. One can check this description agrees with that given in Example 3.7 for $\mathfrak{D}^{\text {can }}$, see e.g. GPS09, Example 1.6 for a similar computation.

Returning to the situation of Assumptions [3.20, suppose in addition that $\nu(\mathfrak{D})$ is a scattering diagram in the sense of Definition [3.21. (For example, by Theorem 3.25, $\mathfrak{D}=\mathfrak{D}^{\text {can }}$ satisfies these assumptions.) For $I \subset P$ an ideal with $\sqrt{I}=J$, we now have deformations $X_{I, \mathfrak{D}}^{o}$ and $\bar{X}_{I, \nu(\overline{\mathfrak{D}})}^{o}$. The latter scheme is glued from open sets

$$
\bar{U}_{\bar{\rho}, I}=\operatorname{Spec} \bar{R}_{\bar{\rho}, I}
$$

along open sets identified with $\operatorname{Spec} \bar{R}_{\bar{\sigma}, I}$. Here we are decorating the rings coming from the data on \bar{B} with bars as before, while we maintain the notation $R_{\rho, I}$, etc., for those rings coming from the data on B.

Lemma 3.27. Given Assumptions 3.20, assume also that $\nu(\mathfrak{D})$ is a scattering diagram in the sense of Definition 3.21. Then there are isomorphisms

$$
p_{i}: R_{\rho_{i}, I} \rightarrow \bar{R}_{\bar{\rho}_{i}, I}
$$

and

$$
p_{i-1, i}: R_{\sigma_{i-1, i}, I} \rightarrow \bar{R}_{\bar{\sigma}_{i-1, i}, I}
$$

for all i such that the diagrams

and

are commutative, where γ is any path in $\sigma_{i-1, i}$ for which $\theta_{\gamma, \mathfrak{D}}$ is defined, and $\bar{\gamma}=\nu \circ \gamma$.
Consequently, the maps p_{i} and $p_{i-1, i}$ induce an isomorphism

$$
p: X_{I, \mathfrak{D}}^{o} \rightarrow \bar{X}_{I, \nu(\mathfrak{D})}^{o}
$$

over $\operatorname{Spec} \mathbb{k}[P] / I$.
Proof. Recall that

$$
\begin{align*}
R_{\rho, I} & =\frac{R_{I}\left[X_{i-1}, X_{i}^{ \pm}, X_{i+1}\right]}{\left(X_{i-1} X_{i+1}-z^{\eta\left(\left[D_{i}\right]\right)} X_{i}^{-D_{i}^{2}} g_{\rho_{i}} \prod_{j=1}^{\ell_{i}}\left(1+b_{i j} X_{i}^{-1}\right)\right)} \tag{3.7}\\
\bar{R}_{\rho, I} & =\frac{R_{I}\left[\bar{X}_{i-1}, \bar{X}_{i}^{ \pm}, \bar{X}_{i+1}\right]}{\left(\bar{X}_{i-1} \bar{X}_{i+1}-z^{\eta\left(p^{*}\left[\bar{D}_{i}\right]\right)} \bar{X}_{i}^{-\bar{D}_{i}^{2}} \bar{g}_{\rho_{i}} \prod_{j=1}^{\ell_{i}}\left(1+b_{i j}^{-1} \bar{X}_{i}\right)\right)} \tag{3.8}
\end{align*}
$$

We simply define p_{i} to be the identity on R_{I} and $p_{i}\left(X_{j}\right)=\bar{X}_{j}$. This makes sense since $D_{i}^{2}=\bar{D}_{i}^{2}-\ell_{i}$ and $\left[D_{i}\right]=p^{*}\left[\bar{D}_{i}\right]-\sum_{j=1}^{\ell_{i}} E_{i j}$, so that

$$
\begin{aligned}
p_{i}\left(z^{\eta\left(\left[D_{i}\right]\right)} X_{i}^{-D_{i}^{2}} \prod_{j=1}^{\ell_{i}}\left(1+b_{i j} X_{i}^{-1}\right)\right) & =z^{\eta\left(p^{*}\left[\bar{D}_{i}\right]\right)} \bar{X}_{i}^{-\bar{D}_{i}^{2}}\left(\prod_{j=1}^{\ell_{i}} b_{i j}^{-1} \bar{X}_{i}\right)\left(\prod_{j=1}^{\ell_{i}}\left(1+b_{i j} \bar{X}_{i}^{-1}\right)\right) \\
& =z^{\eta\left(p^{*}\left[\bar{D}_{i}\right]\right)} \bar{X}_{i}^{-\bar{D}_{i}^{2}} \prod_{j=1}^{\ell_{i}}\left(1+b_{i j}^{-1} \bar{X}_{i}\right) .
\end{aligned}
$$

The map $p_{i-1, i}$ is induced by $\tilde{\nu}_{\sigma_{i-1, i}}$ defined in (3.5). It is then straightforward to check the commutativity of the three diagrams.

Lemma 3.28. Given Assumptions 3.20, suppose $\nu(\mathfrak{D})$ a scattering diagram in the sense of Definition 3.21. For $Q \in \sigma_{i-1, i}$, we distinguish between

$$
\operatorname{Lift}_{Q}(q) \in R_{\sigma_{i-1, i}, I}
$$

for the lift of $q \in B_{0}(\mathbb{Z})$ and

$$
\operatorname{Lift}_{\nu(Q)}(\nu(q)) \in \bar{R}_{\bar{\sigma}_{i-1, i}, I}
$$

the lift of $\nu(q)$. Then
(1) $p_{i-1, i}\left(\operatorname{Lift}_{Q}(q)\right)=\operatorname{Lift}_{\nu(Q)}(\nu(q))$.
(2) Under the natural identifications $\left(P_{\bar{\varphi}_{\tau}}\right)^{\mathrm{gp}}=\left(P_{\bar{\varphi}}\right)^{\mathrm{gp}}$, for $\tau \in \bar{\Sigma} \backslash\{0\}, P_{\bar{\varphi}} \subset P_{\bar{\varphi}_{\tau}}$, and for any broken line γ for q, $\operatorname{Mono}(\gamma) \in \mathbb{k}\left[P_{\bar{\varphi}}\right]$.
(3) ν induces a bijection between broken lines: If $\gamma:(-\infty, 0] \rightarrow B_{0}$ is a broken line in B_{0}, then $\nu \circ \gamma$ is a broken line in \bar{B}_{0}, and conversely, if $\bar{\gamma}:(-\infty, 0] \rightarrow \overline{\mathcal{P}}$ is a broken line in \bar{B}_{0}, then $\nu^{-1} \circ \bar{\gamma}$ is a broken line in B_{0}.

Proof. (3) implies (1). For (3), clearly it is enough to compare bending and attached monomials of broken lines near a ray ρ_{i}.

Consider a broken line γ in B_{0} passing from $\sigma_{i-1, i}$ to $\sigma_{i, i+1}$, and let $c z^{q}$ be the monomial attached to the broken line before it crosses over ρ_{i}, so that $q \in P_{\varphi_{\sigma_{i-1, i}}}$. Let $\theta_{\rho_{i}}, \bar{\theta}_{\bar{\rho}_{i}}$ be defined by

$$
\begin{aligned}
& \theta_{\rho_{i}}\left(z^{p}\right):=z^{p} f_{\rho_{i}}^{\langle n, r(p)\rangle} \\
& \bar{\theta}_{\bar{\rho}_{i}}\left(z^{p}\right):=z^{p}\left(\bar{g}_{\rho_{i}} \prod_{j=1}^{\ell_{i}}\left(1+b_{i j}^{-1} \bar{X}_{i}\right)\right)^{\langle\bar{n}, \bar{r}(p)\rangle}
\end{aligned}
$$

where $\left(\bar{\rho}_{i}, \bar{g}_{\rho_{i}}\right) \in \nu(\mathfrak{D})$ is the outgoing ray with support $\bar{\rho}_{i}$. Here n, \bar{n} are primitive cotangent vectors vanishing on tangent vectors to $\rho_{i}, \bar{\rho}_{i}$ and positive on $\sigma_{i-1, i}, \bar{\sigma}_{i-1, i}$ respectively. Then we need to show that

$$
\begin{equation*}
p_{i, i+1}\left(\theta_{\rho_{i}}\left(c z^{q}\right)\right)=\bar{\theta}_{\bar{\rho}_{i}}\left(p_{i-1, i}\left(c z^{q}\right)\right) \tag{3.9}
\end{equation*}
$$

to get the correspondence between broken lines.
Note that

$$
p_{i-1, i}\left(X_{i-1}\right)=\bar{X}_{i-1}, \quad p_{i, i-1}\left(X_{i}\right)=\bar{X}_{i}, \quad p_{i, i+1}\left(X_{i}\right)=\bar{X}_{i}
$$

but to compute $p_{i, i+1}\left(X_{i-1}\right)$, we need to use the relation (see Proposition 2.5)

$$
X_{i-1} X_{i+1}=z^{\eta\left(\left[D_{i}\right]\right)} X_{i}^{-D_{i}^{2}}
$$

in $\mathbb{k}\left[P_{\varphi_{\rho_{i}}}\right]$ to write

$$
X_{i-1}=z^{\eta\left(\left[D_{i}\right]\right)} X_{i}^{-D_{i}^{2}} X_{i+1}^{-1}
$$

On the other hand, one has the relation

$$
\bar{X}_{i-1} \bar{X}_{i+1}=z^{\eta\left(p^{*}\left[\bar{D}_{i}\right]\right)} \bar{X}_{i}^{-\bar{D}_{i}^{2}}
$$

in $\mathbb{k}\left[P_{\bar{\varphi}_{\bar{p}_{i}}}\right]$, so

$$
\begin{aligned}
p_{i, i+1}\left(X_{i-1}\right) & =z^{\eta\left(\left[D_{i}\right]-p^{*}\left[\bar{D}_{i}\right]\right)} \bar{X}_{i}^{-D_{i}^{2}+\bar{D}_{i}^{2}} \bar{X}_{i-1} \\
& =\bar{X}_{i}^{\ell_{i}} \bar{X}_{i-1} \prod_{j=1}^{\ell_{i}} b_{i j}^{-1} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
p_{i, i+1}\left(\theta_{\rho_{i}}\left(X_{i-1}\right)\right) & =p_{i, i+1}\left(X_{i-1} f_{\rho_{i}}\right) \\
& =\bar{X}_{i}^{\ell_{i}} \bar{X}_{i-1}\left(\prod_{j=1}^{\ell_{i}} b_{i j}^{-1}\right)\left(\prod_{j=1}^{\ell_{i}}\left(1+b_{i j} \bar{X}_{i}^{-1}\right)\right) \bar{g}_{\rho_{i}} \\
& =\bar{X}_{i-1} \bar{g}_{\rho_{i}} \prod_{j=1}^{\ell_{i}}\left(1+b_{i j}^{-1} \bar{X}_{i}\right) \\
& =\bar{\theta}_{\bar{\rho}_{i}}\left(p_{i-1, i}\left(X_{i-1}\right)\right)
\end{aligned}
$$

as desired. Also,

$$
p_{i, i+1}\left(\theta_{\rho_{i}}\left(X_{i}\right)\right)=\bar{X}_{i}=\bar{\theta}_{\bar{\rho}_{i}}\left(p_{i-1, i}\left(\bar{X}_{i}\right)\right) .
$$

Thus (3.9) holds. This shows (3).
For (2), the statement that $P_{\bar{\varphi}} \subset P_{\bar{\varphi}_{\tau}}$ is obvious. For $q \in \sigma \in \Sigma$, by definition the monomial attached to the first domain of linearity of a broken line for q is $z^{\varphi_{\sigma}(q)}$, which is identified under $\tilde{\nu}_{\sigma}$ with $z^{(\nu(q), \bar{\varphi}(\mu(q)))} \in \mathbb{k}\left[P_{\bar{\varphi}}\right]$. For any $\left(\mathfrak{d}, f_{\mathfrak{d}}\right) \in \nu(\mathfrak{D}), f_{\mathfrak{d}} \in \widehat{\mathbb{k}\left[P_{\bar{\varphi}}\right]}$ by assumption, and hence all monomials associated to broken lines in \bar{B}_{0} lie in $\mathbb{k}\left[P_{\bar{\varphi}}\right]$, hence (2).

Definition 3.29. Let $\overline{\mathfrak{D}}$ be a scattering diagram in the sense of Definition 3.21 for the pair $P, r: P \rightarrow M$ for some toric monoid P. Let $I \subset P$ be an ideal with $\sqrt{I}=\mathfrak{m}_{P}$. We define for $q \in \bar{B}_{0}(\mathbb{Z})$ and $Q \in \bar{B}_{0}$,

$$
\operatorname{Lift}_{Q}(q)=\sum \operatorname{Mono}(\gamma) \in \mathbb{k}[P] / I
$$

where the sum is over all broken lines γ for q with endpoint Q in \bar{B}_{0} with respect to the scattering diagram $\overline{\mathfrak{D}}$. One sees easily as in Lemma [2.24] that this is a finite sum.

The last crucial result we need for consistency is the following result of CPS.
Theorem 3.30. With the assumptions of Definition 3.29, suppose furthermore that $\theta_{\gamma, \overline{\mathcal{B}}} \equiv 1$ for a loop γ around the origin. Fix an ideal $I \subset P$ with $\sqrt{I}=\mathfrak{m}_{P}$ and $q \in \bar{B}_{0}(\mathbb{Z})$. If $Q, Q^{\prime} \in M_{\mathbb{R}} \backslash \operatorname{Supp}\left(\overline{\mathfrak{D}}_{I}\right)$ are general, and γ is a path connecting Q and Q^{\prime} for which $\theta_{\gamma, \overline{\mathfrak{D}}_{I}}$ is defined, then

$$
\operatorname{Lift}_{Q^{\prime}}(q)=\theta_{\gamma, \overline{\mathfrak{D}}_{I}}\left(\operatorname{Lift}_{Q}(q)\right)
$$

as elements of $\mathbb{k}[P] / I$.
Proof. This is shown in [CPS in a rather more general setup. For a version of the argument closer to the current setup, see the proof of Theorem 5.35 of G11.

Proof of Theorem 3.8. By Lemmas 3.15 and 3.19 we can assume we are in the situation of Assumptions 3.20 with $\mathfrak{D}=\mathfrak{D}^{\text {can }}$. In checking (1) of Definition 2.25 for $\mathfrak{D}^{\text {can }}$ in this situation, we want to check equalities

$$
\operatorname{Lift}_{Q^{\prime}}(q)=\theta_{\gamma, \mathfrak{D}^{\text {can }}}\left(\operatorname{Lift}_{Q}(q)\right)
$$

for $Q, Q^{\prime} \in \sigma_{i-1, i}$. By Lemmas 3.27 and 3.28, it is sufficient to show that

$$
\begin{equation*}
\operatorname{Lift}_{\nu\left(Q^{\prime}\right)}(\nu(q))=\theta_{\bar{\gamma}, \nu(\mathfrak{D})}\left(\operatorname{Lift}_{\nu(Q)}(\nu(q))\right) . \tag{3.10}
\end{equation*}
$$

To check this equality we can compare coefficients of monomials, and given any monomial z^{p} appearing on the left- or right-hand sides, we can apply Theorems 3.25 and 3.30, where we take $P=P_{\bar{\varphi}}, I=\mathfrak{m}_{P_{\bar{\varphi}}}^{k}$ for sufficiently large k so that $p \notin I$. The hypothesis $\theta_{\gamma, \nu(\mathfrak{D})} \equiv 1$ of Theorem 3.30 holds by Theorem 3.25.

To show (2) of Definition 2.25, we can take $Q=Q_{-}$and $Q^{\prime}=Q_{+}$on opposite sides of a ray ρ_{i}. If γ is a short path joining Q and Q^{\prime}, we still have (3.10). We can define a left inverse

$$
\phi: \bar{R}_{\bar{\sigma}_{i-1, i}, I} \rightarrow\left(\bar{R}_{\bar{\rho}_{i}, I}\right)_{f_{i}}
$$

to $\psi_{\bar{\rho}_{i},-}$, where $f_{i}=\bar{g}_{\rho_{i}} \prod_{j=1}^{\ell_{i}}\left(1+b_{i j}^{-1} \bar{X}_{i}\right)$ and ϕ is given by

$$
z^{\bar{\varphi}_{\bar{\rho}_{i}}\left(v_{i-1}\right)} \mapsto \bar{X}_{i-1}, \quad z^{\bar{\varphi}_{\bar{\rho}_{i}}\left(v_{i}\right)} \mapsto \bar{X}_{i}, \quad z^{\bar{\varphi}_{\bar{\rho}_{i}}\left(v_{i+1}\right)} \mapsto f_{i}^{-1} \bar{X}_{i+1} .
$$

Note that $\psi_{\bar{\rho}_{i},+\circ \phi}=\theta_{\bar{\gamma}, \nu(\mathfrak{D})}$, and if $\alpha \in \bar{R}_{\bar{\sigma}_{i-1, i}, I}$, then $\psi_{\bar{p}_{i},+} \circ \phi(\alpha) \in \bar{R}_{\bar{\sigma}_{i, i+1}, I}$ (as opposed to $\left.\left(\bar{R}_{\bar{\sigma}_{i, i+1}, I}\right)_{\psi_{\rho_{i},(}\left(f_{i}\right)}\right)$ only if $\phi(\alpha) \in \bar{R}_{\bar{p}_{i}, I}$ (as opposed to $\left(\bar{R}_{\bar{p}_{i}, I}\right)_{f_{i}}$). In particular, by (3.10), we see $\alpha:=\phi\left(\operatorname{Lift}_{\nu(Q)}(\nu(q))\right) \in \bar{R}_{\bar{\rho}_{i}, I}$, and thus

$$
\psi_{\bar{\rho}_{i},-}(\alpha)=\operatorname{Lift}_{\nu(Q)}(\nu(q)), \quad \psi_{\bar{\rho}_{i},+}(\alpha)=\operatorname{Lift}_{\nu\left(Q^{\prime}\right)}(\nu(q)) .
$$

Thus we may take $\operatorname{Lift}_{\rho_{i}}(q)=p_{i}^{-1}(\alpha)$, and by Lemma 3.28, $\psi_{\rho_{i}, \pm}\left(\operatorname{Lift}_{\rho_{i}}(q)\right)=\operatorname{Lift}_{Q_{ \pm}}(q)$, giving consistency.

3.4. Step V: The proof of Theorem 3.25 and the connection with GPS09.

 Here we derive Theorem 3.25 from the main result of GPS09. We will need to review one form of this result, which gives an enumerative interpretation for the output of the Kontsevich-Soibelman lemma.Fix $M \cong \mathbb{Z}^{2}$ as usual. Suppose we are given positive integers $\ell_{1}, \ldots, \ell_{n}$ and primitive vectors $m_{1}, \ldots, m_{n} \in M$. Let $\ell=\sum_{i=1}^{n} \ell_{i}$ and $Q=M \oplus \mathbb{N}^{\ell}$, with $r: Q \rightarrow M$ the projection. Denote the variables in $\mathbb{k}[Q]$ corresponding to the generators of \mathbb{N}^{ℓ} as $t_{i j}$,
for $1 \leq i \leq n$ and $1 \leq j \leq \ell_{i}$. Consider the scattering diagram for the data $r: Q \rightarrow M$ (in the sense of Definition 3.21)

$$
\mathfrak{D}=\left\{\left(\mathbb{R}_{\geq 0} m_{i}, \prod_{j=1}^{\ell_{i}}\left(1+t_{i j} z^{m_{i}}\right)\right) \mid 1 \leq i \leq n\right\} .
$$

We wish to interpret $\left(\mathfrak{d}, f_{\mathfrak{D}}\right) \in \operatorname{Scatter}(\mathfrak{D}) \backslash \mathfrak{D}$. Choose a complete fan $\Sigma_{\mathfrak{d}}$ in $M_{\mathbb{R}}$ which contains the rays $\mathbb{R}_{\geq 0} m_{1}, \ldots, \mathbb{R}_{\geq 0} m_{n}$ as well as the ray \mathfrak{d} (which may coincide with one of the other rays). Let $X_{\mathfrak{d}}$ be the corresponding toric surface, and let $D_{1}, \ldots, D_{n}, D_{\text {out }}$ be the divisors corresponding to the above rays. Choose general points $x_{i 1}, \ldots, x_{i i_{i}} \in$ D_{i}, and let

$$
\nu: \tilde{X}_{\mathfrak{d}} \rightarrow X_{\mathfrak{d}}
$$

be the blow-up of all the points $\left\{x_{i j}\right\}$. Let $\tilde{D}_{1}, \ldots, \tilde{D}_{n}, \tilde{D}_{\text {out }}$ be the proper transforms of the divisors $D_{1}, \ldots, D_{n}, D_{\text {out }}$ and $E_{i j}$ the exceptional curve over $x_{i j}$.

Now introduce the additional data of $\mathbf{P}=\left(\mathbf{P}_{1}, \ldots, \mathbf{P}_{n}\right)$, where \mathbf{P}_{i} denotes a sequence $p_{i 1}, \ldots, p_{i \ell_{i}}$ of ℓ_{i} non-negative numbers. We will use the notation $\mathbf{P}_{i}=p_{i 1}+\cdots+p_{i \ell_{i}}$ and call \mathbf{P}_{i} an ordered partition. Define

$$
\left|\mathbf{P}_{i}\right|=\sum_{j=1}^{\ell_{i}} p_{i j}
$$

We shall restrict attention to those \mathbf{P} such that

$$
\begin{equation*}
-\sum_{i=1}^{n}\left|\mathbf{P}_{i}\right| m_{i}=k_{\mathbf{P}} m_{\mathfrak{d}} \tag{3.11}
\end{equation*}
$$

where $m_{\mathfrak{d}} \in M$ is a primitive generator of \mathfrak{d} and $k_{\mathbf{P}}$ is a positive integer.
Given this data, consider the class $\beta \in A_{1}\left(X_{\mathfrak{v}}, \mathbb{Z}\right)$ specified by the requirement that, if D is a toric divisor of $X_{\mathfrak{d}}$ with $D \notin\left\{D_{1}, \ldots, D_{n}, D_{\text {out }}\right\}$, then $D \cdot \beta=0$; if $D_{\text {out }} \notin$ $\left\{D_{1}, \ldots, D_{n}\right\}$,

$$
D_{i} \cdot \beta=\left|\mathbf{P}_{i}\right|, \quad D_{\text {out }} \cdot \beta=k_{\mathbf{P}}
$$

while if $D_{\text {out }}=D_{j}$ for some j, then

$$
D_{i} \cdot \beta= \begin{cases}\left|\mathbf{P}_{i}\right| & i \neq j \\ \left|\mathbf{P}_{i}\right|+k_{\mathbf{P}} & i=j\end{cases}
$$

That such a class exists follows easily from (3.11) and the first part of Lemma 3.32 below. It is also unique. We can then define

$$
\beta_{\mathbf{P}}=\nu^{*}(\beta)-\sum_{i=1}^{p} \sum_{j=1}^{\ell_{i}} p_{i j}\left[E_{i j}\right] \in A_{1}\left(\tilde{X}_{\mathfrak{d}}, \mathbb{Z}\right)
$$

We define $N_{\mathbf{P}}:=N_{\beta_{\mathbf{P}}}$ as in Definition [3.1, using $(\tilde{Y}, \tilde{D})=\left(\tilde{X}_{\mathfrak{d}}, \tilde{D}\right)$, where \tilde{D} is the proper transform of the toric boundary of $X_{\mathfrak{d}}$, and using $C=\tilde{D}_{\text {out }}$. Then one of the main theorems of [GPS09] states

Theorem 3.31.

$$
\begin{equation*}
\log f_{\mathfrak{d}}=\sum_{\mathbf{P}} k_{\mathbf{P}} N_{\mathbf{P}} t^{\mathbf{P}} z^{-k_{\mathbf{P}} m_{\mathfrak{D}}} \tag{3.12}
\end{equation*}
$$

where the sum is over all \mathbf{P} satisfying (3.11) and $t^{\mathbf{P}}$ denotes the monomial $\prod_{i j} t_{i j}^{p_{i j}}$.
We can adapt this theorem for our purposes as follows. Fix a fan Σ in $M_{\mathbb{R}}$ defining a complete non-singular toric surface \bar{Y}, with $\bar{D}=D_{1}+\cdots+D_{n}$ the toric boundary. Choose points $x_{i 1}, \ldots, x_{i i_{i}} \in D_{i}$, and define a new surface Y as the blow-up $\nu: Y \rightarrow \bar{Y}$ at the points $\left\{x_{i j}\right\}$. Let $E_{i j}$ be the exceptional curve over $x_{i j}$.

Let $P=\mathrm{NE}(\bar{Y})$; because \bar{Y} is toric, this is a finitely generated monoid with $P^{\times}=$ $\{0\}$. Let $\bar{\varphi}: M_{\mathbb{R}} \rightarrow P_{\mathbb{R}}^{\mathrm{gP}}$ be the Σ-piecewise linear strictly P-convex function given by Lemma 1.13

We will need the following lemma:
Lemma 3.32. Let T_{Σ} be the free abelian group generated by the rays of Σ, with generator t_{ρ} corresponding to a ray $\rho \in \Sigma$. Let

$$
s: T_{\Sigma} \rightarrow M
$$

be the map defined by $s\left(t_{\rho}\right)=m_{\rho}$, for m_{ρ} a primitive generator of ρ. Then

$$
A_{1}(\bar{Y}, \mathbb{Z}) \cong \operatorname{ker} s
$$

Furthermore, if $\sum_{\rho} a_{\rho} t_{\rho} \in \operatorname{ker} s$, then the corresponding element of $A_{1}(\bar{Y}, \mathbb{Z})$ is

$$
\sum_{\rho} a_{\rho} \bar{\varphi}\left(m_{\rho}\right) \in P^{\mathrm{gp}}
$$

Proof. The isomorphism is standard, given by

$$
A_{1}(\bar{Y}, \mathbb{Z}) \ni \beta \mapsto \sum_{\rho}\left(D_{\rho} \cdot \beta\right) t_{\rho}
$$

To see the second statement, first note that the claim is not affected by adding a linear function to $\bar{\varphi}$, since $\sum_{\rho} a_{\rho} m_{\rho}=0$ by assumption. Letting $p=\sum_{\rho} a_{\rho} \bar{\varphi}\left(m_{\rho}\right)$, we need to show that $p \cdot D_{\rho}=a_{\rho}$ for each ρ.

Label the rays of Σ cyclically as $\rho_{1}, \ldots, \rho_{n}$, with $\sigma_{i, i+1}$ containing ρ_{i}, ρ_{i+1} as usual. We can modify $\bar{\varphi}$ by adding a linear function so that $\left.\bar{\varphi}\right|_{\sigma_{n, 1}}=0$. Once we've done this,
then with m_{i} the primitive generator of ρ_{i} and $n_{i} \in N$ primitive, annihilating m_{i}, with $\left\langle n_{i}, m_{i+1}\right\rangle>0$, we have

$$
\left.\bar{\varphi}\right|_{\sigma_{i, i+1}}=\sum_{k=1}^{i} n_{k} \otimes \kappa_{\rho_{k}, \bar{\varphi}}
$$

Note that $\left\langle n_{k}, m_{i}\right\rangle=-\left\langle n_{i}, m_{k}\right\rangle$ and $\kappa_{\rho_{k}, \bar{\varphi}}=\left[D_{k}\right]$, so

$$
\bar{\varphi}\left(m_{i}\right)=-\sum_{k=1}^{i}\left\langle n_{i}, m_{k}\right\rangle\left[D_{k}\right]=-\sum_{k=1}^{i-1}\left\langle n_{i}, m_{k}\right\rangle\left[D_{k}\right] .
$$

Thus on the surface $\bar{Y} \backslash \bigcup_{k=i+1}^{n} D_{k}, \bar{\varphi}\left(m_{i}\right)$ is in fact the divisor of zeroes and poles of $z^{-n_{i}}$, so $D_{k} \cdot \bar{\varphi}\left(m_{i}\right)=0$ for $2 \leq k \leq i-1$. Also, clearly $D_{k} \cdot \bar{\varphi}\left(m_{i}\right)=0$ for $i+1 \leq k \leq n-1$. Next, note that if $i<n$, (recalling that \bar{Y} is non-singular)

$$
D_{i} \cdot \bar{\varphi}\left(m_{i}\right)=-\left\langle n_{i}, m_{i-1}\right\rangle=1
$$

and

$$
\begin{aligned}
D_{n} \cdot \bar{\varphi}\left(m_{i}\right) & =-\left\langle n_{i}, m_{1}\right\rangle-\delta_{i, n}\left\langle n_{i}, m_{n-1}\right\rangle \\
D_{1} \cdot \bar{\varphi}\left(m_{i}\right) & = \begin{cases}0 & i=1 \\
-\left\langle n_{i}, m_{1}\right\rangle D_{1}^{2}-\left\langle n_{i}, m_{2}\right\rangle & 2 \leq i \leq n\end{cases}
\end{aligned}
$$

Thus we see that for $k \neq 1, n$,

$$
D_{k} \cdot p=a_{\rho_{k}}
$$

as desired, and

$$
\begin{aligned}
D_{n} \cdot p & =-\sum_{i=1}^{n}\left\langle a_{\rho_{i}} n_{i}, m_{1}\right\rangle+a_{\rho_{n}}=a_{\rho_{n}} \\
D_{1} \cdot p & =-\sum_{i=1}^{n}\left\langle a_{\rho_{i}} n_{i}, m_{1}\right\rangle D_{1}^{2}-\sum_{i=2}^{n}\left\langle a_{\rho_{i}} n_{i}, m_{2}\right\rangle \\
& =a_{\rho_{1}}\left\langle n_{1}, m_{2}\right\rangle=a_{\rho_{1}}
\end{aligned}
$$

since $\sum a_{\rho_{i}} n_{i}=0$.
Let $E \subset A_{1}(Y, \mathbb{Z})$ be the lattice spanned by the classes of the exceptional curves of ν, so that $A_{1}(Y, \mathbb{Z})=\nu^{*} A_{1}(\bar{Y}, \mathbb{Z}) \oplus E$. We then obtain a map

$$
\varphi=\nu^{*} \circ \bar{\varphi}: M_{\mathbb{R}} \rightarrow \nu^{*} P^{\mathrm{gp}} \oplus E
$$

Let

$$
Q=\left\{(m, p) \in M \oplus A_{1}(Y, \mathbb{Z}) \mid \exists p^{\prime} \in \nu^{*} P \oplus E \text { such that } p=p^{\prime}+\varphi(m)\right\}
$$

There is an obvious projection $r: Q \rightarrow M$, and by strict convexity of $\bar{\varphi}, Q^{\times}=E$.

We consider the scattering diagram, $\overline{\mathfrak{D}}_{0}$, over $\widehat{\mathbb{k}[Q]}$ given by

$$
\overline{\mathfrak{D}}_{0}=\left\{\left(\mathbb{R}_{\geq 0} m_{i}, \prod_{j=1}^{\ell_{i}}\left(1+z^{\left(m_{i}, \varphi\left(m_{i}\right)-E_{i j}\right)}\right)\right) \mid 1 \leq i \leq n\right\} .
$$

Then we have
Theorem 3.33. Let $\left(\mathfrak{d}, f_{\mathfrak{d}}\right) \in \operatorname{Scatter}\left(\overline{\mathfrak{D}}_{0}\right) \backslash \overline{\mathfrak{D}}_{0}$, assuming that there is at most one ray of $\operatorname{Scatter}\left(\overline{\mathfrak{D}}_{0}\right) \backslash \overline{\mathfrak{D}}_{0}$ in each possible outgoing direction. (Note by definition of Scatter $\left(\overline{\mathfrak{D}}_{0}\right)$, $\left(\mathfrak{d}, f_{\mathfrak{d}}\right)$ cannot be incoming.) Then, following the notation of Definition 3.1 and 3.3

$$
\begin{equation*}
\log f_{\mathfrak{d}}=\sum_{\beta} k_{\beta} N_{\beta} z^{\left(-k_{\beta} m_{\mathfrak{\jmath}}, \pi_{*}(\beta)-\varphi\left(k_{\beta} m_{\mathfrak{\jmath}}\right)\right)} . \tag{3.13}
\end{equation*}
$$

Here $\pi: \tilde{Y} \rightarrow Y$ is the toric blow-up of Y determined by \mathfrak{d} and $C \subset \tilde{Y}$ is the component of the boundary determined by \mathfrak{d}. If \mathfrak{d} is not one of the rays $\mathbb{R}_{\geq 0} m_{i}$, then we sum over all \mathbb{A}^{1}-classes $\beta \in A_{1}(\tilde{Y}, \mathbb{Z})$ satisfying (3.1), and if $\mathfrak{d}=\mathbb{R}_{\geq 0} m_{i}$ we sum over all such classes except for classes given by multiple covers of one of the exceptional divisors $E_{i j}$.

Proof. Let Q^{\prime} be the submonoid of $M \oplus \mathbb{N}^{\ell}$ generated by elements of the form ($m_{i}, d_{i j}$), where $d_{i j}$ is the (i, j)-th generator of \mathbb{N}^{ℓ}. Note that Q^{\prime} itself is freely generated by these elements. Thus we can define a map

$$
\alpha: Q^{\prime} \rightarrow Q
$$

by $\left(m_{i}, d_{i j}\right) \mapsto\left(m_{i}, \varphi\left(m_{i}\right)-E_{i j}\right)$. The scattering diagram

$$
\mathfrak{D}^{\prime}:=\left\{\left(\mathbb{R}_{\geq 0} m_{i}, \prod_{j=1}^{\ell_{i}}\left(1+z^{\left(m_{i}, d_{i j}\right)}\right)\right) \mid 1 \leq i \leq n\right\}
$$

then has image under the map α (applying α to each $f_{\mathfrak{o}}$) the scattering diagram $\overline{\mathfrak{D}}_{0}$. Thus if we apply α to each element of $\operatorname{Scatter}\left(\mathfrak{D}^{\prime}\right)$, we must get $\operatorname{Scatter}\left(\overline{\mathfrak{D}}_{0}\right)$, as $\theta_{\gamma, \operatorname{Scatter}\left(\mathfrak{D}^{\prime}\right)}$ being the identity on $\widehat{\mathbb{k}\left[Q^{\prime}\right]}$ implies that $\theta_{\gamma, \alpha\left(\operatorname{Scatter}\left(\mathfrak{D}^{\prime}\right)\right)}$ is the identity on $\widehat{\mathbb{k}[Q]}$.

To obtain the result, we now note that the set of possible \mathbb{A}^{1}-classes in \tilde{Y} occurring in the expression (3.13) are precisely the classes $\left\{\beta_{\mathbf{P}}\right\}$ where \mathbf{P} runs over all partitions satisfying (3.11). Now applying α to a term appearing in (3.12) of the form

$$
k_{\mathbf{P}} N_{\mathbf{P}} t^{\mathbf{P}} z^{-k_{\mathbf{P}} m_{\boldsymbol{O}}}=k_{\beta_{\mathbf{P}}} N_{\beta_{\mathbf{P}}}\left(\prod t_{i j}^{p_{i j}}\right) z^{\sum_{i=1}^{p}\left|\mathbf{P}_{i}\right| m_{i}}
$$

we get

$$
k_{\beta_{\mathbf{P}}} N_{\beta_{\mathbf{P}}} z^{\left(-k_{\mathbf{P}} m_{0}, \sum_{i=1}^{p}\left|\mathbf{P}_{i}\right| \varphi\left(m_{i}\right)-\sum_{i, j} p_{i j} E_{i j}\right)}
$$

But by Lemma 3.32 and (3.11),

$$
\sum_{i=1}^{p}\left|\mathbf{P}_{i}\right| \varphi\left(m_{i}\right)-\sum_{i, j} p_{i j} E_{i j}=\pi_{*}\left(\beta_{\mathbf{P}}\right)-\varphi\left(k_{\mathbf{P}} m_{\mathfrak{d}}\right)
$$

hence the result.
A direct comparison of the formula of the above theorem and the formula in the definition of the canonical scattering diagram then yields Theorem 3.25

4. Smoothness: Around the Gross-Siebert locus

Next we prove that our deformation of \mathbb{V}_{n} is indeed a smoothing. The main theorem of this section (Theorem4.6) will show this in the situation of Theorem0.1 when (Y, D) has a toric model. The full smoothness statement of Theorem 0.1 will require some more work, which will be carried out in $\$ 6$

We prove smoothness by working over the Gross-Siebert locus (Definition 3.14). Here our deformation (when restricted to one-parameter subgroups associated to $p^{*} A$, A an ample divisor on \bar{Y}) agrees with the construction of GS07]. This is important here because the deformations of GS07 come with explicit charts that cover all of \mathbb{V}_{n}, from which it is clear that they give a smoothing. So conceptually, the smoothing claim is clear. Because we work with formal families the actual argument is a bit more delicate. First we make rigorous the notion of a smooth generic fibre for a formal family:

Definition-Lemma 4.1. Let $f: Z \rightarrow W$ be a flat finite type morphism of schemes of relative dimension d. Then $\operatorname{Sing}(f) \subset Z$ is the closed embedding defined by the $d^{t h}$ Fitting ideal of $\Omega_{Z / W}^{1}$. $\operatorname{Sing}(f)$ is empty if and only if f is smooth. Formation of $\operatorname{Sing}(f)$ commutes with all base extensions of W.

Proof. For the definition of the Fitting ideal, see e.g., E95], 20.4. The fact that it commutes with base-change follows from the fact that $\Omega_{Z / W}^{1}$ commutes with basechange and E95], Cor. 20.5. That $\operatorname{Sing}(f)$ is empty if and only if f is smooth follows from [E95], Prop. 20.6 and the definition of smoothness.

Now for a formal family, smoothness of the generic fibre is measured by the fact that Sing (f) does not surject scheme-theoretically onto the base. More precisely:

Definition 4.2. Let S be a normal variety, $V \subset S$ a connected closed subset, and \mathfrak{S} the formal completion of S along V. Let $\mathfrak{f}: \mathfrak{X} \rightarrow \mathfrak{S}$ be an adic flat morphism of formal schemes and $\mathfrak{Z} \subset \mathfrak{X}$ the scheme theoretic singular locus of \mathfrak{f}. Then we say the generic fiber of \mathfrak{f} is smooth if the map $\mathcal{O}_{\mathfrak{S}} \rightarrow \mathfrak{f}_{*} \mathcal{O}_{\mathfrak{Z}}$ is not injective.

For the statement of Proposition 4.3, we fix our usual setting of a surface (Y, D), and assume given Assumptions 3.20 and that $\nu(\mathfrak{D})$ is a scattering diagram in the sense of Definition 3.21. Suppose furthermore that $\theta_{\gamma, \nu(\mathfrak{D})} \equiv 1$ for a loop γ around the origin. Thus by Theorem [3.30, \mathfrak{D} is consistent. These hypotheses on \mathfrak{D} apply in particular when $\mathfrak{D}=\mathfrak{D}^{\text {can }}$.

Let T^{gs} be the Gross-Siebert locus; we have $T^{\mathrm{gs}}=\operatorname{Spec} \mathbb{k}[P] / G$. Consistency of \mathfrak{D} gives a flat family

$$
f_{I}: X_{I} \rightarrow \operatorname{Spec} \mathbb{k}[P] / I
$$

over a thickening of T^{gs} whenever $\sqrt{I}=G$.
On the other hand, letting $\bar{\Sigma}$ be the fan for \bar{Y} in $\bar{B}=M_{\mathbb{R}}$, we have the piecewise linear function $\bar{\varphi}: \bar{B} \rightarrow P_{\mathbb{R}}^{\mathrm{gp}}$ with $\kappa_{\bar{\rho}, \bar{\varphi}}=p^{*}\left[\bar{D}_{\bar{\rho}}\right]$, as before. This now determines the Mumford family

$$
\bar{f}_{I}: \bar{X}_{I} \rightarrow \operatorname{Spec} \mathbb{k}[P] / I
$$

Our goal is to compare these two families. Note that both $X_{G} \rightarrow T^{\mathrm{gs}}$ and $\bar{X}_{G} \rightarrow T^{\mathrm{gs}}$ are the trivial family $\mathbb{V}_{n} \times T^{\mathrm{gs}} \rightarrow T^{\mathrm{gs}}$. Thus either family contains a canonical copy of T^{gs}, i.e., $\{0\} \times T^{\mathrm{gs}}$, where 0 is the vertex of \mathbb{V}_{n}.

Proposition 4.3. In the above situation, fix an ideal I with $\sqrt{I}=G$. There are open affine sets $\bar{U}_{I} \subset \bar{X}_{I}, U_{I} \subset X_{I}$, both sets containing the canonical copy of T^{gs}, and an isomorphism

$$
\mu_{I}: U_{I} \rightarrow \bar{U}_{I}
$$

of families over $\operatorname{Spec} \mathbb{k}[P] / I$.
Moreover, there is a non-zero monomial $y \in \mathbb{k}[P]$ whose pullback to X_{I} is in the stalk at any point $x \in T^{\mathrm{gs}} \subset \mathbb{V}_{n} \times T^{\mathrm{gs}}$ of the ideal of $\operatorname{Sing}_{f_{I}}$ for all I.

Proof. The generic fibre of the Mumford family over Spec $\mathbb{k}[P]$ is smooth: indeed the family is trivial over the open torus orbit of $\operatorname{Spec} \mathbb{k}[P]$, with fibre an algebraic torus. It follows that there is a non-zero monomial $y \in \mathbb{k}[P]$ in the ideal of $\operatorname{Sing}_{\bar{f}}$ for the global Mumford family

$$
\bar{f}: \operatorname{Spec} \mathbb{k}\left[P_{\bar{\varphi}}\right] \rightarrow \operatorname{Spec} \mathbb{k}[P] .
$$

Of course its restriction then lies in the stalk at any point x of the ideal sheaf of $\operatorname{Sing}_{\bar{f}_{I}}$ for all I. Thus once we establish the claimed isomorphisms, the final statement follows.

Recall from $\$ 3.3$ the construction of $\overline{\mathfrak{D}}:=\nu(\mathfrak{D})$ and the scheme $\bar{X}_{I, \overline{\mathfrak{D}}}^{o}$ from $\overline{\mathfrak{D}}$. By Lemma 3.27, $X_{I, \mathfrak{D}}^{o} \cong \bar{X}_{I, \overline{\mathfrak{D}}}^{o}$, so we in fact have an isomorphism

$$
X_{I} \cong \operatorname{Spec} \Gamma\left(\bar{X}_{I, \overline{\mathfrak{D}}}^{o}, \mathcal{O}_{\bar{X}_{I, \overline{\mathfrak{D}}}^{o}}\right)=: \bar{X}_{I, \overline{\mathfrak{D}}}
$$

So we can work with $\bar{X}_{I, \overline{\mathcal{D}}}$ instead of X_{I}. On the other hand, the Mumford family Spec $\mathbb{k}\left[P_{\bar{\varphi}}\right] / I \mathbb{k}\left[P_{\bar{\varphi}}\right]$ over Spec $\mathbb{k}[P] / I$ can be described similarly. Using the empty scattering diagram instead of the scattering diagram $\overline{\mathfrak{D}}$, one has by Lemma 2.9

$$
\bar{X}_{I, \emptyset}=\operatorname{Spec} \Gamma\left(\bar{X}_{I, \emptyset}^{o}, \mathcal{O}_{\bar{X}_{I, \emptyset}^{o}}\right)
$$

Now define an ideal $I_{0} \subset P_{\bar{\varphi}}$ as follows. For $\sigma \in \bar{\Sigma}_{\max }$, let $\bar{\varphi}_{\sigma}$ denote the linear extension of $\left.\bar{\varphi}\right|_{\sigma}$. We set

$$
I_{0}:=\left\{(m, p) \in P_{\bar{\varphi}} \mid p-\bar{\varphi}_{\sigma}(m) \in I \text { for some } \sigma \in \bar{\Sigma}_{\max }\right\}
$$

Note that $\sqrt{I_{0}}=\mathfrak{m}_{P_{\bar{\varphi}}}$. By assumption, $\overline{\mathfrak{D}}$ is a scattering diagram for $P_{\bar{\varphi}}$, and hence there are only a finite number of $\left(\mathfrak{d}, f_{\mathfrak{D}}\right) \in \overline{\mathfrak{D}}$ for which $f_{\mathfrak{d}} \not \equiv 1 \bmod I_{0}$. Furthermore, modulo I_{0}, each $f_{\mathfrak{d}}$ is a polynomial.

Let $\overline{\mathfrak{D}}_{I}$ be the scattering diagram obtained from $\overline{\mathfrak{D}}$ by, for each outgoing ray $\left(\mathfrak{d}, f_{\mathfrak{d}}\right)$, truncating each $f_{\mathfrak{0}}$ by throwing out all terms which lie in I_{0}. The incoming rays remain unchanged. Thus $\overline{\mathfrak{D}}_{I}$ can be viewed as a finite scattering diagram. Let

$$
h:=\prod_{\mathfrak{d} \in \overline{\mathfrak{D}}_{I}} f_{\mathfrak{o}} .
$$

This is an element of $\mathbb{k}\left[P_{\bar{\varphi}}\right]$. Note that necessarily $h \equiv 1 \bmod \mathfrak{m}_{P_{\bar{\varphi}}}$. Thus $h \neq 0$ defines an open subset $\bar{U} \subset \operatorname{Spec} \mathbb{k}\left[P_{\bar{\varphi}}\right] / G \mathbb{k}\left[P_{\bar{\varphi}}\right]=\bar{X}_{G, \overline{\mathcal{D}}}=\bar{X}_{G, \emptyset}=\mathbb{V}_{n} \times T^{\mathrm{gs}}$. Furthermore, \bar{U} contains the canonical copy of T^{gs}. Since $\bar{X}_{I, \overline{\mathcal{D}}}$ and $\bar{X}_{I, \emptyset}$ both have underlying topological space \bar{X}_{G}, this defines open sets $\bar{U}_{I, \overline{\mathfrak{D}}}$ of $\bar{X}_{I, \overline{\mathfrak{D}}}$ and $\bar{U}_{I, \emptyset}$ of $\bar{X}_{I, \emptyset}$. We shall show these two open subschemes are isomorphic.

First the following claim shows that $\bar{X}_{I, \overline{\mathcal{D}}} \cong \bar{X}_{I, \overline{\mathfrak{D}}_{I}}$, as for any $\tau \in \bar{\Sigma} \backslash\{0\}$, the automorphisms involved will have the same effect modulo I_{τ}. As a consequence, we can work with the scattering diagram $\overline{\mathfrak{D}}_{I}$.

Claim 4.4. Let $\tau \in \bar{\Sigma}$, and suppose $(m, p) \in P_{\bar{\varphi}}$ satisfies $-m \in \tau$. Then $(m, p) \in I_{0}$ if and only if $(m, p) \in I_{\tau}$, where

$$
I_{\tau}:=\left\{(m, p) \in P_{\bar{\varphi}_{\tau}} \mid p-\bar{\varphi}_{\sigma}(m) \in I \text { for some } \sigma \in \bar{\Sigma}_{\max } \text { with } \tau \subset \sigma\right\} .
$$

Proof of claim. Clearly $I_{\tau} \cap P_{\bar{\varphi}} \subset I_{0}$, so one implication is clear. Conversely, suppose that $(m, p) \in I_{0}$, so that $p-\bar{\varphi}_{\sigma}(m) \in I$ for some $\sigma \in \Sigma_{\max }$. If $\tau \subset \sigma^{\prime} \in \Sigma_{\max }$, let $\rho_{1}, \ldots, \rho_{n}$ be the sequence of rays traversed in passing from σ to σ^{\prime}, chosen so that all $\rho_{1}, \ldots, \rho_{n}$ lie in a half-plane bounded by the line $\mathbb{R} m$. Then

$$
\bar{\varphi}_{\sigma^{\prime}}(m)=\bar{\varphi}_{\sigma}(m)+\sum_{i=1}^{n}\left\langle n_{\rho_{i}}, m\right\rangle \kappa_{\rho_{i}, \bar{\varphi}},
$$

with $n_{\rho_{i}}$ primitive, vanishing on ρ_{i}, and positive on ρ_{i+1}. Note that since $-m \in \tau$, we must have $\left\langle n_{\rho_{i}}, m\right\rangle \leq 0$ for each i, and hence $p-\bar{\varphi}_{\sigma^{\prime}}(m)=p-\bar{\varphi}_{\sigma}(m)+p^{\prime}$ for some $p^{\prime} \in P$. Hence $(m, p) \in I_{\tau}$.

To show that $\bar{U}_{I, \overline{\mathfrak{D}}}$ and $\bar{U}_{I, \emptyset}$ are isomorphic, let us describe these open subschemes explicitly away from the origin. Recall that $\bar{X}_{I, \mathfrak{D}}^{o}$ is obtained by gluing together schemes which are spectra of rings $\bar{R}_{\tau, I}$ for $\tau \in \bar{\Sigma}$. However in the case that $\operatorname{dim} \tau=1$, this ring depends on the scattering diagram, so we write $\bar{R}_{\tau, I, \mathfrak{D}}$ for $\mathfrak{D}=\overline{\mathfrak{D}}$ or \emptyset.

If $\operatorname{dim} \tau=2$, then $\bar{R}_{\tau, I, \mathfrak{D}}=\mathbb{k}\left[P_{\bar{\varphi}_{\tau}}\right] / I \mathbb{k}\left[P_{\bar{\varphi}_{\tau}}\right]$. Since $h \in \mathbb{k}\left[P_{\bar{\varphi}}\right] \subset \mathbb{k}\left[P_{\bar{\varphi}_{\tau}}\right]$, h defines an element of $\bar{R}_{\tau, I, \mathfrak{D}}$ in this case.

If $\operatorname{dim} \tau=1$, then $\tau=\rho_{i}$ for some i, and we have a surjection

$$
\bar{R}_{\rho_{i}, I, \mathfrak{D}} \rightarrow \bar{R}_{\rho_{i}, G, \mathfrak{D}}=R_{G}\left[\bar{X}_{i-1}, \bar{X}_{i}^{ \pm 1}, \bar{X}_{i+1}\right] /\left(\bar{X}_{i-1} \bar{X}_{i+1}\right) \cong \mathbb{k}\left[P_{\bar{\varphi}_{\rho_{i}}}\right] / G \mathbb{k}\left[P_{\bar{\varphi}_{\rho_{i}}}\right]
$$

so that $h \in \mathbb{k}\left[P_{\bar{\varphi}}\right] \subset \mathbb{k}\left[P_{\bar{\varphi}_{\rho_{i}}}\right]$ defines an element of $\bar{R}_{\rho_{i}, G, \mathfrak{D}}$. Choosing any lift of h to $\bar{R}_{\rho_{i}, I, \mathfrak{D}}$, we note the localization $\left(\bar{R}_{\rho_{i}, I, \mathfrak{D}}\right)_{h}$ is independent of the lift since the kernel of the above surjection is nilpotent.

We can then define regardless of $\operatorname{dim} \tau$,

$$
S_{\tau, I, \mathfrak{D}}:=\left(\bar{R}_{\tau, I, \mathfrak{D}}\right)_{h}
$$

Note there is an isomorphism

$$
\psi_{i}: S_{\rho_{i}, I, \overline{\mathfrak{D}}} \rightarrow S_{\rho_{i}, I, \emptyset}
$$

given by

$$
\bar{X}_{i-1} \mapsto \bar{X}_{i-1}\left(\bar{g}_{\rho_{i}} \prod_{j=1}^{\ell_{i}}\left(1+b_{i j}^{-1} \bar{X}_{i}\right)\right), \quad \bar{X}_{i} \mapsto \bar{X}_{i}, \quad \bar{X}_{i+1} \mapsto \bar{X}_{i+1}
$$

This makes sense because of the localization at h.
Given a path γ in $M_{\mathbb{R}} \backslash\{0\}$, note that by construction of $h, \theta_{\gamma, \overline{\mathfrak{D}}_{I}}$ makes sense as an automorphism of the localization $\mathbb{k}\left[P_{\bar{\varphi}}\right]_{h}$, since to define the automorphism associated with crossing a ray $\left(\mathfrak{d}, f_{\mathfrak{d}}\right)$, we only need $f_{\mathfrak{J}}$ to be invertible. However since by construction h is divisible by $f_{\mathfrak{d}}, f_{\mathfrak{\mathfrak { }}}$ is invertible. In particular, $\theta_{\gamma, \overline{\mathfrak{D}}_{I}}$ also makes sense as an automorphism of $\left(\mathbb{k}\left[P_{\bar{\varphi}_{\tau}}\right] / I \mathbb{k}\left[P_{\bar{\varphi}_{\tau}}\right]\right)_{h}=S_{\tau, I, \emptyset}$ for any $\tau \in \bar{\Sigma} \backslash\{0\}$. Thus using the equality $S_{\sigma, I, \emptyset}=S_{\sigma, I, \overline{\mathfrak{D}}}$ for $\operatorname{dim} \sigma=2$ we see that $\theta_{\gamma, \overline{\mathfrak{D}}_{I}}$ also makes sense as an automorphism of $S_{\sigma, I, \overline{\mathfrak{D}}}$.

Choose an orientation on $M_{\mathbb{R}}$, labelling the rays $\rho_{1}, \ldots, \rho_{n}$ of $\bar{\Sigma}$ in a counterclockwise order, with $\sigma_{i-1, i}$ as usual the maximal cone containing ρ_{i-1} and ρ_{i}. For two distinct points p, q on the unit circle in $M_{\mathbb{R}}$ not contained in $\operatorname{Supp}\left(\overline{\mathfrak{D}}_{I}\right)$, let $\gamma_{p, q}$ be a counterclockwise path from p to q, and write $\theta_{p, q}$ for $\theta_{\gamma_{p, q}, \overline{\mathcal{D}}_{I}}$ acting on any of the rings $S_{\tau, I, \emptyset}$.

For each ρ_{i}, let $p_{i,+}$ be a point on this unit circle contained in the connected component of $\sigma_{i, i+1} \backslash \operatorname{Supp}\left(\overline{\mathfrak{D}}_{I}\right)$ adjacent to ρ_{i}, and $p_{i,-}$ a point in this unit circle contained in the connected component of $\sigma_{i-1, i} \backslash \operatorname{Supp}\left(\overline{\mathfrak{D}}_{I}\right)$ adjacent to ρ_{i}.

Choose a base-point q on the unit circle not in $\operatorname{Supp}\left(\overline{\mathfrak{D}}_{I}\right)$.
Recall in the construction of $\bar{X}_{I, \mathfrak{D}}^{o}$, the open sets $\operatorname{Spec} \bar{R}_{\rho_{i+1}, I, \mathfrak{D}}$ and $\operatorname{Spec} \bar{R}_{\rho_{i}, I, \mathfrak{D}}$ are glued together along the common open set $\operatorname{Spec} \bar{R}_{\sigma_{i, i+1}, I, \mathfrak{D}}$ using the trivial automorphism or the automorphism $\theta_{p_{i,+}, p_{i+1,-}}$ in the cases $\mathfrak{D}=\emptyset$ or $\mathfrak{D}=\overline{\mathfrak{D}}$ respectively. After localizing at h, we have a commutative diagram

Here the maps $\psi_{\rho, \pm}$ are the ones defined in Proposition 2.5 and (2.8). This shows that the isomorphisms ψ_{i} between $\operatorname{Spec} S_{\rho_{i}, I, \overline{\mathfrak{D}}}$ and $\operatorname{Spec} S_{\rho_{i}, I, \emptyset}$ are compatible with the gluings, and hence give an isomorphism between $\bar{U}_{I, \mathfrak{D}} \backslash T^{\mathrm{gs}}$ and $\bar{U}_{I, \emptyset} \backslash T^{\mathrm{gs}}$.

Now \mathbb{V}_{n} satisfies Serre's condition S_{2}. Since \bar{X}_{I} and X_{I} are flat deformations of $\mathbb{V}_{n} \times T^{\mathrm{gs}}$, by Lemma 2.10 the above isomorphism extends across the codimension two set T^{gs}, giving the desired isomorphism between U_{I} and \bar{U}_{I}.

We now need to use the above observations along the Gross-Siebert locus to obtain results about deformations away from the Gross-Siebert locus. For the remainder of the section, we work with data $(Y, D), \eta, P$, but now as in Assumptions 3.13. Furthermore, we take $\mathfrak{D}=\mathfrak{D}^{\text {can }}$. Thus if we take I an ideal with either $\sqrt{I}=G$ or $\sqrt{I}=\mathfrak{m}$, we obtain a flat family $\mathcal{X}_{I} \rightarrow$ Spec $R_{I}=: S_{I}$, and in the former case, $\mathcal{X}_{I} \rightarrow S_{I}$ restricts to the open subscheme of Spec R_{I} whose underlying open subset is T^{gs}, giving the family over the thickening of the Gross-Siebert locus.

With $J=\mathfrak{m}$ or G, let $\mathfrak{f}_{J}: \mathfrak{X}_{J} \rightarrow \mathfrak{S}_{J}$ denote the formal deformation determined by the deformations $X_{J^{N+1}} \rightarrow \operatorname{Spec} R_{J^{N+1}}$ for $N \geq 0$. Thus $\mathfrak{S}_{J}=\operatorname{Spf}\left(\lim _{\leftrightarrows} \mathbb{k}[P] / J^{N+1}\right)$ is the formal spectrum of the J-adic completion of $\mathbb{k}[P], \mathfrak{X}_{J}$ is a formal scheme, and $\mathfrak{X}_{J} \rightarrow \mathfrak{S}_{J}$ is an adic flat morphism of formal schemes. We refer to G60 for background on formal schemes.

Let $Z_{I}:=\operatorname{Sing}\left(f_{I}\right) \subset X_{I}$ denote the singular locus of $f_{I}: X_{I} \rightarrow S_{I}$. Thus $Z_{I} \subset X_{I}$ is a closed embedding of schemes. Since the singular locus is compatible with basechange, the singular loci $Z_{J^{n}} \subset X_{J^{n}}$ determine a closed embedding $\mathfrak{Z}_{J} \subset \mathfrak{X}_{J}$ which we refer to as the singular locus of $\mathfrak{f}_{J}: \mathfrak{X}_{J} \rightarrow \mathfrak{S}_{J}$.

Again, with $J=\mathfrak{m}$ or G, we have a section $s: S_{J} \rightarrow X_{J}=S_{J} \times \mathbb{V}_{n}$ given by $s(t)=t \times\{0\}$ for $t \in S_{J}$. We write $X_{J}^{o}:=X_{J} \backslash s\left(S_{J}\right) \subset X_{J}$ and $X_{I}^{o} \subset X_{I}, \mathfrak{X}_{J}^{o} \subset \mathfrak{X}_{J}$ for the induced open embeddings.

Lemma 4.5. In the above situation, there exists $0 \neq g \in \mathbb{k}[P]$ such that $\operatorname{Supp}\left(g \cdot \mathcal{O}_{\mathcal{Z}_{J}}\right)$ is contained in $s\left(S_{J}\right)$. In particular, $\mathfrak{f}_{J *}\left(g \cdot \mathcal{O}_{\mathfrak{Z}_{J}}\right)$ is a coherent sheaf on \mathfrak{S}_{J}.

Proof. We can write an explicit open covering $\left\{\mathfrak{U}_{i, J}\right\}$ of \mathfrak{X}_{J}^{o} in the two cases $J=\mathfrak{m}$ or $J=G$, as follows. Write $a_{i}=z^{\left[D_{i}\right]}$ and $m_{i}=-D_{i}^{2}$. In the case $J=\mathfrak{m}$,

$$
\mathfrak{U}_{i, J}=V\left(X_{i-1} X_{i+1}-a_{i} X_{i}^{m_{i}}\right) \subset \mathbb{A}_{X_{i-1}, X_{i+1}}^{2} \times\left(\mathbb{G}_{m}\right)_{X_{i}} \times \mathfrak{S}_{J}
$$

In the case $J=G$,

$$
\mathfrak{U}_{i, J}=V\left(X_{i-1} X_{i+1}-a_{i} X_{i}^{m_{i}} \prod\left(1+b_{i j} X_{i}^{-1}\right)\right) \subset \mathbb{A}_{X_{i-1}, X_{i+1}}^{2} \times\left(\mathbb{G}_{m}\right)_{X_{i}} \times \mathfrak{S}_{J}
$$

with $b_{i j}=z^{\left[E_{i j}\right]}$ as usual.
We now use the charts $\mathfrak{U}_{i, J}$ to compute the singular locus explicitly. In the case $J=\mathfrak{m}$, the singular locus $\mathfrak{Z}_{i, J}$ of $\mathfrak{U}_{i, J} / \mathfrak{S}_{J}$ is given by

$$
\mathfrak{Z}_{i, J}=V\left(X_{i-1}, X_{i+1}, a_{i}\right) \subset \mathfrak{U}_{i, J} .
$$

Hence if we define $g=a_{1} \cdots a_{n}$ then $\operatorname{Supp}\left(g \cdot \mathcal{O}_{\mathcal{Z}_{J}}\right)$ is contained in $s\left(S_{J}\right)$.
Similarly, if $J=G$, the structure sheaf of the singular locus of $\mathfrak{U}_{i, J}$ is annihilated by $g_{i}:=a_{i} \prod_{j \neq k}\left(b_{i j}-b_{i k}\right)$. (Here $\prod_{j \neq k}\left(b_{i j}-b_{i k}\right)$ is the discriminant of the polynomial $f\left(X_{i}\right):=\prod\left(X_{i}+b_{i j}\right)$. It is a linear combination of f and f^{\prime} with coefficients in $\mathbb{k}\left[\left\{b_{i j}\right\}\right]\left[X_{i}\right]$. See [L02], p. 200-204.) So we can take $g=g_{1} \cdots g_{n}$.

The support of $g \cdot \mathcal{O}_{3_{J}}$ is a closed subset of $s\left(S_{J}\right)$, hence proper over S_{J}. It follows that $\mathfrak{f}_{J *}\left(g \cdot \mathcal{O}_{\mathcal{Z}_{J}}\right)$ is coherent by [G61], 3.4.2.

Theorem 4.6. Let $(Y, D), \eta, P$ satisfy Assumptions 3.13, and take $\mathfrak{D}=\mathfrak{D}^{\text {can }}$. Then the maps $\mathbb{k}[P] \rightarrow \mathfrak{f}_{\mathfrak{m} *} \mathcal{O}_{\mathfrak{Z}_{\mathfrak{m}}}$ and $\mathcal{O}_{\mathfrak{S}_{\mathfrak{m}}} \rightarrow \mathfrak{f}_{\mathfrak{m}_{*}} \mathcal{O}_{\mathfrak{Z}_{\mathfrak{m}}}$ are not injective, so the generic fibre of $\mathfrak{f}_{\mathfrak{m}}$ is smooth in the sense of Definition 4.2. This also implies that for $I=\mathfrak{m}^{N+1}$ and $N \gg 0$, the map $\mathbb{k}[P] / I \rightarrow f_{I *} \mathcal{O}_{\operatorname{Sing}\left(f_{I}\right)}$ is not injective.

Proof. By Lemma 4.5 there exists $0 \neq g \in \mathbb{k}[P]$ such that $\operatorname{Supp}\left(g \cdot \mathcal{O}_{\mathcal{Z}_{G}}\right) \subset s\left(S_{G}\right)$. Let E be the subgroup of $P^{\text {gp }}$ generated by $P \backslash G$, so that $U=\operatorname{Spec} \mathbb{k}[P+E]$ is an open subset of $\operatorname{Spec} \mathbb{k}[P]$. Denote by \mathfrak{S}_{J}^{o} the open subset of \mathfrak{S}_{J} isomorphic to the completion of U along the subscheme defined by $G+E$. This is the formal thickening
of the Gross-Siebert locus. By Proposition 4.3 there then exists $0 \neq h \in \mathbb{k}[P+E]$ such that $\operatorname{Supp}\left(h \cdot \mathcal{O}_{\mathcal{Z}_{G} \cap f_{J}^{-1}\left(\mathfrak{S}_{J}^{o}\right)}\right)$ is disjoint from $s\left(S_{G} \cap U\right)$. By multiplying h by a monomial whose exponent lies in $P \backslash G$, we can assume that $h \in \mathbb{k}[P]$. Thus $g h \cdot \mathcal{O}_{\mathfrak{Z}_{G}}$ has support on the closed subset $s\left(\mathfrak{S}_{\mathfrak{m}}\right)$. Since this sheaf is coherent, there exists a non-zero element $k \in \mathfrak{m} \subset \mathbb{k}[P]$ such that $g h k \cdot \mathcal{O}_{\mathfrak{Z}_{G}}=0$, that is, $g h k$ lies in the kernel of $u(G)$. Noting by construction that $g h k \in \mathbb{k}[P]$, we have $\mathbb{k}[P] \rightarrow \mathfrak{f}_{J *} \mathcal{O}_{\mathfrak{Z}_{J}}$ is not injective, hence the composition $\mathbb{k}[P] \rightarrow \mathfrak{f}_{J *} \mathcal{O}_{\mathfrak{Z}_{J}} \rightarrow \mathfrak{f}_{\mathfrak{m} *} \mathcal{O}_{\mathfrak{Z}_{\mathfrak{m}}}$ is not injective. Since $\mathbb{k}[P] \subset \Gamma\left(\mathfrak{S}_{\mathfrak{m}}, \mathcal{O}_{\mathfrak{S}_{\mathfrak{m}}}\right)$, $\mathcal{O}_{\mathfrak{S}_{\mathfrak{m}}} \rightarrow \mathfrak{f}_{\mathfrak{m} *} \mathcal{O}_{\mathfrak{Z}_{\mathfrak{m}}}$ is not injective.

5. The Relative torus

The flat deformations $X_{I, \mathfrak{D} \text { can }} \rightarrow \operatorname{Spec} \mathbb{k}[P] / I$ produced by the canonical scattering diagram have a useful special property: there is a natural torus action on the total space $X_{I, \mathfrak{D} \text { can }}$ compatible with a torus action on the base. The meaning of this action will be clarified in Part II, where we will prove that our family extends naturally, in the positive case, to a universal family of Looijenga pairs (Z, D) together with a choice of isomorphism $D \xrightarrow{\sim} D_{*}$, where D_{*} is a fixed n-cycle. The torus action then corresponds to changing the choice of isomorphism.

Fixing the pair (Y, D) as usual, $D=D_{1}+\cdots+D_{n}$, let $\mathbb{A}^{D}=\mathbb{A}^{n}$ be the affine space with one coordinate for each component D_{i}. Let T^{D} be the diagonal torus acting on \mathbb{A}^{D}, i.e., the torus T^{D} whose character group

$$
\chi\left(T^{D}\right)=\mathbb{Z}^{D}
$$

is the free module with basis $e_{D_{1}}, \ldots, e_{D_{n}}$.
Definition 5.1. We define a canonical map $w: A_{1}(Y) \rightarrow \chi\left(T^{D}\right)$ given by

$$
C \mapsto \sum\left(C \cdot D_{i}\right) e_{D_{i}} .
$$

Suppose $P \subset A_{1}(Y)$ is a toric submonoid containing NE (Y). We then get an action of T^{D} on Spec $\mathbb{k}[P]$, as well as on Spec $\mathbb{k}[P] / I$ for any monomial ideal I, and hence also on $\operatorname{Spf}(\widehat{\mathbb{k}[P]})$ for any completion of $\mathbb{k}[P]$ with respect to a monomial ideal.

We can also define a unique piecewise linear map

$$
w: B \rightarrow \chi\left(T^{D}\right) \otimes_{\mathbb{Z}} \mathbb{R}
$$

with $w(0)=0$ and $w\left(v_{i}\right)=e_{D_{i}}$, for v_{i} the primitive generator of the ray ρ_{i}.
Theorem 5.2. Let I be an ideal for which $X_{I, \mathfrak{D}^{\text {can }}} \rightarrow \operatorname{Spec} \mathbb{k}[P] / I$ is defined. Then T^{D} acts equivariantly on $X_{I, \mathfrak{D} \text { can }} \rightarrow \operatorname{Spec} \mathbb{k}[P] / I$. Furthermore, each theta function ϑ_{q}, $q \in B(\mathbb{Z})$, is an eigenfunction of this action, with character $w(q)$.

Proof. It's enough to check this on the open subset $X_{I, \mathfrak{D}^{\text {can }}}^{o} \subset X_{I, \mathfrak{D} \text { can }}$. We have a cover of $X_{I, \mathfrak{D}^{\text {can }}}^{o}$ by open sets the hypersurfaces

$$
U_{\rho_{i}, I} \subset \mathbb{A}_{X_{i-1}, X_{i+1}}^{2} \times\left(\mathbb{G}_{m}\right)_{X_{i}} \times \operatorname{Spec} R_{I}
$$

given by the equation

$$
X_{i-1} X_{i+1}=z^{\left[D_{i}\right]} X_{i}^{-D_{i}^{2}} f_{\rho_{i}}
$$

where $f_{\rho_{i}}$ is the function attached to the ray ρ_{i} in $\mathfrak{D}^{\text {can }}$. If we act on X_{j} with weight $w\left(v_{j}\right)$ and z^{p} with weight $w(p)$ (for $p \in P$), then we note that for every $\left(\mathfrak{d}, f_{\mathfrak{J}}\right) \in \mathfrak{D}^{\text {can }}$, every monomial in $f_{\mathfrak{d}}$ has weight zero by the explicit description of $f_{\mathfrak{d}}$ in Definition 3.3. In particular, the equation defining $U_{\rho_{i}, I}$ is clearly T^{D}-equivariant, and each of the monomials is an eigenfunction.

Now $X_{I, \mathfrak{D} \text { can }}^{o}$ is obtained by gluing $U_{\rho_{i}, \sigma_{i, i+1}, I} \subset U_{\rho_{i}, I}$ with $U_{\rho_{i+1}, \sigma_{i, i+1}, I} \subset U_{\rho_{i+1}, I}$, using scattering automorphisms of in $\mathfrak{D}^{\text {can }}$, and these open sets are naturally identified with $\left(\mathbb{G}_{m}\right)_{X_{i}, X_{i+1}}^{2} \times \operatorname{Spec} R_{I}$. The scattering automorphisms commute with the T^{D} action, by the fact that the scattering functions have weight zero. Thus T^{D} acts equivariantly on $X_{I, \mathfrak{D}^{\text {can }}} \rightarrow$ Spec $\mathbb{k}[P] / I$.

Now we check our canonical global function ϑ_{q} is an eigenfunction, with character $w(q)$. By construction, given a broken line γ, the weights of monomials attached to adjacent domains of linearity are the same, since the functions in the scattering diagram are of weight zero. Thus the weight of $\operatorname{Mono}(\gamma)$ only depends on q. This weight can be determined by fixing the base point Q in a cone σ which contains q, in which case the broken line for q which doesn't bend and is wholly contained in σ yields the monomial $z^{\varphi_{\sigma}(q)}$, which has weight $w(q)$. Thus ϑ_{q} is an eigenfunction with weight $w(q)$.

6. Extending the family over boundary strata

Here we prove Theorem 0.1 and Theorem 0.2 Note that Theorem 0.1 holds when (Y, D) has a toric model by Theorems [2.26, 3.8, 5.2, and 4.6. We use Theorem 0.2 in the case that (Y, D) has a toric model to prove both theorems in general.
6.1. Theorem 0.2 in the case that (Y, D) has a toric model. As usual, let P be the toric monoid associated to a strictly convex rational polyhedral cone $\sigma_{P} \subset A_{1}(Y)_{\mathbb{R}}$ which contains the Mori cone $\operatorname{NE}(Y)_{\mathbb{R}}$. We have $\mathfrak{m}=P \backslash\{0\}$. For a monomial ideal $I \subset P$ we define

$$
A_{I}:=\bigoplus_{q \in B(\mathbb{Z})} R_{I} \cdot \vartheta_{q}
$$

where $R_{I}=\mathbb{k}[P] / I$. We take throughout $\mathfrak{D}=\mathfrak{D}^{\text {can }}$.
Assumptions 6.1. For any monomial ideal I with $\sqrt{I}=\mathfrak{m}$, the multiplication rule of Theorem 2.32 defines an R_{I}-algebra structure on A_{I}, so that $A_{I} \otimes_{R_{I}} R_{\mathfrak{m}}=H^{0}\left(\mathbb{V}_{n}, \mathcal{O}_{\mathbb{V}_{n}}\right)$.

Note we have already shown that Assumptions 6.1 hold if (Y, D) has a toric model.
Let $\Gamma \subset B(\mathbb{Z})$ be a finite collection of integral points such that the corresponding functions ϑ_{q} generate the \mathbb{k}-algebra $H^{0}\left(\mathbb{V}_{n}, \mathcal{O}_{\mathbb{V}_{n}}\right)$. (Then the $\vartheta_{q}, q \in \Gamma$ generate A_{I} as an R_{I}-algebra if $\sqrt{I}=\mathfrak{m}$ and Assumptions 6.1 hold.) Note for $n \geq 3$ we can take for Γ the points $\left\{v_{i}\right\}$, and for $n=1,2$, one can make a simple choice for Γ, see 6.2 .

Lemma 6.2. For any monomial ideal $J \subset P, \bigcap_{k>0}\left(J+\mathfrak{m}^{k}\right)=J$.
Proof. The inclusion \supset is obvious. For the other direction, as the intersection is a monomial ideal, it's enough to consider a monomial in the intersection. But notice that a monomial is in $J+\mathfrak{m}^{k}$ iff it is either in J or in \mathfrak{m}^{k}. The result follows since $\bigcap \mathfrak{m}^{k}=0$.

Assuming [6.1] let \mathcal{A} be the collection of monomial ideals $J \subset P$ with the following properties:
(1) There is an R_{J}-algebra structure on A_{J} such that the canonical isomorphism of R-modules $A_{J} \otimes_{R_{J}} R_{I+J}=A_{I+J}$ is an algebra isomorphism, for all $\sqrt{I}=\mathfrak{m}$. (2) $\vartheta_{q}, q \in \Gamma$ generate A_{J} as an R_{J}-algebra.

By the lemma, the algebra structure in (1) is unique if it exists. The algebra structure on all A_{I} determines such a structure on $\widehat{A}:=\lim _{\sqrt{I}=\mathfrak{m}} A_{I}, \widehat{A}_{J}:=\lim _{\varliminf_{I}=\mathfrak{m}} A_{I+J}$. Also, there are canonical inclusions

$$
\begin{aligned}
& \widehat{A} \subset \prod_{q \in B(\mathbb{Z})} \hat{R} \cdot \vartheta_{q} \\
& \widehat{A}_{J} \subset \prod_{q \in B(\mathbb{Z})} \hat{R}_{J} \cdot \vartheta_{q}
\end{aligned}
$$

where \hat{R}, \hat{R}_{J} are the completions of R, R_{J} at $\mathfrak{m}, J+\mathfrak{m}$ (here the direct products are viewed purely as \hat{R}, \hat{R}_{J} modules). We can also view

$$
A_{J}:=\bigoplus_{q \in B(\mathbb{Z})} R_{J} \cdot \vartheta_{q} \subset \prod_{q \in B(\mathbb{Z})} \hat{R}_{J} \cdot \vartheta_{q} .
$$

It is clear that $A_{J} \subset \widehat{A}_{J}$ (as submodules of the direct product). Thus (1) holds if and only if the following, $\left(1^{\prime}\right)$, holds: For each $p, q \in B(\mathbb{Z})$, at most finitely many $z^{C} \vartheta_{s}$ with $C \notin J$ appear in the product expansion of Theorem 2.32 for $\vartheta_{p} \cdot \vartheta_{q} \in \widehat{A}_{J}$.

Lemma 6.3. If $J \in \mathcal{A}$ and $J \subset J^{\prime}$, then $J^{\prime} \in \mathcal{A}$. In addition, \mathcal{A} is closed under finite intersections.

Proof. The first statement is clear. Now assume $J_{1}, J_{2} \in \mathcal{A}$. It's clear that (1^{\prime}) holds for $J_{1} \cap J_{2}$, so $A_{J_{1} \cap J_{2}}$ is an algebra. Moreover we have an exact sequence of \mathbb{k}-modules

$$
0 \rightarrow A_{J_{1} \cap J_{2}} \rightarrow A_{J_{1}} \times A_{J_{2}} \rightarrow A_{J_{1}+J_{2}} \rightarrow 0
$$

exhibiting $A_{J_{1} \cap J_{2}}$ as the fibre product $A_{J_{1}} \times_{A_{J_{1}+J_{2}}} A_{J_{2}}=: A_{1} \times{ }_{B} A_{2}=: A$. We now show this fibre product is a finitely generated \mathbb{k}-algebra. Indeed, note that since the maps $A_{1}, A_{2} \rightarrow B$ are surjective, so are the maps $A \rightarrow A_{i}$. Let $\left\{u_{i}\right\}$ be a generating set for the ideal $\operatorname{ker}\left(A_{2} \rightarrow B\right)$. Since A_{i} is Noetherian, one can find a finite such set. Note that $\tilde{u}_{i}=\left(0, u_{i}\right) \in A$. In addition, choose finite sets $\left\{x_{i}\right\},\left\{y_{j}\right\}$ generating A_{1} and A_{2} as \mathbb{k}-algebras. For each of these elements, choose a lift to A, giving a finite set of lifts $\left\{\tilde{u}_{i}, \tilde{x}_{i}, \tilde{y}_{i}\right\}$, which we claim generate A. Indeed, given $(x, y) \in A$, one can subtract a polynomial in the \tilde{x}_{i} 's to obtain $\left(0, y^{\prime}\right)$. Necessarily $y^{\prime} \in \operatorname{ker}\left(A_{2} \rightarrow B\right)$, and hence we can write $y^{\prime}=\sum f_{i} u_{i}$ with f_{i} a polynomial in the y_{i} 's. Let \tilde{f}_{i} be the same polynomial in the \tilde{y}_{i} 's. Then $\sum \tilde{f}_{i} \tilde{u}_{i}=\left(0, y^{\prime}\right)$, showing generation.

Thus $A_{J_{1} \cap J_{2}}$ is a also a finitely generated $R_{J_{1} \cap J_{2}}$-algebra. Now the generation statement follows from Lemma 6.4

Lemma 6.4. Let $I, J \subset R$ be ideals in a Noetherian ring, with $I \cdot J=0$, and let S be a finitely generated R-algebra, and $R\left[T_{1}, \ldots, T_{m}\right] \rightarrow S$ an R-algebra map which is surjective modulo I and J. Then the map is surjective.

Proof. The associated map $\operatorname{Spec} S \rightarrow \mathbb{A}^{m} \times \operatorname{Spec} R$ is proper, as can be easily checked using the valuative criterion for properness. Indeed, any map $S \rightarrow K$ for a field K factors through either $S / I S$ or $S / J S$. Since this is a map of affine schemes, S is a finite $R\left[T_{1}, \ldots, T_{m}\right]$-module. Now we can apply Nakayama's lemma.

Proposition 6.5. There is a unique minimal radical monomial ideal $I_{\min } \subset P$ such that (1) and (2) hold for any monomial ideal J with $I_{\min } \subset \sqrt{J}$.

Proof. Certainly any ideal J with $\sqrt{J}=\mathfrak{m}$ lies in \mathcal{A}. Note that a radical monomial ideal is the complement of a union of faces of P, so there are only a finite number of such ideals. Suppose I_{1}, I_{2} are two radical ideals such that $J_{i} \in \mathcal{A}$ for any J_{i} with $I_{i} \subset \sqrt{J_{i}}$. Note that any ideal J with $I_{1} \cap I_{2} \subset \sqrt{J}$ can be written as $J_{1} \cap J_{2}$, with $I_{i} \subset \sqrt{J_{i}}$. Indeed, we can take $J_{i}=J+I_{i}^{N}$ for $N \gg 0$. Thus by Lemma 6.3, $J \in \mathcal{A}$. This shows the existence of $I_{\text {min }}$.

Proposition 6.6. Assume 6.1.
(1) Suppose the intersection matrix $\left(D_{i} \cdot D_{j}\right)$ is not negative semi-definite. Then $I_{\text {min }}=(0) \subset \mathbb{k}[P]$.
(2) Suppose $F \subset \sigma_{P}$ is a face such that F does not contain the class of every component of D. Then $I_{\min } \subset P \backslash F$.

Proof. We prove both cases simultaneously, writing $F:=P$ in case (1). We claim there exists an effective divisor $W=\sum a_{i} D_{i}$ with support D such that $W \cdot D_{j}>0$ for all
D_{j} contained in F and $a_{i}>0$ for all i. For case (1), see Lemma 6.9] In case (2), say $\left[D_{1}\right] \notin F$. Then we can take $a_{1} \gg a_{2} \gg \cdots \gg a_{n}>0$.

The algebra structure depends only on the deformation type of (Y, D). By the local Torelli theorem for Looijenga pairs, see L81], II.2.5, we may replace (Y, D) by a deformation equivalent pair such that any irreducible curve $C \subset Y$ intersects D.

Let $\overline{\mathrm{NE}}(Y)_{\mathbb{R}} \subset A_{1}(Y, \mathbb{R})$ denote the closure of $\mathrm{NE}(Y)_{\mathbb{R}}$. Let $F^{\prime}:=\overline{\mathrm{NE}}(Y)_{\mathbb{R}} \cap F$, a face of $\overline{\mathrm{NE}}(Y)_{\mathbb{R}}$. Define $\Delta=D-\epsilon W, 0<\epsilon \ll 1$. Then (Y, Δ) is KLT (Kawamata log terminal).

We claim $K_{Y}+\Delta \sim-\epsilon W$ is negative on $F^{\prime} \backslash\{0\}$. By construction $\left(K_{Y}+\Delta\right) \cdot D_{j}<0$ for $\left[D_{j}\right] \in F^{\prime}$ and $\left(K_{Y}+\Delta\right) \cdot C<0$ for $C \not \subset D$. Let N be a nef divisor such that $F^{\prime}=\overline{\mathrm{NE}}(Y)_{\mathbb{R}} \cap N^{\perp}$. Then $a N-\left(K_{Y}+\Delta\right)$ is nef and big for $a \gg 0$, and thus some multiple defines a birational morphism g by the basepoint-free theorem KM98, Theorem 3.3. Thus $\left(K_{Y}+\Delta\right)^{\perp} \cap F^{\prime}$ is generated by exceptional curves of g. We deduce that $\left(K_{Y}+\Delta\right)^{\perp} \cap F^{\prime}=\{0\}$ and $\left(K_{Y}+\Delta\right)$ is negative on $F^{\prime} \backslash\{0\}$ as claimed.

Now by the cone theorem KM98, Theorem 3.7, $\overline{\mathrm{NE}}(Y)_{\mathbb{R}}$ is rational polyhedral near F^{\prime} and there is a contraction $p: Y \rightarrow \bar{Y}$ such that F^{\prime} is generated by the classes of curves contracted by p. It follows that we can find $\mathrm{NE}(Y)_{\mathbb{R}} \subset \sigma_{P^{\prime}} \subset \sigma_{P}$ such that F^{\prime} is a face of $\sigma_{P^{\prime}}$. Now the algebra structure for P comes from P^{\prime} by base extension, so (replacing P by P^{\prime}) we can assume $F=F^{\prime}$, and thus that W is positive on $F \backslash\{0\}$.

Now let J be a monomial ideal with $\sqrt{J}=P \backslash F$. Consider condition (1^{\prime}). By the T^{D}-equivariance of Theorem 5.2, any $z^{C} \vartheta_{s}$ that appears in $\vartheta_{p} \cdot \vartheta_{q}$ has the same weight for T^{D}. Thus it is enough to show that the map

$$
w: B(\mathbb{Z}) \times(P \backslash J) \rightarrow \chi\left(T^{D}\right), \quad(q, C) \mapsto w(q)+w(C)
$$

has finite fibres. It is enough to consider fibres of $\sigma(\mathbb{Z}) \times(P \backslash J) \rightarrow \chi\left(T^{D}\right)$ for each $\sigma \in \Sigma_{\max }$. Note that $\sigma(\mathbb{Z}) \times P$ is the set of integral points of a rational polyhedral cone, and w is linear on this set. Thus it is enough to check that $\operatorname{ker}(w) \cap(\sigma(\mathbb{Z}) \times F)=0$. So suppose we have $q \in \sigma(\mathbb{Z}), C \in F$ with $w(q)+w(C)=0$. Say $\sigma=\sigma_{i, i+1}$. Then $q=a v_{i}+b v_{i+1}$, for $a, b \in \mathbb{Z}_{\geq 0}$. We have

$$
w(q)+w(C)=a e_{D_{i}}+b e_{D_{i+1}}+\sum_{j}\left(C \cdot D_{j}\right) e_{D_{j}}
$$

thus if this is zero, we have $C \cdot D_{j} \leq 0$ for all j. In particular, $W \cdot C \leq 0$. Since W is positive on $F \backslash\{0\}, C=0$. Now necessarily $a=b=q=0$. This proves (1^{\prime}).

For (2), let $A_{J}^{\prime} \subset A_{J}$ be the subalgebra generated by the $\vartheta_{q}, q \in \Gamma$. Fix a weight $w \in \chi(T)$. To show $A_{J}^{\prime}=A_{J}$ it is enough to show that the finite set

$$
\left\{z^{C} \vartheta_{q} \in A_{J} \mid(q, C) \in B(\mathbb{Z}) \times(P \backslash J) \text { of weight } w\right\}
$$

is contained in A_{J}^{\prime} (since the $z^{C} \vartheta_{q}$ give a \mathbb{k}-basis of A_{J}). We argue by decreasing induction on $\operatorname{ord}_{\mathfrak{m}}(C)$ (see Definition 2.20). Since the set of possible (q, C) is finite, there is an upper bound on the possible ord ${ }_{\mathfrak{m}}$'s. so the claim is vacuously true for large $\operatorname{ord}_{\mathfrak{m}}$. Consider $z^{C} \cdot \vartheta_{p}$, with $\operatorname{ord}_{\mathfrak{m}}(C)=h$. Since the ϑ_{q} generate A_{J} modulo \mathfrak{m}, we can find $a \in A_{J}^{\prime}$ such that

$$
\vartheta_{p}=a+m
$$

with $m \in \mathfrak{m} \cdot A_{J}$. Moreover, we can assume a, and thus m, is homogeneous for the T^{D} action. Now

$$
z^{C} \vartheta_{p}=z^{C} a+z^{C} m .
$$

Clearly $z^{C} m$ is a sum of terms $z^{D} \vartheta_{q}$ of weight w and $\operatorname{ord}_{\mathfrak{m}}(D)>h$, so $z^{C} m \in A_{J}^{\prime}$ by induction.

Remark 6.7. Suppose $p: Y \rightarrow Y^{\prime}$ is a contraction such that some component of D is not contracted by p. Let F be the face of $\operatorname{NE}(Y)_{\mathbb{R}}$ generated by classes of curves contracted by p. Then $\mathrm{NE}(Y)_{\mathbb{R}}$ is rational polyhedral near F. (This follows from the cone theorem, cf. the proof of Proposition (6.6) In particular there exists a rational polyhedral cone $\sigma_{P} \subset A_{1}(Y, \mathbb{R})$ such that $\mathrm{NE}(Y)_{\mathbb{R}} \subset \sigma_{P}$ and σ_{P} coincides with $\mathrm{NE}(Y)_{\mathbb{R}}$ near F.

Corollary 6.8. Theorem 0.2 holds if (Y, D) has a toric model.
Proof. Immediate from Proposition 6.6.
6.2. Proof of Theorems 0.1 and 0.2 in general. We now consider an arbitrary Looijenga pair (Y, D), along with a toric monoid P with $\mathrm{NE}(Y) \subset P \subset A_{1}(Y, \mathbb{Z})$. Let $\tau:\left(Y^{\prime}, D^{\prime}\right) \rightarrow(Y, D)$ be a toric blowup such that $\left(Y^{\prime}, D^{\prime}\right)$ has a toric model $p:\left(Y^{\prime}, D^{\prime}\right) \rightarrow(\bar{Y}, \bar{D})$. We have the map $\tau_{*}: A_{1}\left(Y^{\prime}, \mathbb{Z}\right) \rightarrow A_{1}(Y, \mathbb{Z})$. We can find a strictly convex rational polyhedral cone $\sigma_{P^{\prime}}$ with

$$
\mathrm{NE}\left(Y^{\prime}\right)_{\mathbb{R}} \subset \sigma_{P^{\prime}} \subset A_{1}\left(Y^{\prime}, \mathbb{R}\right)
$$

which has a face F spanned by the τ-exceptional curves, and which surjects under τ_{*} onto $\sigma_{P} \subset A_{1}(Y, \mathbb{R})$. For any monomial ideal $I \subset P$ with $\sqrt{I}=\mathfrak{m}$, let $I^{\prime} \subset P^{\prime}$ be the inverse image of I under τ_{*}. Then $\sqrt{I^{\prime}}$ is the prime monomial ideal associated to the face F. Since the exceptional curves are a proper subset of D^{\prime} we have $\sqrt{I^{\prime}} \in$ $\mathcal{A}\left(Y^{\prime}\right)$ by Proposition 6.6. Note that Spec $\mathbb{k}[P] / I$ is naturally a closed subscheme of Spec $\mathbb{k}\left[P^{\prime}\right] / I^{\prime}$, via the map induced by the surjection $\tau_{*}: P^{\prime} \rightarrow P$. Now restrict the family $\mathcal{X}_{I^{\prime}} \rightarrow \operatorname{Spec} \mathbb{k}\left[P^{\prime}\right] / I^{\prime}$ to Spec $\mathbb{k}[P] / I$. This gives an algebra structure on

$$
A_{I}:=\bigoplus_{q \in B(\mathbb{Z})}(\mathbb{k}[P] / I) \vartheta_{q}
$$

We claim this is precisely the algebra described by Theorem 2.32. The argument is just as in the proof of Proposition 3.12. We have $B_{\left(Y^{\prime}, D^{\prime}\right)}=B_{(Y, D)}$ and for $\psi:=\tau_{*}: P^{\prime} \rightarrow P$. Note $\psi\left(\mathfrak{D}^{\text {can }}\right)=\mathfrak{D}^{\text {can }}$ (i.e., the rays are the same, and we apply ψ to the decoration function). This does not literally give a bijection on broken lines (because different exponents in the decoration of a ray in $\mathfrak{D}_{\left(Y^{\prime}, D^{\prime}\right)}^{\text {can }}$ could map to the same exponent under $\psi)$. However, by Equation (3.4), with z a point close to q,

where $\xi_{\gamma_{i}}$ denotes the set of all broken lines γ_{i}^{\prime} for $\mathfrak{D}_{\left(Y^{\prime}, D^{\prime}\right)}^{\text {can }}$ such that $\psi \circ \gamma_{i}^{\prime}=\gamma_{i}$ as paths and the monomials attached to $\psi\left(\gamma_{i}^{\prime}\right)$ differ from those attached to γ_{i} only in the \mathbb{k}-valued coefficients (see the proof of Proposition (3.12). This implies the claim.

Now to complete the proof we need to check that the the fibre over the zero stratum of Spec $\mathbb{k}[P]$ is \mathbb{V}_{n}. In case $n \geq 3$, this is straightforward from the multiplication rule. Indeed, modulo \mathfrak{m}, every broken line contributing to the multiplication rule is a straight line, and furthermore it cannot cross any ray of Σ. From this one sees that $A_{\mathfrak{m}}=R_{\mathfrak{m}}[\Sigma]$.

The cases $n=1$ and 2 require special attention. We will do the case of $n=1$, as $n=2$ is similar (and simpler). We cut $B=B_{(Y, D)}$ along the unique ray $\rho=$ $\rho_{1} \in \Sigma$, and consider the image under a set of linear coordinates ψ on $B \backslash \rho$. This identifies $B \backslash \rho$ with a strictly convex rational cone in \mathbb{R}^{2}. Let w, w^{\prime} be the primitive generators of the two boundary rays. Modulo \mathfrak{m} the decoration on every scattering ray is trivial, so every broken line is straight. Moreover, no line can cross ρ (or the attached monomial becomes trivial modulo \mathfrak{m} by the strict convexity of φ). Now it follows for any $x \in B(\mathbb{R}) \backslash \rho$ and any $q \in(B \backslash \rho)(\mathbb{Z})$ there is a unique (straight) broken line with Limits $=(q, x)$, while there are exactly two (straight) broken lines with Limits $=(v, x), v=v_{1}$ - under ψ these become two distinct straight lines with directions w, w^{\prime}. Performing a toric blowup of (Y, D) to get $n^{\prime}=3$ can be accomplished by subdividing the cone generated by w and w^{\prime} along the rays generated by $w+w^{\prime}$ and $2 w+w^{\prime}$. Then by Theorem 0.2 in the case $n=3$, we see that $A_{\mathfrak{m}}$ is generated over \mathbb{k}
by

$$
\vartheta_{v}=\vartheta_{w}=\vartheta_{w^{\prime}}, \vartheta_{w+w^{\prime}}, \vartheta_{2 w+w^{\prime}}
$$

where we abuse notation and use the same symbol for an integer point in the convex cone generated by w and w^{\prime}, and the corresponding point in $B(\mathbb{Z})$. Now applying the multiplication rule of Theorem 2.32 one checks easily the equalities:

$$
\begin{aligned}
\vartheta_{v} \cdot \vartheta_{w+w^{\prime}} & =\vartheta_{2 w+w^{\prime}}+\vartheta_{w+2 w^{\prime}} \\
\vartheta_{2 w+w^{\prime}} \cdot \vartheta_{w+2 w^{\prime}} & =\vartheta_{3 w+3 w^{\prime}}=\vartheta_{w+w^{\prime}}^{3}
\end{aligned}
$$

It follows that

$$
\vartheta_{2 w+w^{\prime}} \cdot \vartheta_{v} \cdot \vartheta_{w+w^{\prime}}=\vartheta_{2 w+w^{\prime}}^{2}+\vartheta_{w+w^{\prime}}^{3}
$$

and thus $A_{\mathfrak{m}}=\mathbb{k}[x, y, z] /\left(x y z-x^{2}-z^{3}\right)$, which is isomorphic to the ring of sections

$$
\bigoplus_{m \geq 0} H^{0}(C, \mathcal{O}(m))
$$

for a line bundle $\mathcal{O}(1)$ of degree one on an irreducible rational nodal curve C of arithmetic genus 1. Thus Spec $A_{\mathfrak{m}}=\mathbb{V}_{1}$.

Combining this with Proposition 6.6. this proves Theorems 0.1 and 0.2 hold for all (Y, D) except for the smoothness statement of Theorem 0.1.

To show smoothness, note that if \mathfrak{m}^{\prime} denotes the maximal monomial ideal of P^{\prime}, $\mathfrak{X}_{\mathfrak{m}^{\prime}}^{\prime} \rightarrow \mathfrak{S}_{\mathfrak{m}^{\prime}}$ the formal deformation provided by Theorem 0.1 for the pair $\left(Y^{\prime}, D^{\prime}\right)$ with the toric model, we know that $\mathbb{k}\left[P^{\prime}\right] \rightarrow H^{0}\left(\mathfrak{Z}_{\mathfrak{m}^{\prime}}, \mathcal{O}_{\mathfrak{Z}_{\mathfrak{m}^{\prime}}}\right)$ is not injective by Theorem 4.6 Now choose (see the beginning of the proof of Proposition 6.6) a divisor $A=$ $\sum_{i} a_{i} D_{i}^{\prime}$ with $a_{i} \geq 0$ for all i and A relatively τ-ample, so that $A \cdot D_{j}^{\prime}>0$ for any D_{j}^{\prime} contracted by τ. This determines a one-parameter subgroup $T^{A} \cong \mathbb{G}_{m}$ of $T^{D^{\prime}}$ via the map $\chi\left(T^{D^{\prime}}\right) \rightarrow \mathbb{Z}$ given by $e_{D_{i}^{\prime}} \mapsto a_{i}$.

Let $J=P^{\prime} \backslash F$, so that $[C] \in J$ if and only if C is not contracted by τ. Thus if $[C] \in F, T^{A}$ acts on $z^{[C]}$ with weight $C . A>0$, and for $q \in B(\mathbb{Z}), T^{A}$ acts with non-negative weight since $a_{i} \geq 0$ for all i. It then follows that the map

$$
H^{0}\left(\mathfrak{Z}_{J}, \mathcal{O}_{\mathfrak{Z}_{J}}\right) \rightarrow H^{0}\left(\mathfrak{Z}_{\mathfrak{m}^{\prime}}, \mathcal{O}_{\mathfrak{Z}_{\mathfrak{m}^{\prime}}}\right)
$$

is injective because every component of \mathfrak{Z}_{J} has a limit point in $\mathfrak{Z}_{\mathfrak{m}^{\prime}}$ under the T^{A} action. So we conclude that $\mathbb{k}\left[P^{\prime}\right] \rightarrow H^{0}\left(\mathfrak{Z}_{J}, \mathcal{O}_{\mathfrak{Z}_{J}}\right)$ is not injective.

Now $F^{\text {gp }}$ is generated by the classes of the D_{i}^{\prime} contracted by τ. Let $T^{F}:=\operatorname{Hom}\left(F, \mathbb{G}_{m}\right)$. The composition $F^{\mathrm{gp}} \subset A_{1}\left(Y^{\prime}, \mathbb{Z}\right) \rightarrow \chi\left(T^{D^{\prime}}\right)$ is a primitive embedding, because the intersection matrix of $F \subset\left\langle D_{1}^{\prime}, \ldots, D_{r}^{\prime}\right\rangle$ is unimodular, where $D_{1}^{\prime}, \ldots, D_{r}^{\prime}$ are the irreducible components of the boundary of Y^{\prime}. So the corresponding composition $T^{D^{\prime}} \rightarrow \operatorname{Hom}\left(A_{1}\left(Y^{\prime}, \mathbb{Z}\right), \mathbb{G}_{m}\right) \rightarrow T^{F}$ admits a splitting $T^{F} \rightarrow T^{D^{\prime}}$. By T^{F}-equivariance, the restriction of the family $\mathfrak{X}_{J}^{\prime} / \mathfrak{S}_{J}^{\prime}$ to the open subscheme of $\mathfrak{S}_{J}^{\prime}$ defined by $T^{F} \subset S_{J}^{\prime}$
is isomorphic to a direct product of $\mathfrak{X}_{\mathfrak{m}} / \mathfrak{S}_{\mathfrak{m}}$ (coming from $\left.(Y, D), P\right)$ with T^{F}. In particular, $\mathfrak{X}_{\mathfrak{m}} / \mathfrak{S}_{\mathfrak{m}}$ has smooth generic fibre.

6.3. The case that (Y, D) is positive.

Lemma 6.9. The following are equivalent for a Looijenga pair (Y, D) :
(1.1) There exist integers a_{1}, \ldots, a_{n} such that $\left(\sum a_{i} D_{i}\right)^{2}>0$.
(1.2) There exist positive integers b_{1}, \ldots, b_{n} such that $\left(\sum b_{i} D_{i}\right) \cdot D_{j}>0$ for all j.
(1.3) $Y \backslash D$ is the minimal resolution of an affine surface with (at worst) Du Val singularities.
(1.4) There exist $0<c_{i}<1$ such that $-\left(K_{Y}+\sum c_{i} D_{i}\right)$ is nef and big.

If any of the above equivalent conditions hold, then so do the following:
(2.1) The Mori cone $\mathrm{NE}(Y)_{\mathbb{R}}$ is rational polyhedral, generated by finitely many classes of rational curves. Every nef line bundle on Y is semi-ample.
(2.2) The subgroup G of $\operatorname{Aut}(\operatorname{Pic}(Y),\langle\cdot, \cdot\rangle)$ fixing the classes $\left[D_{i}\right]$ is finite.
(2.3) The union $R \subset Y$ of all curves disjoint from D is contractible.

Definition 6.10. We say a Looijenga pair (Y, D) is positive if it satisfies any of the equivalent conditions (1.1)-(1.4) of the above lemma.

Proof. We have

$$
K_{Y}+\sum c_{i} D_{i}=\left(K_{Y}+D\right)-\sum\left(1-c_{i}\right) D_{i}=-\sum\left(1-c_{i}\right) D_{i}
$$

so (1.2) and (1.4) are equivalent, and (1.2) obviously implies (1.1).
If (1.1) holds then $\left(D^{\perp},\langle\cdot, \cdot\rangle\right)$, where $D^{\perp}=\left\{H \in \operatorname{Pic} Y \mid H \cdot D_{i}=0 \quad \forall i\right\}$, is negative definite, by the Hodge Index Theorem, and this implies (2.2) and (2.3).

Suppose (1.4) holds. By the basepoint-free theorem KM98, 3.3, the linear system

$$
\left|m\left(\sum b_{i} D_{i}\right)\right|=\left|-m\left(K_{Y}+\sum c_{i} D_{i}\right)\right|
$$

defines a birational morphism for $m \in \mathbb{N}$ sufficiently large, with exceptional locus the union R of curves disjoint from D. Adjunction shows R is a contractible configuration of (-2)-curves, which gives (1.3). (2.1) follows from the cone theorem KM98, 3.7.

We show (1.1) implies (1.2). By the Riemann-Roch theorem, if W is a Weil divisor (on any smooth surface) and $W^{2}>0$ then either W or $-W$ is big (i.e., the rational map given by $|n W|$ is birational for sufficiently large n). So, possibly replacing the divisor by its negative, we may assume $W=\sum a_{i} D_{i}$ is big. Write

$$
W^{\prime}=\sum_{a_{i}>0} a_{i} D_{i}=W+\sum_{-a_{i}>0}\left(-a_{i}\right) D_{i} .
$$

Thus W^{\prime} is big, and replacing W by $n W^{\prime}$, we may assume all $a_{i} \geq 0$ and $|W|$ defines a birational (rational) map. Subtracting off the divisorial base-locus (which does not affect the rational map) we may further assume the base locus is at most zero dimensional. Now $W=\sum b_{i} D_{i}$ is effective, nef and big, and supported on D. We show we may assume that in addition $b_{i}>0$ and $W \cdot D_{i}>0$ for each i. If $W \cdot D_{i}>0$, then we may assume $b_{i}>0$ (by adding ϵD_{i} to W if necessary). Now consider the set $S \subset\{1, \ldots, n\}$ of components D_{i} of D such that $W \cdot D_{i}=0$. By connectedness of D we find $b_{i}>0$ for each $i \in S$. Thus $\operatorname{Supp}(W)=D$. By the Hodge index theorem the intersection matrix $\left(D_{i} \cdot D_{j}\right)_{i, j \in S}$ is negative definite. Hence there exists a linear combination $E=\sum_{i \in S} \alpha_{i} D_{i}$, with $\alpha_{i} \in \mathbb{Z}_{>0}$ for each $i \in S$, such that $E \cdot D_{i}<0$ for each $i \in S$. Now replacing W by $W-\epsilon E$, we obtain $W \cdot D_{i}>0$ for each $i=1, \ldots, n$.

Finally we show (1.3) implies (1.1). Since $U=Y \backslash D$ is the resolution of an affine variety with du Val singularities, we have $U=Y^{\prime} \backslash D^{\prime}$ where Y^{\prime} is a normal projective surface and D^{\prime} is a Weil divisor such that D^{\prime} is the support of an ample divisor A. Let $\pi: \tilde{Y} \rightarrow Y^{\prime}$ be a resolution of singularities such that π is an isomorphism over U and the inclusion $U \subset Y$ extends to a birational morphism $f: \tilde{Y} \rightarrow Y$. Let \tilde{D} be the inverse image of D^{\prime} under π, so $\tilde{Y} \backslash \tilde{D}=Y^{\prime} \backslash D^{\prime}=U$. The divisor $\pi^{*} A$ has support \tilde{D}. So we can write $\pi^{*} A=f^{*}\left(\sum a_{i} D_{i}\right)+\sum \mu_{j} E_{j}$ where the E_{j} are the f-exceptional curves and $a_{i}, \mu_{j} \in \mathbb{Z}$. Then $\left(\sum a_{i} D_{i}\right)^{2} \geq\left(\pi^{*} A\right)^{2}=A^{2}>0$.

Corollary 6.11. Let (Y, D) be a positive Looijenga pair. Let $P=\mathrm{NE}(Y)$. The multiplication rule Theorem 2.32 applied with $\mathfrak{D}=\mathfrak{D}^{\text {can }}$ determines a finitely generated T^{D}-equivariant $R=\mathbb{k}[P]$-algebra structure on the free R-module

$$
A=\bigoplus_{q \in B(\mathbb{Z})} R \cdot \vartheta_{q}
$$

Furthermore, $\operatorname{Spec} A \rightarrow \operatorname{Spec} R$ is a flat affine family of Gorenstein SLC surfaces with central fibre \mathbb{V}_{n}, and smooth generic fibre. Any collection of ϑ_{q} whose restrictions generate $A / \mathfrak{m}=H^{0}\left(\mathbb{V}_{n}, \mathcal{O}_{\mathbb{V}_{n}}\right)$ generate A as an R-algebra. In particular the $\vartheta_{v_{i}}$ generate for $n \geq 3$.

Proof. Everything but the singularity statement follows from Theorem 0.2 The Gorenstein SLC locus in the base is open, and T^{D}-equivariant. Taking a big and nef divisor $H=\sum a_{i} D_{i}$ with $a_{i}>0$ and $H \cdot D_{i}>0$ for all i, we obtain a one-parameter subgroup of T^{D} given by the map $\chi\left(T^{D}\right) \rightarrow \mathbb{Z}, e_{D_{i}} \mapsto a_{i}$. By definition of the weights, the weights of $z^{[C]}$ for $C \in \mathrm{NE}(Y)$ and ϑ_{p} for $p \in B(\mathbb{Z})$ are all non-negative. Thus the corresponding torus $T_{H} \cong \mathbb{G}_{m}$ gives a contracting action, and the map

$$
H^{0}\left(Z, \mathcal{O}_{Z}\right) \rightarrow H^{0}\left(\mathfrak{Z}_{\mathfrak{m}}, \mathcal{O}_{\mathfrak{Z}_{\mathfrak{m}}}\right)
$$

is injective, where Z is the singular locus of the family $X \rightarrow S$. But since $R \rightarrow$ $H^{0}\left(\mathcal{O}_{\mathfrak{J}_{\mathrm{m}}}, \mathcal{O}_{\mathfrak{Z}_{\mathrm{m}}}\right)$ is not injective, as shown in the proof of Theorem 0.1, we deduce that the map $R \rightarrow H^{0}\left(Z, \mathcal{O}_{Z}\right)$ is not injective. Letting f be in the kernel of the map, the fibres over $\operatorname{Spec} R \backslash V(f)$ are smooth.

In Part II we will prove that when D is positive, our mirror family admits a canonical fibrewise T^{D}-equivariant compactification $\mathcal{X} \subset(\mathcal{Z}, \mathcal{D})$. The restriction $(\mathcal{Z}, \mathcal{D}) \rightarrow$ $T_{Y}:=\operatorname{Pic}(Y) \otimes \mathbb{G}_{m}$ comes with a trivialization $\mathcal{D} \xrightarrow{\sim} D_{*} \times T_{Y}$. We will show that $(\mathcal{Z}, \mathcal{D})$ is the universal family of Looijenga pairs $\left(Z, D_{Z}\right)$ deformation equivalent to (Y, D) together with a choice of isomorphism $D_{Z} \xrightarrow{\sim} D_{*}$. Now for any positive pair $\left(Z, D_{Z}\right)$ together with a choice of isomorphism $\phi: D_{Z} \xrightarrow{\sim} D_{*}$, our construction equips the complement $U=Z \backslash D_{Z}$ with canonical theta functions $\vartheta_{q}, q \in B_{(Z, D)}(\mathbb{Z})$. We will give a characterisation in terms of the intrinsic geometry of $\left(Z, D_{Z}\right)$. Changing the choice of isomorphism ϕ changes ϑ_{q} by a character of $T^{D}=\operatorname{Aut}^{0}\left(D_{*}\right)$, the identity component of $\operatorname{Aut}\left(D_{*}\right)$. Here we illustrate with two examples:

Example 6.12. Consider first the case (Y, D) a 5 -cycle of (-1)-curves on the (unique) degree 5 del Pezzo surface, Example 3.7. In this case $T^{D}=T_{Y}=\operatorname{Pic}(Y) \otimes_{\mathbb{Z}} \mathbb{G}_{m}$, and thus by the T^{D}-equivariance, all fibres of the restriction $\mathcal{X} \rightarrow T_{Y}$ are isomorphic. We consider the fibre over the identity $e \in T_{Y}$, thus specializing the equations of Example 3.7 by setting all $z^{D_{i}}=1$. It's well known that these equations define an embedding of the original $U=Y \backslash D$ into \mathbb{A}^{5} - if we take the closure in \mathbb{P}^{5} (for the standard compactification $\mathbb{A}^{5} \subset \mathbb{P}^{5}$) one checks easily we obtain Y with D the hyperplane section at infinity.

Now it is easy to compute the zeroes and poles:

$$
\left(\vartheta_{v_{i}}\right)=E_{i}+D_{i}-D_{i+2}-D_{i-2}
$$

(indices $\bmod 5$). In particular $\left\{\vartheta_{v_{i}}=0\right\}=E_{i} \cap U \subset U$, which characterizes $\vartheta_{v_{i}}$ up to scaling.

Example 6.13. Now let ($Y, D=D_{1}+D_{2}+D_{3}$) be (the deformation type of) a cubic surface together with a triangle of lines. Let $\mathcal{X} \subset \operatorname{Spec}(\mathbb{k}[\operatorname{NE}(Y)]) \times \mathbb{A}^{3}$ be the canonical embedding given by $\vartheta_{i}:=\vartheta_{v_{i}}, i=1,2,3$. In this case, as we shall see in Part II, the scattering diagram is particularly beautiful, with every ray \mathfrak{d} of rational slope occuring, with precisely six curves on the cubic surface contributing to $f_{\mathfrak{0}}$. We will also show in Part II that the mirror is given by the equation

$$
\vartheta_{1} \vartheta_{2} \vartheta_{3}=\sum_{i} z^{D_{i}} \vartheta_{i}^{2}+\sum_{i}\left(\sum_{j} z^{E_{i j}}\right) z^{D_{i}} \vartheta_{i}+\sum_{\pi} z^{\pi^{*} H}+4 z^{D_{1}+D_{2}+D_{3}}
$$

Here the $E_{i j}$ are the interior (-1)-curves meeting D_{i}, and the sum over π is the sum over all possible toric models $\pi: Y \rightarrow \bar{Y}$ of (Y, D) to a pair (\bar{Y}, \bar{D}) isomorphic to \mathbb{P}^{2} with its toric boundary. (Such π are permuted simply transitively by the Weyl group $W\left(D_{4}\right)$ by L81, Prop. 4.5, p. 283.) The same family, in the same canonical coordinates, was discovered by Oblomkov Ob04. As we learned from Dolgachev, after a change of variables (in \mathbb{A}^{3}), and restricting to T_{Y} (the locus over which the fibers have at worst Du Val singularities) this is identified with the universal family of affine cubic surfaces (the complement to a triangle of lines on projective cubic surface) constructed by Cayley in C1869. The universal family of cubic surfaces with triangle is obtained as the closure in $\mathbb{A}^{3} \subset \mathbb{P}^{3}$. In particular, as in the first example, our mirror family compactifies naturally to the universal family of Looijenga pairs deformation equivalent to the original (Y, D). There is again a geometric characterisation of ϑ_{i} (up to scaling): The linear system $\left|-K_{Y}-D_{i}\right|=\left|D_{j}+D_{k}\right|$ (here $\{i, j, k\}=\{1,2,3\}$) is a basepoint free pencil. It defines a ruling $\pi: Y \rightarrow \mathbb{P}^{1}$ which restricts to a double cover $D_{i} \rightarrow \mathbb{P}^{1}$. Let $\{a, b\} \subset \mathbb{P}^{1}$ be the branch points of $\left.\pi\right|_{D_{i}}$. Let $p=\pi\left(D_{j}+D_{k}\right) \in \mathbb{P}^{1}$. There is a unique point $q \in \mathbb{P}^{1} \backslash\{a, b, p\}$ fixed by the unique involution of \mathbb{P}^{1} interchanging a and b and fixing p. Let $Q=\pi^{*}(q) \in\left|D_{j}+D_{k}\right|$ be the corresponding divisor. The curve $Q \subset \mathbb{P}^{3}$ is a smooth conic. In Part II we will show

Proposition 6.14. $\left(\vartheta_{i}\right)=Q-D_{j}-D_{k}$.

References

[AC11] D. Abramovich, Q. Chen, Stable logarithmic maps to Deligne-Faltings pairs II, arXiv:1102.4531.
[A02] V. Alexeev, Complete moduli in the presence of semiabelian group action, Ann. of Math. (2) 155 (2002), no. 3, 611-708.
[A98] K. Altmann, P-resolutions of cyclic quotients from the toric viewpoint, in Singularities (Oberwolfach, 1996), 241-250, Progr. Math. 162, Birkhäuser, 1998.
[A07] D. Auroux, Mirror symmetry and T-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. 1 (2007), 51-91, and preprint arXiv:0706.3207 (2007).
[C1869] A. Cayley, A Memoir on Cubic Surfaces, Philosophical Transactions of the Royal Society of London 159 (1869), 231-326.
[CPS] M. Carl, M. Pumperla, and B. Siebert, A tropical view of Landau-Ginzburg models, available at http://www.math.uni-hamburg.de/home/siebert/preprints/LGtrop.pdf
[CO06] C.-H. Cho, Y.-G. Oh, Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math. 10, (2006), 773-814.
[E95] D. Eisenbud, Commutative algebra with a view toward Algebraic Geometry, Graduate Texts in Mathematics 150, Springer-Verlag, New York, 1995.
[FG09] V. Fock and A. Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci.Éc. Norm. Supér. (4) 42 (2009), no. 6, 865-930.
[FM83] R. Friedman and R. Miranda, Smoothing cusp singularities of small length, Math. Ann. 263 (1983), no. 2, 185-212.
[FP84] R. Friedman and H. Pinkham, Smoothings of cusp singularities via triangle singularities. With an appendix by H. Pinkham, Compositio Math. 53 (1984), no. 3, 303-324.
[Giv] A. Givental, Homological geometry. I. Projective hypersurfaces. Selecta Math. 1 (1995), 325-345.
[G09] M. Gross, Mirror symmetry for \mathbb{P}^{2} and tropical geometry, Adv. Math., 224 (2010), 169-245.
[G11] M. Gross, Tropical geometry and mirror symmetry, CBMS Regional Conf. Ser. in Math. 114, A.M.S., 2011.
[GHKII] M. Gross, P Hacking, S. Keel, Mirror symmetry for log Calabi-Yau surfaces II, in preparation.
[GHKIII] M. Gross, P Hacking, S. Keel, Mirror symmetry for log Calabi-Yau surfaces III, in preparation.
[GHKS] M. Gross, P Hacking, S. Keel, B. Siebert, Theta functions on varieties with effective anticanonical class, in preparation.
[K3] M. Gross, P Hacking, S. Keel, B. Siebert, Theta functions for K3 surfaces, in preparation.
[GPS09] M. Gross, R. Pandharipande, B. Siebert, The tropical vertex, arXiv:0902.0779v1 [math.AG].
[GS06] M. Gross, B. Siebert, Mirror symmetry via logarithmic degeneration data, I. J. Differential Geom., 72, (2006) 169-338.
[GS07] M. Gross, B. Siebert, From real affine geometry to complex geometry, Annals of Mathematics, 174, (2011), 1301-1428.
[GS08] M. Gross, B. Siebert, An invitation to toric degenerations, Surveys in differential geometry. Volume XVI. Geometry of special holonomy and related topics, 43-78, Surv. Differ. Geom., 16, Int. Press, Somerville, MA, 2011.
[GS11] M. Gross, B. Siebert, Logarithmic Gromov-Witten invariants, J. Amer. Math. Soc. 26 (2013), 451-510.
[GSTheta] M. Gross, B. Siebert, Theta functions and mirror symmetry, arXiv:1204.1991 [math.AG].
[G60] A. Grothendieck, Éléments de géométrie algébrique I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. No. 4.
[G61] A. Grothendieck, Éléments de géométrie algébrique III, Étude cohomologique des faisceaux cohérents I, Inst. Hautes Études Sci. Publ. Math. No. 11 (1961).
[H04] P. Hacking, Compact moduli of plane curves, Duke Math. J. 124 (2004), no. 2, 213-257.
[H77] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer, 1977.
[IP03] E.-N. Ionel, T. Parker, Relative Gromov-Witten invariants, Ann. of Math. 157 (2003), 45-96.
[KM98] J. Kollár, S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math. 134. C.U.P., 1998.
[KS06] M. Kontsevich, Y. Soibelman: Affine structures and non-Archimedean analytic spaces, in: The unity of mathematics (P. Etingof, V. Retakh, I.M. Singer, eds.), 321-385, Progr. Math. 244, Birkhäuser 2006.
[L02] S. Lang, Algebra, 3rd ed., Grad. Texts in Math. 211, Springer, 2002.
[Li00] J. Li, Stable morphisms to singular schemes and relative stable morphisms, J. Diff. Geom. 57, (2000), 509-578.
[Li02] J. Li, A degeneration formula of GW-invariants, J. Diff. Geom., 60, (2002) 199-293.
[LR01] A.-M. Li, Y. Ruan, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, I, Invent. Math. 145 (2001), 151-218.
[L76] E. Looijenga, Root systems and elliptic curves, Invent. Math. 38 (1976), 17-32.
[L81] E. Looijenga, Rational surfaces with an anticanonical cycle. Ann. of Math. (2) 114 (1981), no. 2, 267-322.
[M82] J. Mérindol, Les singularités simples elliptiques, leurs déformations, les surfaces de del Pezzo et les transformations quadratiques. Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 1, 17-44
[Ma89] H. Matsumura, Commutative ring theory, C.U.P., 1989.
[Mum] D. Mumford, An analytic construction of degenerating abelian varieties over complete rings, Compositio Math. 24, (1972), 239-272.
[N80] I. Nakamura, Inoue-Hirzebruch surfaces and a duality of hyperbolic unimodular singularities, Math. Ann. 252 (1980), no. 3, 221-235.
[Ob04] A. Oblomkov, Double affine Hecke algebras of rank 1 and affine cubic surfaces, Int. Math. Res. Not. 2004, no. 18, 877-912, and arXiv:math/0306393v4 [math.RT].
[P74] H. Pinkham, Deformations of algebraic varieties with \mathbb{G}_{m} action, Astérisque 20, S.M.F., 1974. Homology, Homotopy Appl. 10 (2008), no. 2, 83-114.
[SYZ96] A. Strominger, S.-T. Yau, and E. Zaslow, Mirror Symmetry is T-duality, Nucl. Phys. B479, (1996) 243-259.

UCSD Mathematics, 9500 Gilman Drive, La Jolla, CA 92093-0112, USA
E-mail address: mgross@math.ucsd.edu
Department of Mathematics and Statistics, Lederle Graduate Research Tower, University of Massachusetts, Amherst, MA 01003-9305

E-mail address: hacking@math.umass.edu
Department of Mathematics, 1 University Station C1200, Austin, TX 78712-0257
E-mail address: keel@math.utexas.edu

