Homework of Serre Duality

Chen Jiaming

- 1. Let X be an integral scheme of finite type over a field k(not necessarily algebraic closed), then for any closed point $p \in X$, dim $X = \dim \mathcal{O}_{X,p}$.
- 2. If there is some property \mathcal{P} of points of a scheme that is 'open'(If a point x has \mathcal{P} , then there is some neighborhood U of x such that all the points in U have \mathcal{P}), then to check if all points of a quasi-compact scheme have \mathcal{P} , it suffices to check only the closed points.
- 3. Let X be a noetherian scheme, and let $\mathscr{F}, \mathscr{G} \in \mathfrak{Mod}(X)$.
 - (a) If \mathscr{F}, \mathscr{G} are both coherent, then $\mathscr{E}xt^i(\mathscr{F}, \mathscr{G})$ is coherent, for all $i \ge 0$.
 - (b) If \mathscr{F} is coherent and \mathscr{G} is quasi-coherent, then $\mathscr{E}xt^{i}(\mathscr{F},\mathscr{G})$ is quasi-coherent, for all $i \ge 0$.
- 4. Let A be a regular local ring, and let M be a finitely generated A-module.
 - (a) M is projective if and only if $\text{Ext}^{i}(M, A) = 0$.
 - (b) Use (a) to show that for any n, $\operatorname{pd} M \leq n$ if and only if $\operatorname{Ext}^{i}(M, A) = 0$ for all i > n.
- 5. Suppose that Y is a projective scheme of dimension n satisfying strong Serre duality. If $X \hookrightarrow Y$ is a closed subscheme of codimension r, show that $\mathscr{E}xt^i_Y(\mathcal{O}_X, \omega^\circ_Y)$ is the dualizing sheaf for X.
- *6. Suppose X is a complete intersection in \mathbb{P}^n , of hypersurfaces of degrees d_1, \dots, d_r . Then X satisfies strong Serre duality, with dualizing sheaf $\omega_X^{\circ} \cong \mathcal{O}_X(-n-1-d_1-\dots-d_r)$.