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Overview

Goal of the talk is to discuss the homotopy theory of (relative)
categories and characterize fibrant objects in the corresponding model
structures.
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The nerve functor

Let C be a category. Its nerve is the simplicial set Nerve C with
n-simplices

(Nerve C)n = Fun([n], C),

i.e. all chains of n composable morphisms.
This defines a functor

Nerve : Cat −→ sSet .

Examples:

Nerve [n] = ∆[n]

|Nerve G| = BG for a group G seen as a category with one object.
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Weak equivalences

We call a functor F : C −→ D a weak equivalence if

Nerve F : Nerve C −→ Nerve D

is a weak equivalence of simplicial sets (i.e. a homotopy equivalence
after geometric realization).

Motivation:

Algebraic K-Theory
Classifying Spaces/Homotopical Group Theory

A category equipped with a subcategory of weak equivalences
(containing all objects) is called a relative category. So Cat gets the
structure of a relative category.

Lennart Meier (UVa) Fibrancy of (Relative) Categories Copenhagen 2014 4 / 1



Weak equivalences

We call a functor F : C −→ D a weak equivalence if

Nerve F : Nerve C −→ Nerve D

is a weak equivalence of simplicial sets (i.e. a homotopy equivalence
after geometric realization).

Motivation:
Algebraic K-Theory

Classifying Spaces/Homotopical Group Theory

A category equipped with a subcategory of weak equivalences
(containing all objects) is called a relative category. So Cat gets the
structure of a relative category.

Lennart Meier (UVa) Fibrancy of (Relative) Categories Copenhagen 2014 4 / 1



Weak equivalences

We call a functor F : C −→ D a weak equivalence if

Nerve F : Nerve C −→ Nerve D

is a weak equivalence of simplicial sets (i.e. a homotopy equivalence
after geometric realization).

Motivation:
Algebraic K-Theory
Classifying Spaces/Homotopical Group Theory

A category equipped with a subcategory of weak equivalences
(containing all objects) is called a relative category. So Cat gets the
structure of a relative category.

Lennart Meier (UVa) Fibrancy of (Relative) Categories Copenhagen 2014 4 / 1



Weak equivalences

We call a functor F : C −→ D a weak equivalence if

Nerve F : Nerve C −→ Nerve D

is a weak equivalence of simplicial sets (i.e. a homotopy equivalence
after geometric realization).

Motivation:
Algebraic K-Theory
Classifying Spaces/Homotopical Group Theory

A category equipped with a subcategory of weak equivalences
(containing all objects) is called a relative category. So Cat gets the
structure of a relative category.

Lennart Meier (UVa) Fibrancy of (Relative) Categories Copenhagen 2014 4 / 1



Homotopy Category

To a relative category C, we can associate its homotopy category
Ho(C). Its morphisms are given by equivalence classes of zigzags

X −→ Z1
'←− Z2 −→ Z3

'←− · · · −→ Y .

Examples: Ho(Cat) Nerve
'
// Ho(sSet)

|•|
'
// Ho(Top) .

Possible homotopy inverse of the nerve is the face category of a
simplicial complex/set.

Problems:

Arbitrary long zigzags are difficult to work with.
There may be many non-weak-equivalences that go under the
functor C −→ Ho(C) to isomorphisms.
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Model Categories

Model Categories

Relative Categories

Refinement
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Model Categories

A model category consists of a categoryM equipped with three
subcategoriesW, C and F , called weak equivalences, cofibrations and
fibrations, fulfilling the following axioms:

1 M has all (finite) limits and colimits.
2 W fulfills 2 out of 3: If f ◦ g is a weak equivalence and f or g is, so

is the third.
3 W, C and F are closed under retracts.
4 (Acyclic) fibrations can be characterized by lifting properties.
5 Every morphisms f inM can (functorially) be factorized as follows:

X // ' //

f

77X ′ // // Y X // //

f

77Y ′ ' // // Y
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Cofibrant and fibrant objects

An object X is cofibrant if ∅ −→ X is a cofibration and is fibrant if
X −→ ∗ is a fibration.

Axioms imply that every object is weakly equivalent to a (co)fibrant
object.

Knowledge of cofibrant and fibrant objects is important for computation
of derived functors and the homotopy category.

Ho(M)(X ,Y ) = [X ,Y ] for X cofibrant and Y fibrant
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Examples

Examples of model categories are:
Topological spaces withW = weak homotopy equivalences, F =
Serre fibrations

Simplicial sets withW = weak homotopy equivalences, F = Kan
fibrations, C = all monomorphisms
All kinds of spectra
Categories?
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Model Structure on Cat

Naive attempt to get a model structure on Cat: f : C −→ D is a
fibration/weak equivalence if Nerve f : Nerve C −→ Nerve D is.

This does not work: A category C with Nerve C fibrant is a groupoid,
thus πk Nerve C = 0 for k > 1. This is in contradiction to nerve
inducing an equivalence between homotopy categories.

Alternatively: If Nerve was a right Quillen functor, its left adjoint

c : sSet −→ Cat

would have to be a homotopy inverse (as every simplicial set is
cofibrant). But Nerve cX 6' X in general.
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Subdivision

Denote by

sSet
Sd ,,

sSet
Ex
ll

the subdivision and its right adjoint. ´

There is a natural weak equivalence X −→ Ex X and if X was fibrant,
Ex X is as well. The functor Ex makes more things fibrant and Ex∞ X
is always fibrant.
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Thomason model structure

Next try: Declare f : C −→ D be a fibration if Ex Nerve f is.

Still does not work: (Ex Nerve )(c Sd)X 6' X in general.

Cat
Ex Nerve,,

sSet
c Sd
kk

Thomason’s idea: Declare f to be a fibration if Ex2 Nerve f is.

This determines a model structure on Cat that is Quillen equivalent to
sSet via

Ex2 Nerve : Cat −→ sSet
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Fibrant objects

Question: How to characterize fibrant objects?

Nerve C fibrant ⇔ C groupoid
Ex Nerve C fibrant ⇔ C possesses a left calculus of fractions with
respect to itself
Ex2 Nerve C fibrant ⇔ ???
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Partial model categories

A relative category (M,W) is called a partial model category if there
are subclasses

C,F ⊂ W

(called (acyclic) cofibrations and (acyclic) fibrations, respectively)
satisfying the following axioms:

1 W satisfies the 2 out of 6 property.
2 Pushouts of acyclic cofibrations exist and are again acyclic

cofibrations
3 Pullbacks of acyclic fibrations exist and are again acyclic fibrations
4 Every weak equivalence can be functorially factorized into an

acyclic cofibration and an acyclic fibration.

This is enough to controlM−→ Ho(M): Existence of 3-arrow
calculus.
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Main theorem

Theorem (M.-Ozornova)
If (M,W) is a partial model category, thenW is fibrant in the
Thomason model structure on Cat.

A categoryW is the category of weak equivalences of partial model
category if there are subclasses C,F ⊂ W (called cofibrations and
fibrations, respectively) such that

1 Pushouts of cofibrations exist and are again cofibrations
2 Pullbacks of fibrations exist and are again fibrations
3 Every map can be functorially factorized into a cofibration and a

fibration.
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Examples

The category of weak equivalences of a model category.

Every category with all pullbacks with F =W and C consisting
only of identities.
Every category with all pushouts with C =W and F consisting
only of identities.
Many more...
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Proof

A category C is fibrant iff it has the right lifting property with respect to
all maps c Sd2 Λk [n] −→ c Sd2 ∆[n].
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Weak equivalences of relative categories

Barwick and Kan define a model structure on RelCat, the category of
relative categories. Morphisms are relative functors, i.e. functors that
preserve weak equivalences.

Dwyer–Kan defined for a relative category C mapping spaces
LHC(X ,Y ).

A relative functor f : C −→ D is a weak equivalence if it induces an
equivalence

Ho(C) −→ Ho(D)

and weak (homotopy) equivalences of all mapping spaces.
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Model Structure on ssSet

Rezk defined a model structure on simplicial spaces ssSet.

It is a localization of the Reedy model structure (levelwise weak
equivalences).
It is Quillen equivalent to Joyal model structure on sSet and
Bergner model structure on sCat.
Its fibrant objects are complete Segal spaces, a model for
(∞,1)-categories.

RelCat

sSet

ssSetsCat
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The classifying diagram functor

A relative functor f : C −→ D is a weak equivalence iff Nf is one in the
Rezk model structure for the classifying diagram functor

N : RelCat −→ ssSet, N(C)n = Nerve (we C[n])

• //

'
��

• //

'
��

•
'
��

// •
'
��

((NC)4)2 • //

'
��

• //

'
��

•
'
��

// •
'
��

• // • // • // •
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Barwick–Kan model structure

Barwick and Kan define a functor

Nξ : RelCat −→ ssSet

(analogous to Ex2 Nerve) and define f : C −→ D to be a fibration if Nξf
is. This defines a model structure on RelCat, Quillen equivalent to the
Rezk model structure on ssSet.

Problem: Find a big class of fibrant relative categories.

Partial answer: Barwick and Kan show: IfM is a partial model
category, a Reedy fibrant replacement of NξM is fibrant is a complete
Segal space.
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Model categories are fibrant

(Pre-)theorem (M.)
Model categories are fibrant in the Barwick–Kan model structure.

A full subcategory D ⊂M is called homotopically full if for c ∈ D and
c ' d also d ∈ D.

Barwick and Kan construct for every relative category C an equivalence
C −→ D to a homotopically full subcategory of simplicial sets.

Corollary
This defines a fibrant replacement functor for RelCat.
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Thank you!
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