2MMD30: Graphs and Algorithms Extra Exercises

Extra Practice Exercises Solutions

Excercise 1. Given undirected graph G = (V, E), find a pair u,v € V with u # v maximizing
N(u) N N(v) in O(n¥) time, where w is the matrix multiplication constant. Recall that N(v)
denotes the set of all neighbors of v (so not v itself).

Solution. If vi,...,v,, A is the adjacency matrix (so a;; = 1 if and only if (v;,v;) € E) and
B = A?, then recall that b;; = Y_}_; aixay;. Thus |N(v;) NN (vj)| = b;;. Therefore we can compute
B in O(n¥) time and return ¢ < j such that b;; is maximum.

Excercise 2.

e Give an algorithm taking as input an undirected graph G and a Feedback Vertex Set (FVS)
F of G, and outputs a tree decomposition of G of width |F| + O(1) in polynomial time.

e Suppose you have an algorithm fvstw(G, (X,T')) that given an undirected graph G and a tree
decomposition (X,T') of G of width w, computes a minimum size FVS in time O*(3"). Give
an algorithm that uses fvstw(G, (X,T)) as a blackbox, takes as input a graph G and integer
k, and determines whether G has a FVS of size at most k in O*(3%). Hint: use iterative
compression.

Solution. Recall that in Exercise 7.2 we constructed a tree decomposition of a tree. Use the
same tree decomposition here for every connected component of G[V '\ F], which needs to be a tree
since F' is a FVS. This gives tree decompositions (X!, T1),..., (X', T") for each of the I connected
components of G[V \ F]. Now we add to every bag the set F' and we connect all trees T, ..., T" in
an arbitrary way to a tree T'. This gives a tree decomposition of G because : (i) every vertex occurs
in some bag (ii) every edge occurs in some bag (the edges of G[V'\ F] are already contained in one of
the tree decompositions (X1, T?), the edges incident to F are contained in the tree decomposition
since F' is in every bag) (iii) for every v € V the set of bags containing v induces a connected
subtree of T" since if v € F' it is the whole tree and if v ¢ F it only occurs in 7; for some i and
since T; is a tree decomposition of the connected component of G[V \ F| containing v, the set
of bags containing v must induce a connected subtree. Note that the maximum bag size of this
decomposition if |F| + 2 (so it has width |F| + 1).

For the iterated compression we use the following algorithm. Note that it is the same as
Algorithm 7 from Lecture 5 except that we have a different compression step.



Algorithm FVS(G = (V, E), k)
Output: Whether GG has a feedback vertex set of size at most k

1 Let V ={vy,...,v,}

2: Let X = {vy,..., v}

3 fori=k+1,...,ndo

4 X+ X Uuy; X is a FVS of G[{v1,...,v;}] of size at most k + 1
start compression

5. Construct a TD (X, T) of G[{v1,...,v;}] of width at most |F| + O(1) as outline above.

6: X =fvstw(G, (X,T))
end compression

7. if | X| =k + 1 then return false check whether the compression was successful

return true

%

Algorithm 1: Algorithm for Feedback Vertex Set.

Excercise 3. A connected vertex cover (CVC) of a graph G = (V, E) is a vertex cover X C V such
that G[X] is connected. Give an algorithm that takes as input a graph G = (V, E) and integer k
and determines in O*(c¥) time whether G has a connected vertex cover of size at most k, for some
constant ¢. You may use as blackbox an algorithm st(G = (V, E), T, 1) that solves the Steiner Tree
problem in O*(2/71) time, i.e. it determines whether there exists 7' C Y C V with |Y| < [ with
G[Y] connected.

Solution. Use the following algorithm:

Algorithm cve(G = (V, E), X, k)
Output: Whether G has a connected vertex cover of size at most k containing the set X.
1: if X is a vertex cover of G then
2:  return st(G, X, k)
3: if k£ < 0 then return false
4: Let (u,v) € E such that v ¢ X and v ¢ X.
5. return cve(G[V \ ul,k — 1)V cve(G[V \ v], k — 1)

Algorithm 2: O(4¥k(n+m)) time algorithm for detecting connected vertex covers of size at most
k.

If X is a vertex cover of G, then we only need to worry about the requirement that G[X] is
connected. Then st(G, X, k) determines whether there exists a superset Y of X such that such
that |Y| < k and G[Y] is connected, which is exactly the set of connected vertex covers that are a
superset of X.

If (u,v) € E such that u ¢ X and v ¢ X, then we know that for every vertex cover Y either
ueY and v € Y (or both).

Excercise 4. Give an O(n?) time algorithm that takes as input three matrices A, B,C € Zy*"
with the following properties:

o If AB=C,ie. Vi,j:cij =2 ) aibyj, the algorithm always outputs true ,
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e If AB # C, the algorithm outputs false with constant probability.
Hint: Pick x € Z% uniformly at random and study Cx and ABx, use the rank-nullity theorem to

bound the probability of false positives.

Solution. Pick x € Z§ uniformly at random. Compute Cx and A(Bx) (which is easily naively
done in O(n?) time by following the definition of matrix vector multiplication). We have that if
AB = C then ABx = C. On the other hand, if AB # C then AB — C has rank at least 1, and
nul(AB — B) <n — 1. Then we see that

Pr[ABz = Cz| = Pr[(AB — C)z = 0]
= Pr[z in null space of AB — C]
<onlon < 1)2.



	Extra Practice Exercises Solutions

