Extra Practice Exercises Solutions

Excercise 1. Given undirected graph G = (V, E), find a pair $u, v \in V$ with $u \neq v$ maximizing $N(u) \cap N(v)$ in $O(n^{\omega})$ time, where ω is the matrix multiplication constant. Recall that N(v) denotes the set of all neighbors of v (so not v itself).

Solution. If v_1, \ldots, v_n , A is the adjacency matrix (so $a_{ij} = 1$ if and only if $(v_i, v_j) \in E$) and $B = A^2$, then recall that $b_{ij} = \sum_{k=1}^n a_{ik}a_{kj}$. Thus $|N(v_i) \cap N(v_j)| = b_{ij}$. Therefore we can compute B in $O(n^{\omega})$ time and return i < j such that b_{ij} is maximum.

Excercise 2.

- Give an algorithm taking as input an undirected graph G and a Feedback Vertex Set (FVS) F of G, and outputs a tree decomposition of G of width |F| + O(1) in polynomial time.
- Suppose you have an algorithm fvstw(G, (X, T)) that given an undirected graph G and a tree decomposition (X, T) of G of width w, computes a minimum size FVS in time $O^*(3^w)$. Give an algorithm that uses fvstw(G, (X, T)) as a blackbox, takes as input a graph G and integer k, and determines whether G has a FVS of size at most k in $O^*(3^k)$. Hint: use iterative compression.

Solution. Recall that in Exercise 7.2 we constructed a tree decomposition of a tree. Use the same tree decomposition here for every connected component of $G[V \setminus F]$, which needs to be a tree since F is a FVS. This gives tree decompositions $(X^1, T^1), \ldots, (X^l, T^l)$ for each of the l connected components of $G[V \setminus F]$. Now we add to every bag the set F and we connect all trees T^1, \ldots, T^l in an arbitrary way to a tree T. This gives a tree decomposition of G because : (i) every vertex occurs in some bag (ii) every edge occurs in some bag (the edges of $G[V \setminus F]$ are already contained in one of the tree decompositions (X^1, T^l) , the edges incident to F are contained in the tree decomposition since F is in every bag) (iii) for every $v \in V$ the set of bags containing v induces a connected subtree of T since if $v \in F$ it is the whole tree and if $v \notin F$ it only occurs in T_i for some i and since T_i is a tree decomposition of the connected component of $G[V \setminus F]$ containing v, the set of bags containing v must induce a connected subtree. Note that the maximum bag size of this decomposition if |F| + 2 (so it has width |F| + 1).

For the iterated compression we use the following algorithm. Note that it is the same as Algorithm 7 from Lecture 5 except that we have a different compression step. **Algorithm** FVS(G = (V, E), k)**Output:** Whether G has a feedback vertex set of size at most k1: Let $V = \{v_1, \ldots, v_n\}$ 2: Let $X = \{v_1, \dots, v_k\}$ 3: for i = k + 1, ..., n do X is a FVS of $G[\{v_1, \ldots, v_i\}]$ of size at most k + 1 $X \leftarrow X \cup v_i$ 4: start compression Construct a TD (\hat{X}, T) of $G[\{v_1, \ldots, v_i\}]$ of width at most |F| + O(1) as outline above. 5:X = fvstw(G, (X, T))6: end compression if |X| = k + 1 then return false check whether the compression was successful 7: 8: return true

Algorithm 1: Algorithm for Feedback Vertex Set.

Excercise 3. A connected vertex cover (CVC) of a graph G = (V, E) is a vertex cover $X \subseteq V$ such that G[X] is connected. Give an algorithm that takes as input a graph G = (V, E) and integer k and determines in $O^*(c^k)$ time whether G has a connected vertex cover of size at most k, for some constant c. You may use as blackbox an algorithm $\mathsf{st}(G = (V, E), T, l)$ that solves the Steiner Tree problem in $O^*(2^{|T|})$ time, i.e. it determines whether there exists $T \subseteq Y \subseteq V$ with $|Y| \leq l$ with G[Y] connected.

Solution. Use the following algorithm:

Algorithm $\operatorname{cvc}(G = (V, E), X, k)$ Output: Whether G has a connected vertex cover of size at most k containing the set X. 1: if X is a vertex cover of G then 2: return $\operatorname{st}(G, X, k)$ 3: if $k \leq 0$ then return false 4: Let $(u, v) \in E$ such that $u \notin X$ and $v \notin X$. 5: return $\operatorname{cvc}(G[V \setminus u], k - 1) \lor \operatorname{cvc}(G[V \setminus v], k - 1)$

Algorithm 2: $O(4^k k(n+m))$ time algorithm for detecting connected vertex covers of size at most k.

If X is a vertex cover of G, then we only need to worry about the requirement that G[X] is connected. Then $\mathfrak{st}(G, X, k)$ determines whether there exists a superset Y of X such that such that $|Y| \leq k$ and G[Y] is connected, which is exactly the set of connected vertex covers that are a superset of X.

If $(u, v) \in E$ such that $u \notin X$ and $v \notin X$, then we know that for every vertex cover Y either $u \in Y$ and $v \in Y$ (or both).

Excercise 4. Give an $O(n^2)$ time algorithm that takes as input three matrices $A, B, C \in \mathbb{Z}_2^{n \times n}$ with the following properties:

• If AB = C, i.e. $\forall i, j : c_{ij} \equiv_2 \sum_k a_{ik} b_{kj}$, the algorithm always outputs **true**,

• If $AB \neq C$, the algorithm outputs **false** with constant probability.

Hint: Pick $x \in \mathbb{Z}_2^n$ uniformly at random and study Cx and ABx, use the rank-nullity theorem to bound the probability of false positives.

Solution. Pick $x \in \mathbb{Z}_2^k$ uniformly at random. Compute Cx and A(Bx) (which is easily naïvely done in $O(n^2)$ time by following the definition of matrix vector multiplication). We have that if AB = C then ABx = C. On the other hand, if $AB \neq C$ then AB - C has rank at least 1, and $\mathsf{nul}(AB - B) \leq n - 1$. Then we see that

$$\Pr_x[ABx = Cx] = \Pr_x[(AB - C)x = 0]$$
$$= \Pr_x[x \text{ in null space of } AB - C]$$
$$\leq 2^{n-1}/2^n \leq 1/2.$$