Extra Practice Exercises Solutions

Excercise 1. Given undirected graph $G=(V, E)$, find a pair $u, v \in V$ with $u \neq v$ maximizing $N(u) \cap N(v)$ in $O\left(n^{\omega}\right)$ time, where ω is the matrix multiplication constant. Recall that $N(v)$ denotes the set of all neighbors of v (so not v itself).

Solution. If v_{1}, \ldots, v_{n}, A is the adjacency matrix (so $a_{i j}=1$ if and only if $\left(v_{i}, v_{j}\right) \in E$) and $B=A^{2}$, then recall that $b_{i j}=\sum_{k=1}^{n} a_{i k} a_{k j}$. Thus $\left|N\left(v_{i}\right) \cap N\left(v_{j}\right)\right|=b_{i j}$. Therefore we can compute B in $O\left(n^{\omega}\right)$ time and return $i<j$ such that $b_{i j}$ is maximum.

Excercise 2.

- Give an algorithm taking as input an undirected graph G and a Feedback Vertex Set (FVS) F of G, and outputs a tree decomposition of G of width $|F|+O(1)$ in polynomial time.
- Suppose you have an algorithm $\operatorname{fvstw}(G,(X, T))$ that given an undirected graph G and a tree decomposition (X, T) of G of width w, computes a minimum size FVS in time $O^{*}\left(3^{w}\right)$. Give an algorithm that uses $\operatorname{fvstw}(G,(X, T))$ as a blackbox, takes as input a graph G and integer k, and determines whether G has a FVS of size at most k in $O^{*}\left(3^{k}\right)$. Hint: use iterative compression.

Solution. Recall that in Exercise 7.2 we constructed a tree decomposition of a tree. Use the same tree decomposition here for every connected component of $G[V \backslash F]$, which needs to be a tree since F is a FVS. This gives tree decompositions $\left(X^{1}, T^{1}\right), \ldots,\left(X^{l}, T^{l}\right)$ for each of the l connected components of $G[V \backslash F]$. Now we add to every bag the set F and we connect all trees T^{1}, \ldots, T^{l} in an arbitrary way to a tree T. This gives a tree decomposition of G because : (i) every vertex occurs in some bag (ii) every edge occurs in some bag (the edges of $G[V \backslash F]$ are already contained in one of the tree decompositions $\left(X^{1}, T^{l}\right)$, the edges incident to F are contained in the tree decomposition since F is in every bag) (iii) for every $v \in V$ the set of bags containing v induces a connected subtree of T since if $v \in F$ it is the whole tree and if $v \notin F$ it only occurs in T_{i} for some i and since T_{i} is a tree decomposition of the connected component of $G[V \backslash F]$ containing v, the set of bags containing v must induce a connected subtree. Note that the maximum bag size of this decomposition if $|F|+2$ (so it has width $|F|+1$).

For the iterated compression we use the following algorithm. Note that it is the same as Algorithm 7 from Lecture 5 except that we have a different compression step.

```
Algorithm \(\operatorname{FVS}(G=(V, E), k)\)
Output: Whether \(G\) has a feedback vertex set of size at most \(k\)
    Let \(V=\left\{v_{1}, \ldots, v_{n}\right\}\)
    Let \(X=\left\{v_{1}, \ldots, v_{k}\right\}\)
    for \(i=k+1, \ldots, n\) do
        \(X \leftarrow X \cup v_{i} \quad X\) is a FVS of \(G\left[\left\{v_{1}, \ldots, v_{i}\right\}\right]\) of size at most \(k+1\)
        start compression
        Construct a TD \((\hat{X}, T)\) of \(G\left[\left\{v_{1}, \ldots, v_{i}\right\}\right]\) of width at most \(|F|+O(1)\) as outline above.
        \(X=\mathrm{fvstw}(G,(\hat{X}, T))\)
        end compression
        if \(|X|=k+1\) then return false check whether the compression was successful
    return true
```

Algorithm 1: Algorithm for Feedback Vertex Set.

Excercise 3. A connected vertex cover (CVC) of a graph $G=(V, E)$ is a vertex cover $X \subseteq V$ such that $G[X]$ is connected. Give an algorithm that takes as input a graph $G=(V, E)$ and integer k and determines in $O^{*}\left(c^{k}\right)$ time whether G has a connected vertex cover of size at most k, for some constant c. You may use as blackbox an algorithm $\operatorname{st}(G=(V, E), T, l)$ that solves the Steiner Tree problem in $O^{*}\left(2^{|T|}\right)$ time, i.e. it determines whether there exists $T \subseteq Y \subseteq V$ with $|Y| \leq l$ with $G[Y]$ connected.

Solution. Use the following algorithm:

```
Algorithm \(\operatorname{cvc}(G=(V, E), X, k)\)
Output: Whether \(G\) has a connected vertex cover of size at most \(k\) containing the set \(X\).
    if \(X\) is a vertex cover of \(G\) then
        return \(\operatorname{st}(G, X, k)\)
    if \(k \leq 0\) then return false
    Let \((u, v) \in E\) such that \(u \notin X\) and \(v \notin X\).
    return \(\operatorname{cvc}(G[V \backslash u], k-1) \vee \operatorname{cvc}(G[V \backslash v], k-1)\)
```

Algorithm 2: $O\left(4^{k} k(n+m)\right)$ time algorithm for detecting connected vertex covers of size at most k.

If X is a vertex cover of G, then we only need to worry about the requirement that $G[X]$ is connected. Then $\operatorname{st}(G, X, k)$ determines whether there exists a superset Y of X such that such that $|Y| \leq k$ and $G[Y]$ is connected, which is exactly the set of connected vertex covers that are a superset of X.

If $(u, v) \in E$ such that $u \notin X$ and $v \notin X$, then we know that for every vertex cover Y either $u \in Y$ and $v \in Y$ (or both).

Excercise 4. Give an $O\left(n^{2}\right)$ time algorithm that takes as input three matrices $A, B, C \in \mathbb{Z}_{2}^{n \times n}$ with the following properties:

- If $A B=C$, i.e. $\forall i, j: c_{i j} \equiv \sum_{2} \sum_{k} a_{i k} b_{k j}$, the algorithm always outputs true,
- If $A B \neq C$, the algorithm outputs false with constant probability.

Hint: Pick $x \in \mathbb{Z}_{2}^{n}$ uniformly at random and study $C x$ and $A B x$, use the rank-nullity theorem to bound the probability of false positives.

Solution. Pick $x \in \mathbb{Z}_{2}^{k}$ uniformly at random. Compute $C x$ and $A(B x)$ (which is easily naïvely done in $O\left(n^{2}\right)$ time by following the definition of matrix vector multiplication). We have that if $A B=C$ then $A B x=C$. On the other hand, if $A B \neq C$ then $A B-C$ has rank at least 1 , and $\operatorname{nul}(A B-B) \leq n-1$. Then we see that

$$
\begin{aligned}
\operatorname{Pr}_{x}[A B x=C x] & =\underset{x}{\operatorname{Pr}_{x}}[(A B-C) x=0] \\
& =\operatorname{Pr}_{x}[x \text { in null space of } A B-C] \\
& \leq 2^{n-1} / 2^{n} \leq 1 / 2 .
\end{aligned}
$$

