
2MMD30: Graphs and Algorithms Lecture 12 by Jesper Nederlof, 23/03/2016

Isolation, Vector Coding and Counting Modulo 2.

Today we’ll go into more depth on randomized techniques for probabilistic exponential time al-
gorithms. In particular, we’ll stick to the k-path problem mostly and discuss a relatively recent
breakthrough result on it. See https://www.youtube.com/watch?v=httHBboc6wY for some recent
video about this for non-experts (which doesn’t tell us anything substantial but it might be fun
too watch).

12.1 Reminder of Some Useful Linear Algebra

Let Z2 denote the set {0, 1}. For x, y ∈ Z2, x+ y denotes (x+ y)%2. Similarly, Zk
2 denotes the set

of k-dimensional binary vectors {0, 1}k and given x, y ∈ Zk
2, z = x+ y denotes the vector in which

the i-th coordinate zi satisfies zi = xi + yi. We let 〈x, y〉 denote the inner product (
∑k

i=1 xiyi)%2.
Two vectors x, y are called orthogonal if 〈x, y〉 = 0.

A set of vectors x1, . . . , xn ∈ Zk
2 is called linearly independent if

∑n
i=1 λix

i = 0 implies λ1 =
λ2 = · · · = λn = 0. The rank rk(x1, . . . , xn) is the maximum size |B| over all subsets B ⊆ {1, . . . , n}
such that {xi}i∈B is linearly independent. Let span(x1, . . . , xn) = {

∑n
i=1 λix

i : λi ∈ {0, 1}} denote
the linear span of x1, . . . , xn.

Theorem 12.1 (Rank-Nullity Theorem, convenient version). If x1, . . . , xn ∈ Zk
2, the number of

vectors y ∈ Zk
2 satisfying

〈
xi, y

〉
= 0 for every i is 2k−rk(x

1,...,xn).

12.1.1 Proof of Rank-Nullity Theorem (not examined)

If A ∈ Zn×k
2 , and A has row vectors a1, . . . , an ∈ Zk

2 we let rk(A) denote rk(a1, . . . , an). If N =
{x ∈ Zk

2 : Ax ≡2 0}, and N = {b1, . . . , bm}, then the nullity is defined as nul(A) = rk(b1, . . . , bm).
The set N = {b1, . . . , bm} is called the null space or kernel of A.

Theorem 12.2 (Rank-Nullity Theorem, classic version). If A ∈ Zn×k
2 , rk(A) + nul(A) = k.

Proof. We see that |span(a1, . . . , an)| = 2rk(A), and thus rk(span(a1, . . . , an)) = rk(a1, . . . , an). It
follows that we can add distinct rows in A without influencing the rank (i.e. applying elementary
row operations does not influence the rank). It is easy to see, and well-known, that we can keep
applying such operations to rewrite A into reduced row-echelon form, i.e. (i) rows with only zeroes

1

https://www.youtube.com/watch?v=httHBboc6wY

 1 0 a1 0 b1
0 1 a2 0 b2
0 0 0 1 b3

Figure 12.1: Example of a matrix in reduced row-echelon form, where a1, a2, b1, b2, b3 ∈ Z2 are
unspecified. In this example, n = 3 and k = 6, the rank is 3 the nullity is 3, the pivot columns are
columns 1,2 and 4 and the non-pivot columns are 3 and 5. To get an element x ∈ Z5

2 in the null
space by, set x1 = x3a1 + x5b1, x2 = x3a2 + x5b2 and x4 = x5b3.

appear last (ii) columns with leading ones only have the leading one as non-zero entry (a leading
one is a one that is the first non-zero entry of a row)1.

Let N = {x ∈ {0, 1}k : Ax ≡2 0}, be the null space of A where 0 is the n-dimensional vector
with only zeroes. So nul(A) = rk(N). By the above we may assume that A is in reduced row-echelon
form. Then a solution x can be constructed by making independent decisions whether to include
the non-pivot columns (i.e. columns not including leading ones) and given a decision for each such
column, there is a unique way to include the pivot columns to have all included columns sum to
0.

12.2 Vector Coding

In the color-coding approach, we saw two algorithms for k-path. The second one was faster because
we studied an event that was more likely to happen (i.e. the path only needed to be colorful instead
of consecutively numbered). Now we’ll be using a different way of ‘coloring’ where we do not assign
a number to every vertex but a vector from Zk

2. This requires a bit more technical work, but the
upside is that we’ll be studying an event that happens with constant probability, so there’s no need
for independent repetitions.

Algorithm kpath3(G = (V,E), k) G is directed
Output: Whether G has a k-path, with one-sided constant error probability

1: for v ∈ V do
2: Pick c(v) ∈ Zk

2 uniformly at random
3: return linindpath′(G, k, c)

Algorithm 1: O∗(2k) time algorithm for k-path with constant one-sided error probability.

Here, we refer to a k-path with vertices p1, . . . , pk as being linearly independent if the vectors
c(p1), . . . , c(pk) are linearly independent. We assume for now that linindpath′ returns whether
G has a linearly independent k-path (wrt c) with one-sided constant error probability. We’ll see
later that such an algorithm can be implemented such that it runs in O∗(2k) time. Therefore, for
now we only need to prove that we introduce false negatives with at most constant probability by
restricting our attention to linearly independent k-paths:

1Note that if we are not in Z2, there are more restrictions.

2

Lemma 12.1. Choosing c(v) ∈ Zk
2 uniformly and independently at random for every v ∈ V , we

have that a k-path is linearly independent with probability at least 1/4.

Proof. Let p1, . . . , pk be the vertices on the k-path. We need to lower bound the probability that
the vectors {c(pi)}1≤i≤k are linearly independent. To do this, consider the process where we pick
the vectors one by one and consider the probability that the newly picked vector is in the span of
the already picked vectors. For the vectors to be linearly independent, it is sufficient and necessary
to avoid this event in every iteration so we have, using Bayes’ rule Pr[A ∩B] = Pr[A|B] Pr[B]:

Pr[{c(p1), . . . , c(pk)} are LI] =
k∏

i=1

Pr
[
{c(p1), . . . , c(pi)} are LI

∣∣∣{c(p1), . . . , c(pi−1)} are LI
]

=
k∏

i=1

Pr
[
c(pi) /∈ span(c(p1), . . . , c(pi−1))

∣∣∣{c(p1), . . . , c(pi−1)} are LI
]

=

k∏
i=1

(
1− 2i−1

2k

)

=

k∏
i=1

(
1− 2i−k

2

)
using 1− x/2 ≥ 2−x for x ∈ [0, 1]

≥
k∏

i=1

2−2
i−k

= 2−
∑k

i=1 2
i−k ≥ 2−2 = 1/4. using

∑k
i=1 2i−k ≤ 2

12.3 Counting Linearly Independent k-Paths Modulo 2

Why would it be easier to determine the existence of linearly independent k-paths than the exis-
tence of k-paths? Recalling the first color-coding approach from Section 11.2.1 and the inclusion
exclusion approach from Exercise 11.6, the crucial point is that the types of walks we are looking
for automatically are paths: in a DAG indeed a walk automatically is a path, and a colorful walk
also needs to be a path. This is not different in our new setting. Suppose that (p1, . . . , pk) is a
walk and the vectors c(p1), . . . , c(pk) are linearly independent, then c1, . . . , ck needs to be a path:
if it wouldn’t, pi = pj for some i < j and c(pi) = c(pj) are linearly dependent. So since it’s just the
same, we may focus on determining the existence of linearly independent k-walks (e.g. walks on k
vertices) as well.

So before we continue, let’s revisit the part of Section 6.6 from Lecture 6 concerning walks2.
Given a directed graph G = (V,E) and vertices s, t and integer k we defined WA(s, t, l) as the
number of walks of length l (i.e. using l edges, so l+1 vertices) from s to t in G[A]. Here, we define
wA(l) =

∑
s,twA(s, t, l), i.e. the number of walks on l edges. We saw in lecture 6 that wA(s, t, l)

can be computed in polynomial time, so wA(l) can be computed in polynomial time as well.
Unfortunately, dynamic programming or inclusion exclusion do not right away give us a fast

algorithms for finding linearly independent paths. However, inspired by the inclusion exclusion

2We’ll define WA where A is a set of allowed vertices rather than forbidden since it’s more convenience here, but
this is just a minor notation change.

3

principle, we note that if the vectors c(p1), . . . , c(pk) are linearly dependent, we have some freedom
in picking vectors orthogonal to these vectors. In particular, for y ∈ Zk

2 let ORTH(y) denote
{v ∈ V : 〈c(v), y〉 = 0}, then the rank-nullity theorem implies that∑
y∈Zk

2

wORTH(y)(k) =
∣∣∣{(y, (p1, . . . , pk)

)
: (p1, . . . , pk) walk of G on k-vertices ∧ ∀i : 〈c(pi), y〉 = 0

}∣∣∣
=

∑
(p1,...,pk) walk of G on k vertices

2k−rk(c(p1),c(p2),...,c(pk))

≡2

∑
(p1,...,pk) LI walk of G on k-vertices

1

= |{(p1, . . . , pk) LI walk of G on k vertices}|.

And indeed we do know how to evaluate
∑

y∈Zk
2
wORTH(y)(y) in O∗(2k) time. So we did not

manage yet to determine whether a linearly independent k-path exists, but we did manage to find
out whether there is an even number of not in O∗(2k) time!

12.4 Isolation lemma

Of course, it could very well be that there is an even number of linearly independent k-paths, in
which case we are not able the determine whether a k-path exists, so how are we going to use
the algorithm that determines the parity of the number of k-paths? The idea is introduce some
more randomness in terms of weights. This is useful in a very general sense so let us introduce the
appropriate terminology

Definition 12.1. Given a set U , set family F ⊆ 2U and a function ω : U → Z, a set S ∈ F is
called a minimizer of ω in F if ω(S) = minS′∈F ω(S′). The function ω is said to isolate the set
family F ⊆ 2U if there is a unique minimizer of ω in F .

Recall here, that for X ⊆ U , ω(X) denotes
∑

u∈X ω(u). For X ⊆ U we’ll refer to ω(X) as the
weight of X.

Lemma 12.2 (Isolation Lemma). Let F ⊆ 2U be a set family over a universe U with |F| > 0. For
each u ∈ U , choose a weight ω(u) ∈ {1, 2, . . . , N} uniformly and independently at random. Then

Pr[ω isolates F] ≥ 1− |U |
N

Proof. For every element e ∈ U , define

a(e) = min
e/∈S∈F

ω(S)− min
e∈S∈F

ω(S \ {e}).

Notice that for every element e ∈ U , a(e) does not depend on ω(e) so the random variables a(e) and
ω(e) are independent. Hence, taking probability over all weight functions ω : U → {1, 2, . . . , N}
uniformly at random, we know that for every element e ∈ U , Pr[a(e) = ω(e)] ≤ 1

N . Now assume
S1, S2 ∈ F are both minimizers of ω in F such that S1 6= S2. Let e ∈ S2 \ S1. Then we know that

min
e/∈S∈F

ω(S) = ω(S1) = ω(S2) = min
e∈S∈F

ω(S \ e) + ω(e),

4

and subtracting mine∈S∈F ω(S \ e) from both sides results in a(e) = ω(e). Then, we know that the
probability that ω does not isolate F is

Pr[∃two distinct minimizers of ω in F] ≤ Pr[∃e : a(e) = ω(e)] ≤
∑
e∈U

Pr[a(e) = ω(e)] ≤ |U |
N
,

where the second last inequality follows from the union bound, i.e. Pr[A∪B] ≤ Pr[A] + Pr[B].

12.5 Finding Linearly Independent k-Paths

Suppose G = (V,E) is directed graph, let k be an integer and let c : V → Zk
2. We can uniquely

identify a path on k vertices (p1, . . . , pk) with the k−1 edges {(p1, p2), (p2, p3), . . . , (pk−1, pk)} ⊆ E,
so if we let U = E, F be the edge sets of all linearly independent k-paths and pick ω(e) ∈
{1, . . . , 2|E|}, uniformly and independently at random for every e ∈ E, then by the isolation lemma

Pr
ω

[∃a unique minimum weight linearly independent k-path] ≥ 1/2.

The idea now is to compute the number of linearly independent k-paths of a specific weight;
then we will have an odd count for the minimum weight with probability at least 1/2. Specifically,
let wW

A (k) be the number of walks on k vertices in G[A] of weight W , i.e.

wW
A (k) = |{walks (p1, . . . , pk) in G[A] : ω({(p1, p2), (p2, p3), . . . , (pl, pk)}) = W}|,

then by exactly the same reasoning as in Section 12.3 we see that∑
y∈Zk

2

wW
ORTH(y)(k) ≡2 |{(p1, . . . , pk) LI walk of G on k vertices of weight W}|.

Since W = 2|E|, wW
ORTH(y)(k) can be computed in polynomial time, and it follows that we can

count the number of linearly independent k-paths modulo 2 in G of weight W in O∗(2k) time.

Algorithm linindkpaths′(G, k, c) G is directed, c : V → Zk
2

Output: Whether G has a linearly independent walk on k vertices, with constant one-sided error
probability.

1: for e ∈ E do
2: Pick ω(e) ∈ {1, . . . , 2|E|} uniformly at random
3: for W = 1, . . . , |E|k do
4: sum = 0
5: for y ∈ Zk

2 do
6: term = wW

ORTH(y)(k)

7: sum = (sum+ term)%2
8: if sum = 1 then return true
9: return false

Algorithm 2: O∗(2k) time randomized algorithm for k-path.

5

12.6 Björklund’s algorithm (the algorithms are not examined)

In the previous section we saw that working modulo 2 can be very useful and a powerful lemma
allowed to use counting modulo 2 algorithms to solve the decision variant of a problem. Given this
approach, a natural question is: can we do less work to filter out the k-walks that are not k-paths
by arguing that they will always come in pairs anyway? We will see that if G is undirected we can,
so all graphs in this section will be undirected.

Suppose we have a k-walk (p1, . . . , pk) from s to t that is not a k-path, so there are i < j such
that pi = pj . Then the sequence with the part between pi and pj reversed, that is, the sequence
(p1, . . . , pj , pj−1, . . . , pi+1, pi, . . . , pk) also is a k-walk! Based on this, let us see which k-walks come
in pairs, so they will cancel modulo 2 and we do not need to worry about them. Given a k-walk
that is not a k-path let i be the minimum such that pi occurs twice, and let j be the minimum
such that pi = pj . The mapping φ inverting the subsequence pi, pj in the walk is its own inverse!

So indeed, all walks P such that φ(P) 6= P are their own inverse, and we only need to take care
of the fixed points of this mapping, i.e. the sequences such that pi, . . . , pj is a palindrome3.

12.6.1 Bipartite graphs

Definition 12.2. Let G be a bipartite graph with parts (V1, V2) and fix s ∈ V1 and t ∈ V2. For
every v ∈ V1, assign a vector c(v) ∈ {0, 1}k/2. Say a k-walk (p1, . . . , pk) from s to t is linearly
independent if the vectors c(p1), c(p3), . . . , c(pk−1) are linearly independent. Say it is admissible
if it does not contain a, b, a as a subsequence for b ∈ V1, a ∈ V2. A candidate walk is a linearly
independent admissible k-walk from s to t.

We will show that we can restrict ourselves to filtering for the candidate walks; the candidate
walks that are not k-paths will vanish modulo 2:

Lemma 12.3. The mapping φ is a pairing on the set of candidate walks that are not k-paths.

Proof. Restricted to candidate walks, φ will be its own inverse. So it is sufficient to show that φ
has no candidate walk as a fixed point and the image of a candidate walk is also a candidate walk.

Let P = (p1, . . . , pi, . . . , pj , . . . , pk) be as before. Let us first argue that it is not a fixed point:
since the walk is linearly independent, pi ∈ V2, and since P is admissible it cannot be that i+2 = j.
Thus in order to be a fixed point, the sub-sequence needs to be of the type pi, x, S, y, pj for a non-
empty sub-sequence S. However, a, b ∈ V1 and by the linear independence property a 6= b so
reversal gives a different sequence.

To see that φ(P) also is a candidate walk note that linear independence is determined only
by {p1, . . . , pk}, which is clearly invariant. It remains to show that φ(P) does not have a, b, a as
a sub-sequence for vy ∈ V1, but this can only happen when it has already in P , or pi−2 = pi or
pj+2 = pj , which contradicts P being admissible.

Let wW
ORTH(y)(s, t, k) denote the number of admissible k-walks of weight W from s to t in

G[ORTH(y)], then ∑
y∈{0,1}k/2

wW
s,t,ORTH(y)(k) ≡2 |{candidate walks of weight W}|

3It is tempting to try to do this directly by counting walks which do not directly backtrack, but this is hard since
the pairing may introduce some backtrack again (consider 1634631 and 1643631).

6

which is congruent to the number of k-paths from s to t of weight b modulo 2 by Lemma 12.3. Then,
wW
ORTH(y)(s, t, k) can be computed in polynomial time similarly as before. Let wW

ORTH(y)(s, t, k)

denote the number of admissible k-walks of weight W from s to t in G[ORTH(y)] such that p is
the second last vertex, then for s, t ∈ A

wW
A (s, t, k) =

0 if k = 2 and (s, t) /∈ E ∨W 6= ω(s, t),

1 if k = 2, (s, t) ∈ E and W = ω(s, t),∑
t1∈N−(t)∩A

t2∈N−(t1)∩A\{t}

w
W−ω({(t1,t),(t2,t1)})
A (s, t2, k − 2) otherwise,

Algorithm kpathbip(G, k) G is bipartite with parts V1, V2 and undirected
Output: Whether G has a linearly independent walk on k vertices starting in V1 and ending in

V2, with constant one-sided error probability.
1: for s ∈ V1, t ∈ V2 do
2: for e ∈ E do
3: Pick ω(e) ∈ {1, . . . , 2|E|} uniformly at random
4: for v ∈ V1 do
5: Pick c(v) ∈ Zk/2

2 uniformly at random
6: for W = 1, . . . , |E|k do
7: sum = 0
8: for y ∈ Zk/2

2 do

9: term = wW
ORTH(y)(s, t, k) admissible k-walks from s to t in G[ORTH(y)]

10: sum = (sum+ term)%2
11: if sum = 1 then return true
12: return false

Algorithm 3: O∗(2k/2) time randomized algorithm for k-path in bipartite undirected graphs.

12.6.2 General graphs (not examined)

Let us fix a partition V = V1 ∪ V2 of the vertices and s ∈ V1 and t ∈ V2. Say a k-walk (p1, . . . , pk)
is d-split if |{i : pi ∈ V1}|+ |{i : pi, pi+1 ∈ V2}| = d.

Fix an integer d, and assign a d-dimensional vector c(v) ∈ Zd
2 to every v ∈ V1 and edge

e ∈ E × (V2 × V2). Call a d-split k-walk linearly independent if the set of vectors {c(pi) : pi ∈
V1} ∪ {c(pi, pi+1) : pi, pi+1 ∈ V2} is linearly independent. A candidate walk is a k-walk from s to t
that is admissible (as defined in the previous section), d-split and linearly independent.

Lemma 12.4. For every W , the parity of the number of candidate walks of weight W equals the
number of linearly independent d-split k-paths of weight W .

For a partition V1, V2 of V , s ∈ V1, t ∈ V2 integers l, d,W , F ⊆ V1 and F ′ ⊆ E ∩ (V2 ∩ V2) let
wW
A,A′(s, t, l, d) denote the number of d-split admissible k-walks in the graph (A,A′) of weight W .

Since such a walk is a candidate walk if and only if it is additionally linearly independent we have

7

similarly to the previous sections that

#candidate walks of weight W ≡2

∑
y∈Zd

2

wW
ORTH(y),ORTH′(y)(s, t, k, d),

where ORTH ′(y) denotes all e ∈ E such that 〈c(e), x〉 = 0.

Using a dynamic programming algorithm very similar to the one we saw in the previous section,
wW
F,F ′(s, t, l, d) can be computed in polynomial time (assuming W ≤ 2|E|), so we can compute the

parity of the number of candidate walks of weight W for every W in O∗(2d) time. Thus using
Lemma 12.4 and the isolation lemma as before, we know how to determine whether G has a k-path
that is d-split in O∗(2d) time. In particular, this is checked in Line 4 to Line 16 in the following
algorithm

Algorithm kpath4(G, k) G undirected
Output: Whether G has a linearly independent walk on k vertices starting in V1 and ending in

V2, with constant one-sided error probability.
1: for t = 1, . . . , k do

Run k independent trials to boost the success probability
2: Pick a partition V1, V2 by including every vertex uniformly in either set
3: for d = 0, . . . , d3k/4e do
4: for s ∈ V1, t ∈ V2 do
5: for e ∈ E do
6: Pick ω(e) ∈ {1, . . . , 2|E|} uniformly at random
7: for v ∈ V1 do
8: Pick c(v) ∈ Zd

2 uniformly at random
9: for e ∈ E ∩ (V2 × V2) do

10: Pick c(e) ∈ Zd
2 uniformly at random

11: for W = 1, . . . , |E|k do
12: sum = 0
13: for y ∈ Zd

2 do
14: term = wW

ORTH(y),ORTH′(y)(s, t, k, d) Compute in poly time using Ex. 12.8

15: sum = (sum+ term)%2
16: if sum = 1 then return true
17: return false

Algorithm 4: O∗(23k/4) time randomized algorithm for k-path in undirected graphs.

It remains to show that if a k-path exists, it will be d-split for some d ≤ d3k/4e in some iteration
of the loop at Line 3 with probability at least constant probability. As usual, let’s first see what
the probability is this happens in some particular iteration.

Recall that Markov’s inequality states that for any non-negative variable X, Pr(X ≥ a) ≤
E[X]/a. If we fix a k-path p1, . . . , pk and let denote X = |{i : pi ∈ V1}| + |{i : pi, pi+1 ∈ V2}|, we
see that

E[X] = k/2 + (k − 1)/4 =
3k − 1

4
,

8

so applying Markov’s inequality we have

Pr[X ≥ d3k/4e] ≤ 3k − 1

3k
= 1− 1/3k.

Thus the probability that in every iteration of the Loop at Line 3, p1, . . . , pk is not d-split by V1, V2
for some d ≤ d3k/4e is at most (1− 1

3k)k ≤ e−3.

12.7 Exercises

Excercise 12.1. Why does the linearly independent path problem contain the colorful path
problem as a special case? How does the approach outlined in Section 12.3 count the number of
k-paths modulo 2 in this case?

Excercise 12.2. Modify/use Algorithm linindkpaths′ to solve k-path in undirected graphs.

Excercise 12.3. An alternative way of using the isolation lemma would have been to assign
random weights to every vertex rather than edge. Why this is not a good idea?

Excercise 12.4. A triangle in an undirected graph G = (V,E) is a triple of vertices (u, v, w)
with a (u, v), (v, w), (u,w) ∈ E. A k-triangle-packing is a collection of triangles T1, . . . , Tk that are
mutually disjoint. Given an algorithm that given G and integer k determines whether G has a
triangle packing in O∗(8k) time with constant one-sided error probability.

Excercise 12.5. Give a polynomial time algorithm that computes the parity of the number of
perfect matchings of a bipartite (multi-)graph. Assume that computing the determinant of a matrix
can be done in polynomial time.

Excercise 12.6. Let G = (V,E) be a bipartite graph with parts V1, V2. Show that |{X ⊆ V1 :
N(X) = V2}| ≡2 |{X ⊆ V : X independent set}|. Hint: Group the independent sets on X ∩ V1,
how many sets Y ⊆ V2 such that X ∪ Y is an independent set are there?

From here, you may also want to revisit exercises of previous lectures.

Excercise 12.7.[Not examined] In the 3-dimensional matching problem we are given three sets
A,B,C with |A| = |B| = |C| = n and triples T1, . . . , Tn ⊆ A × B × C. A matching is a partition
S1, . . . , Sn of A ∪ B ∪ C. Compute the parity of the number of matchings in O∗(2n) time. Hint:
call an n-tuple S1, . . . , Sn a pseudo-matching if for every element e ∈ A ∪ B there is exactly one
i such that e ∈ Si. Use inclusion exclusion with U the set of all pseudo-matchings and for every
i ∈ C a property Pi being all pseudo-matchings containing vertex i. Use Exercise 12.5 to compute
|
⋂

i∈F Pi| modulo 2 in polynomial time.

Excercise 12.8.[Not examined] Show how to compute wW
ORTH(y),ORTH′(y)(s, t, k, d) in polynomial

time (assuming W ≤ 2|E|). Hint: Use dynamic programming similarly as we did for computing
wW
F (s, t, l), but we need yet another variable d in the recurrence to keep track of how many times

vertices from V1 and edges from E ∩ (V2 × V2) are used.

Excercise 12.9.[Not examined] Prove Lemma 12.4. Hint: The proof is very similar to the proof
of Lemma 12.3.

9

	Isolation, Vector Coding and Counting Modulo 2.
	Reminder of Some Useful Linear Algebra
	Proof of Rank-Nullity Theorem (not examined)

	Vector Coding
	Counting Linearly Independent k-Paths Modulo 2
	Isolation lemma
	Finding Linearly Independent k-Paths
	Björklund's algorithm (the algorithms are not examined)
	Bipartite graphs
	General graphs (not examined)

	Exercises

