Exercise 3

Graphs and Algorithms

Planarity

- 1. Show that a bipartite planar graph on n vertices has at most 2n 4 edges. This implies that $K_{3,3}$ is non-planar.
- 2. Show how to use the planar separator theorem to find an exact independent set in a planar graph in $2^{O(\sqrt{n})}$ time.
- 3. Show that the planar separator theorem implies the following. For any $\epsilon > 0$, there is a subset S of at most ϵn vertices than can be removed so that the remaining graph on $V \setminus S$ has components of size at most $O(1/\epsilon^2)$.
- 4. The Cauchy Schwarz inequality says that for any real numbers a_1, \ldots, a_n and b_1, \ldots, b_n

$$\sum_{i} a_i b_i \le (\sum_{i} a_i^2)^{1/2} (\sum_{i} b_i^2)^{1/2}$$

Use this to show that:

1) For any a_1, \ldots, a_n

$$\sum_{i} a_{i} \leq \sqrt{n} (\sum_{i} a_{i}^{2})^{1/2}$$
$$\sum_{i} a_{i} \leq (\sum_{i} |a_{i}|^{2/3})^{1/2} (\sum_{i} |a_{i}|^{4/3})^{1/2}$$

2) For any x, y, z > 0

$$x+y+z \le 2\left(\frac{x^2}{y+z} + \frac{y^2}{x+z} + \frac{z^2}{x+y}\right)$$