Planarity

1. Show that a bipartite planar graph on n vertices has at most $2 n-4$ edges. This implies that $K_{3,3}$ is non-planar.
2. Show how to use the planar separator theorem to find an exact independent set in a planar graph in $2^{O(\sqrt{n})}$ time.
3. Show that the planar separator theorem implies the following. For any $\epsilon>0$, there is a subset S of at most ϵn vertices than can be removed so that the remaining graph on $V \backslash S$ has components of size at most $O\left(1 / \epsilon^{2}\right)$.
4. The Cauchy Schwarz inequality says that for any real numbers a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n}

$$
\sum_{i} a_{i} b_{i} \leq\left(\sum_{i} a_{i}^{2}\right)^{1 / 2}\left(\sum_{i} b_{i}^{2}\right)^{1 / 2}
$$

Use this to show that:

1) For any a_{1}, \ldots, a_{n}

$$
\begin{gathered}
\sum_{i} a_{i} \leq \sqrt{n}\left(\sum_{i} a_{i}^{2}\right)^{1 / 2} \\
\sum_{i} a_{i} \leq\left(\sum_{i}\left|a_{i}\right|^{2 / 3}\right)^{1 / 2}\left(\sum_{i}\left|a_{i}\right|^{4 / 3}\right)^{1 / 2}
\end{gathered}
$$

2) For any $x, y, z>0$

$$
x+y+z \leq 2\left(\frac{x^{2}}{y+z}+\frac{y^{2}}{x+z}+\frac{z^{2}}{x+y}\right)
$$

