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A Simple Proof of the Existence of a Planar Separator
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1. Introduction. The planar separator theorem is a fundamental result about planar graphs
[LT79]. Informally, it states that one can removeO

(√
n
)

vertices from a planar graph with n vertices
and break it into “significantly” smaller parts. It is widely used in algorithms to facilitate efficient
divide and conquer schemes on planar graphs. For further details on planar separators and their
applications, see Wikipedia (http://en.wikipedia.org/wiki/Planar_separator_theorem).

Here, we present a simple proof of the planar separator theorem. Most of the main ingredients
of the proof are present in earlier work on this problem; see Miller et al. [MTTV97], Smith and
Wormald [SW98], and Chan [Cha03]. Furthermore, the constants in the separator we get are
inferior to known constructions [AST94].

Nevertheless, the new proof is relatively self contained and (arguably) significantly simpler than
previous proofs. In particular, we prove the following version of the planar separator theorem.

Theorem 1.1 Let G = (V,E) be a planar graph with n vertices. There exists a set S of 4
√
n

vertices of G, such that removing S from G breaks it into several connected components, each one

of them contains at most (9/10)n vertices.

Figure 1:
2. Construction and analysis. Given a planar graph G = (V,E) it
is known that it can be drawn in the plane as a kissing graph ; that is,
every vertex is a disk, and an edge in G implies that the two corresponding
disks touch (this is known as Koebe’s theorem, see [PA95]). Furthermore,
all these disks are interior disjoint.

Let D be the set of disks realizing G as a kissing graph, and let P
be the set of centers of these disks. Let d be the smallest radius disk
containing n/10 of the points of P , where n = |P | = |V |. To simplify
the exposition, we assume that d is of radius 1 and it is centered in the origin. Randomly pick a
number x ∈ [1, 2] and consider the circle Cx of radius x centered at the origin. Let S be the set of
all disks in D that intersect Cx. We claim that, in expectation, S is a good separator.

Lemma 2.1 The separator S breaks G into two subgraphs with at most (9/10)n vertices in each

connected component.

Proof : The circle Cx breaks the graph into two components: (i) the disks with centers inside Cx,
and (ii) the disks with centers outside Cx. Clearly, the corresponding vertices in G are disconnected
once we remove S. Furthermore, a disk of radius 2 can be covered by 9 disks of radius 1, as depicted
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in Figure 1. As such, the disk of radius 2 at the origin can contain at most 9n/10 points of P inside
it, as a disk of radius 1 can contain at most n/10 points of P . We conclude that there are at least
n/10 disks of D with their centers outside Cx, and, by construction, there are at least n/10 disks
of D with centers inside Cx. As such, once S is removed, no connected component of the graph
G \ S can be of size larger than (9/10)n.

Lemma 2.2 We have E
[

|S|
]

≤ 4
√
n, where n = |V |.

Proof : Consider a disk ui of D of radius ri centered at pi. If ui is fully contained in d2 (the disk of
radius 2 centered at the origin), then the circle Cx intersects ui if and only if x ∈ [‖pi‖−ri, ‖pi‖+ri],
and as x is being picked uniformly from [1, 2], the probability for that is at most 2ri/|2− 1| = 2ri.
For reasons that would become clear shortly, we set ρi = ri and vi = ui in this case.

2

d2

ui
vi

ρi

Otherwise, if ui is not fully contained in d2 then the set Li = ui ∩ d2
is a “lens”. Consider a disk vi of the same area as Li contained inside
d2 and tangent to its boundary. Clearly, if Cx intersects ui then it also
intersects vi, see figure on the right. Furthermore, the radius of vi is ρi =
√

area(ui ∩ d2) /π, and, by the above, the probability that Cx intersects vi
(and thus ui) is at most 2ρi.

Observe that as the disks of D are interior disjoint, we have that
∑

i
ρ2
i
=

∑

i
area(ui ∩ d2) /π ≤

area(d2) /π = 4. Now, by linearity of expectation and the Cauchy-Schwarz inequality, we have that

E

[

|S|
]

= E

[

|D ∩ Cx|
]

=
∑

i

Pr
[

ui ∩Cx 6= ∅
]

≤
∑

i

Pr
[

vi ∩ Cx 6= ∅
]

≤
∑

i

2ρi = 2
∑

i

1 · ρi

≤ 2

√

√

√

√

n
∑

i=1

12

√

√

√

√

n
∑

i=1

ρ2
i
≤ 2

√
n
√
4 = 4

√
n.

Now, putting Lemma 2.1 and Lemma 2.2 together implies Theorem 1.1.
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