
2MMD30: Graphs and Algorithms Lecture 5 by Jesper Nederlof, 24/02/2016

Introduction to Exponential Time: Clever

Enumeration.

Recall that in many cases the computational task at hand is NP-complete, meaning that we do
not expect algorithms that solve any task-instance simultaneously (i) optimally and (ii) in time
polynomial in the instance size. There are two main approaches to deal with this: approximation
algorithms (which we already have seen) relax (i) to ‘as good as possible’ and exponential algorithms
relax (ii) to ‘as fast as possible’. The latter is useful for several reasons: first, some applications
require optimal solutions; second, in some cases, the exponential behavior is only in a parameter
that is sometimes small; third, it increases our understanding of NP-complete problems.

In this lecture, we’ll start focusing on designing some exponential time algorithms. Specifically,
today we’ll see a number of tricks to cleverly enumerate all candidate solutions so we can check
whether they include a real solution. All algorithms studied here are known to be NP-complete (and
you probably have seen reductions proving this for some of these problems in previous courses).

5.1 CNF-Sat

Let’s start with recalling a definition:

Definition 5.1. Let v1, . . . , vn be Boolean variables. A literal is an expression of the type vi or
¬vi for some i. A clause is a disjunction of several literals. A CNF-formula is a conjunction of
clauses. A k-CNF-formula is a CNF-formula where all clauses are of length at most k.

To get through this definition here are some examples:

Example 5.1. The following logical formula’s are CNF-formula’s:

1. (v1) ∧ (¬v2 ∨ v3 ∨ ¬v4),

2. (v3 ∨ v4) ∧ (¬v4 ∨ v2),

3. (v2 ∨ v1) ∧ (v2 ∨ ¬v3) ∧ (¬v3 ∨ v5).

In 1., the clauses are v1 and ¬v2 ∨ v3 ∨ ¬v4 and the literals are v1,¬v2, v3,¬v4. Only 2. and 3. are
2-CNF-formula’s.
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As you may recall from previous courses, the CNF-SAT problem of determining whether we
can satisfy a given CNF-formula with some variable assignment is one of the, if not the canonical
NP-complete problems. Our first exponential time algorithm is the following completely trivial
algorithm:

Algorithm CNF− sat(ϕ) ϕ is a CNF-formula on variables v1, . . . , vn.
Output: Whether there exists an assignment (v1, . . . , vn) ∈ {true, false}n such that ϕ is true.
1: for all (v1, . . . , vn) ∈ {true, false}n do
2: if ϕ is satisfied by v then return true Check is easily done in time linear in formula size.
3: return false

Algorithm 1: O(2n(n+m)) time algorithm for CNF-SAT.

Such a näıve algorithm as Algorithm 1 is often referred to as brute-force. By definition of NP,
every problem in NP can be solved by such a brute-force algorithm (Exercise 5.8). However, the
good news here is that in many cases we actually can significantly reduce the running time of these
naive brute-force algorithms, even for many NP-complete problems!

Unfortunately, the unsatisfying1 state of affairs for CNF-SAT is that currently no algorithm is
known that solves this particular problem significantly faster2 than Algorithm 1 for any instance.

5.2 3-coloring

Now let us move to a different problem that you also might have heard of, where we can do
something more. We need the following definition:

Definition 5.2. A k-coloring of a graph G = (V,E) is a mapping c : V → {1, . . . , k} such that for
every edge (v, w) ∈ E, c(v) 6= c(w).

One question is: given a graph G, does it have a 3-coloring? As usual throughout these notes,
we let n denote the number of vertices of G and m denote the number of edges of G. A first thought
is to simply try all possibilities as for CNF-sat:

Algorithm 3colv1(G).
Output: Whether a 3-coloring exists.
1: for all c ∈ {1, 2, 3}V do

2: if c is a 3-coloring of G then return true Check is easily done in O(n+m) time.
3: return false

Algorithm 2: O(3n(n+m)) time algorithm for detecting 3-colorings.

But we promised something more exciting. In the specific setting of 3-coloring, we exploit
that checking whether a given graph is 2-colorable is easy. You have already seen this in detail in
Exercise 1.6. Given a linear time algorithm determining whether a graph is 2-colorable, we can
just try all possible subsets of V that receive color 3 (and thus need to form and independent set),

1No pun intended.
2In case you’re wondering, the current record is 2

(1− 1
O(log(m/n))

)n
time, if m denotes the number of clauses.

However, footnotes will not be examinated.
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and for such a fixed set we can check whether the graph induced on the remaining vertices admits
a 2-coloring.

Algorithm 3colv2(G).
Output: Whether a 3-coloring exists.
1: for all X ⊆ V do
2: if X is an independent set of G then

For G = (V,E) and X ⊆ V , G[X] denotes the graph (X, {e ∈ E : e ⊆ X}).
3: if 2colorable(G[V \X]) then return true
4: return false

Algorithm 3: O(2n(n+m)) time algorithm for detecting 3-colorings.

5.3 Vertex Cover

Definition 5.3. A vertex cover of a graph G = (V,E) is a subset X ⊆ V such that for every edge
(v, w) ∈ E it holds that v ∈ X ∨ w ∈ X .

In this section we study the decision variant of finding vertex covers: Given a graph G and
an integer k, does G have a vertex cover of size at most k? This problem and the upcoming
algorithm is the bread and butter of people working in the area of ‘Parameterized Complexity’ that
is specialized in designing algorithms where ‘the exponential behavior is only in a parameter that
is sometimes small’, as mentioned in the introduction. It is common to use the letter k for the
parameter that is sometimes small, so we will also try to stick to this.

First Algorithm Note that a completely näıve algorithm would be to try all 2n subsets and see
which is a vertex cover of size at most k. Slightly less näıve would be to try all

∑k
i=0

(
n
i

)
subsets of

V and see which is a vertex cover, which is already quite an improvement. But, since k typically
is a lot smaller than |V |, the following is considerably better.

Algorithm vc(G = (V,E), k)
Output: Whether G has a vertex cover of size at most k.
1: if E = ∅ and k ≥ 0 then return true
2: if k ≤ 0 then return false
3: Let (u, v) ∈ E
4: return vc(G[V \ u], k − 1) ∨ vc(G[V \ v], k − 1)

Algorithm 4: O(2kk(n+m)) time algorithm for detecting vertex covers of size at most k.

Now let us consider Algorithm 4 and let’s first see whether it outputs what it promises. The
main point is the following:

Claim 5.1. If G = (V,E) and (u, v) ∈ E then G has a vertex cover of size at most k if and only
if G[V \ u] has a vertex cover of size k − 1 or G[V \ v] has a vertex cover of size k − 1.

Proof. If X is a vertex cover in G of size at most k, then u ∈ X or v ∈ X (or both) by definition.
Without loss of generality, assume u ∈ X. Then X \ u will be a vertex cover of G[V \ u] since all
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edges not incident to u need to be covered by other elements of X, and clearly |X \u| ≤ k− 1. For
the other direction, if X \ u is a vertex cover of G[V \ u] of size at most k − 1, then X ∪ {v} is a
vertex cover of G of size at most k.

Since we have a recursive algorithm, we’ll use induction for proving its correctness. Since k is
lowered in every recursive call, we’ll prove the lemma by induction on k.

Lemma 5.1. vc(G, k) returns true if and only if G has a vertex cover of size at most k.

Proof. For the base case k = 0 this clearly holds since G = (V,E) has a vertex cover of size 0 if and
only if E = ∅. Otherwise, Line 4 is reached so vc(G, k) = vc(G[V \ u], k − 1) ∨ vc(G[V \ v], k − 1)
and we can apply Claim 5.1 in combination with the induction hypothesis.

We claim that the running time of Algorithm 4 is at most O(2kk(n+m)). To see this, first note
that per recursive call we spend at most O(n+m) time, and that the recursion depth is at most k
since every time k is lowered by 1. Thus, denoting T (k) for the maximum number of recursive calls
of vc(G, k) that do not recurse themselves, it is sufficient to show T (k) ≤ 2k. Note T (k) satisfies
T (k) = 1 for k = 0 and T (k) ≤ T (k − 1) + T (k − 1) for k > 0, so T (k) ≤ 2k by induction.

An alternative way to upper bound T (k) would be to imagine the ‘branching tree’ with a vertex
for every recursive call and the leaves being the calls where the recursion stops. Clearly this tree
has depth at most k. Moreover, since every recursive call invokes at most two recursive calls itself,
we have an upper bound of 2k on the number of leaves.

Definition of Fixed Parameter Tractability. As mentioned O(2kk(n + m)) is considerably
better than O(2n) or O(

∑k
i=0

(
n
i

)
) for small k: for every fixed constant k this is linear time! To

stress that such a running is highly desirable, let us tie a formal definition to it:

Definition 5.4 (Fixed Parameter Tractable). A parameterized problem is a language L ⊆ {0, 1}∗×
N. For an instance (x, k) ∈ {0, 1}n × N, (x, k) is called the input and k is called the parameter.
A parameterized problem L is called Fixed Parameter Tractable if there exists and algorithm that
given (x, k) ∈ {0, 1}n × N, correctly decides whether (x, k) ∈ L in time bounded by f(k) · |(x, k)|c
for some constant c and some function f(·).

Thus the above algorithm demonstrates that ‘Vertex Cover parameterized by k (solution size)
is FPT’.

Second Algorithm Now the machinery is set up, let’s look at an improvement of Algorithm 4:

Algorithm vc2(G = (V,E), k)
Output: Whether G has a vertex cover of size at most k
1: if E = ∅ and k ≥ 0 then return true
2: if k ≤ 0 then return false
3: if ∃u ∈ V : deg(u) ≥ 2 then
4: return vc2(G[V \ u], k − 1) ∨ vc2(G[V \N [u]], k − deg(u))
5: else
6: if k ≥ |E| then return true else return false

Algorithm 5: O(1.62kk(n+m)) time algorithm for detecting vertex covers of size at most k.
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The proof of correctness has exactly the same structure as the proof of Lemma 5.2, except that
we need to use the following alternative for Claim 5.1:

Claim 5.2. If G = (V,E) and u ∈ V then G has a vertex cover of size at most k if and only if
G[V \ u] has a vertex cover of size k − 1 or G[V \N [u]] has a vertex cover of size k − deg(u).

Proof. If X is a vertex cover in G of size at most k, then u ∈ X or u /∈ X. If u ∈ X, then X \u will
be a vertex cover of G[V \ u] since all edges not incident to u need to be covered by other elements
of X. If u /∈ X, then N(u) ⊆ X, and X \N(u) will be a vertex cover of G[V \N [u]].

For the other direction, if X \ u is a vertex cover of G[V \ u] or if X \N(u) is a vertex cover of
G[V \N [u]], then X is a vertex cover of G.

Lemma 5.2. vc2(G, k) returns true if and only if G has a vertex cover of size at most k.

Proof. Suppose vc2(G, k) does not result in a recursive call. The statement clearly holds for k ≤ 0.
Otherwise, there is no vertex of degree at least 2 and thus no two edges of G overlap. Then the
optimal vertex cover has size |E| (we need one vertex for every edge, and for every edge one is
sufficient).

Otherwise, Line 4 is executed and we can apply Claim 5.1 in combination with the induction
hypothesis.

But why do we get this odd-looking running time? To see this note that again we spend only
O(n+m) time per recursive call, and the recursion depth is at most k, so we only need to bound
the number of leaves T (k) in the recursion tree of vc2(G, k) by O(1.62k). We see that T (k) satisfies

T (k) ≤

{
1, if k = 0

maxd≥2 T (k − 1) + T (k − d), if k ≥ 1.

Now we prove by induction on k that T (k) ≤ 1.62k for every k ≥ 0. That is easily seen to hold
for k = 0, while for k > 0 we see that

T (k) ≤ max
d≥2

T (k − 1) + T (k − d) ≤ max
d≥2

1.62k−1 + 1.62k−d ≤ 1.62k−1 + 1.62k−2 ≤ 1.62k.

The second inequality uses the induction hypothesis. For the last inequality, note that 1.62−1 +
1.62−2 ≤ 1.62.

Thus, the smallest base of the exponential we can get via this analysis is exactly the unique
positive solution to the equation x−1 + x−2 = 1 (which is known to be the golden ratio)3.

Remark 5.1. Recursive algorithms as seen here often are called ‘branching algorithms’. Intuitively
both algorithm use Claims 5.1 and 5.2 to narrow down the search space to solutions with a particular
property. We’ll use this over and over again in branching algorithms.

3When analyzing branching algorithms of this type, one will be faced with a ‘linear homogeneous recurrence
relation’. It is known that the number of positive real roots of such a recurrence is exactly the number of ‘sign
changes’ (see https://en.wikipedia.org/wiki/Descartes%27_rule_of_signs), which is always 1 in recurrences
obtained from branching algorithms.
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5.4 Cluster Editing and O∗(·) notation.

Definition 5.5. A graph is a cluster graph if all its connected components are cliques. A cluster
editing of a graph G = (V,E) is a set X ⊆ V × V such that (V,E4X) is a cluster graph. Here 4
denotes the symmetric difference: X4Y = X \ Y ∪ Y \X.

The following definition will give a useful perspective on cluster editing.

Definition 5.6. An induced P3 of G = (V,E) is a triple (u, v, w) of vertices such that uv, vw ∈ E
and uw /∈ E.

The main use of this definition is that the following observation allows us to deal with induced
P3’s instead of cluster editing.

Observation 5.1. A graph is a cluster graph if and only if it does not have induced P3’s.

Algorithm ce(G = (V,E), k)
Output: Whether G has a cluster editing of size at most k.
1: if k = 0 then return true if G is cluster graph, return false otherwise
2: if ∃ induced P3 (u, v, w) in G then
3: return ce((V,E ∪ uw), k − 1) ∨ ce((V,E \ uv), k − 1) ∨ ce((V,E \ vw), k − 1)
4: return true

Algorithm 6: O∗(3k) time algorithm for cluster editing distance.

Again the correctness of the algorithm is proved via induction. In the base case, the answer is
clearly correct if k = 0 or there exists no induced P3. Otherwise, if (u, v, w) is an induced P3, we
can use the following claim:

Claim 5.3. Let G = (V,E) be a graph and let (u, v, w) be an induced P3. Then G has a cluster
editing of size at most k if and only if at least one of the graphs (V,E ∪uw), (V,E \uv), (V,E \ vw)
has a cluster editing of size at most k − 1.

Proof. For the forward direction, let C ⊆ E be a cluster editing of G of size at most k. Then C
contains either uv, vw or uw by Observation 5.1. Let e ∈ C be one of these three edges. Then C \ e
is a cluster editing of (V,E4e) of size at most k − 1. For the reverse direction, suppose (V,E4e)
has a cluster editing C ′ of size at most k − 1 with e /∈ C, then C ′ ∪ e is a cluster editing of (V,E)
of size at most k since E∆(C ′ ∪ e) = (E4e)∆C ′.

The running time analysis of this algorithm is also of a familiar type. It is easy to see that per
recursive call we spend at most O(n3) time (due to Line 2). The recursion depth is at most k and
the number of leaves T (k) of the branching tree of ce(G = (V,E), k) satisfies T (k) = 1 for k = 0,
and for k ≥ 0 we have T (k) ≤ 3T (k − 1), so T (k) ≤ 3k is a valid upper bound.

When dealing with exponential time we are mostly mainly interested in the precise exponential
dependence rather than the polynomial dependency in other parameters. For instance for Algo-
rithm 6, one might be tempted to add all kinds of tricks to improve O(n3) bound in every recursive
call, but to keep focus we will not concern ourselves with such issues here. To facilitate this, we use
the following notation: if an algorithm runs in time f((x, k))|x|O(1), where k denotes some instance
parameter and |x| denotes the number of bits uses to encode the problem instance, then we say it
runs in O∗(f((x, k)) time. So Algorithm 6 runs in O∗(3k) time.
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5.5 Feedback Vertex Set

Now we introduce a general technique called iterative compression. We use this to give an algorithm
that determines in O∗(8k) time whether a given graph has a feedback vertex set of size at most k.
On top of this technique, we will again make use of the techniques from the previous section but
in a bit less direct way.

Definition 5.7. A forest is a graph without cycles. A feedback vertex set (FVS) of a graph
G = (V,E) is a subset X ⊆ V such that G[V \X] is a forest.

Alternatively, we could say that a FVS is a vertex set X such that for any cycle of G at least
one of its vertices is in X.

5.5.1 Iterative Compression

The main idea of iterative compression is to design an algorithm for a variant of the problem at
hand where we are already given a slightly large solution. Then ‘iterative compression’ can be used
to convert an algorithm for this variant into one that determines whether a solution of size at most
k exists.

We describe the ‘iterative compression’ part here and in the next subsection we’ll provide an
algorithm for the mentioned variant. Specifically, we assume there is an algorithm disjFVS(G,X, k)
that given graph G, FVS X of G and integer k, determines whether there exists a FVS of G disjoint
from X of size at most k. We describe disjFVS(G,X, k) in the next subsection but now show how
to use it. We do this as follows:

Algorithm FVS(G = (V,E), k)
Output: Whether G has a feedback vertex set of size at most k
1: Let V = {v1, . . . , vn}
2: Let X = {v1, . . . , vk}
3: for i = k + 1, . . . , n do
4: X ← X ∪ vi X is a FVS of G[{v1, . . . , vi}] of size at most k + 1

start compression
5: for Y ⊆ X do
6: if disjFVS(G[V \ Y ], X \ Y, k − |Y |) then
7: Construct the FVS X ′ of G[V \ Y ] of size k − |Y | using self-reduction
8: Z ← X ′ ∪ Y ;X ← Z in order to be able to refer to Z in the analysis

end compression

9: if |X| = k + 1 then return false check whether the compression was successful
10: return true

Algorithm 7: Algorithm for Feedback Vertex Set.

Let us now motivate why this algorithm is correct. The algorithm constructs a FVS of the
graph G[{v1, . . . , vi}] using a FVS X of G[{v1, . . . , vi−1}] as follows: first it adds vi to X (then it
is easy to see that X is a FVS of G[{v1, . . . , vi}] of size at most k + 1), and then it attempts in
Line 5-8 to compress X to obtain a FVS Z of G[{v1, . . . , vi}] of size at most k.
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To find this FVS Z, we try all 2|X| ≤ 2k+1 possibilities of Y = X ∩Z. if Line 8 is reached, Z is
easily seen to be a FVS of G[{v1, . . . , vi}] since all cycles incident to Y are hit and all other cycles
are hit by X ′. On the other hand, if Z exists, surely we try Y = X ∩Z at some iteration, and then
Z \Y will be a FVS of size at most k− |Y | of G[V \Y ] that is disjoint from X \Y . Thus, it will be
detected by disjFVS. If it is detected that it exists, it can be constructed by a small modification
of disjFVS or by standard self-reduction arguments within a similar time bound. Thus Line 5-8
will always find Z if it exists, so if |X| = k+ 1 on Line 9, we know for sure X could not have been
compressed so we can safely conclude G has no FVS of size at most k.

5.5.2 Algorithm for Disjoint Feedback Vertex Set

Now let us focus on the procedure disjFVS(G,W, k). It will be convenient to work with multi-
graphs rather than graphs. In a multigraph E is a multiset rather than a set, so there might be
several parallel edges between two vertices of G. We say that deg(·) also counts these copies of
edges and that two edges (u, v) already form a cycle on their own.

Algorithm disjFVS(G = (V,E),W, k) W is a FVS of G
Output: Whether G has a feedback vertex set of size at most k disjoint from W
1: if k < 0 then return false
2: if k = 0 then return true if G is a forest, return false otherwise
3: if ∃v ∈ V such that deg(v) ≤ 1 then

4: return disjFVS(G \ v,W, k) G \ v shorthands (V \ v,E)

5: if ∃v ∈ V \W such that G[W ∪ v] contains a cycle then
6: return disjFVS(G \ v,W, k − 1)
7: if ∃v ∈ V \W such that deg(v) = 2 and at least one neighbor from v in G is in V \W then
8: Let G′ be obtained from G by adding the edge between both neighbors of v and removing v

Note: if there was such an edge already, there are multiple edges now!
9: return disjFVS(G′,W, k)

10: Let x ∈ V such that x has at most one neighbor in V \W and at least two neighbors in W .
11: return disjFVS(G \ x,W, k − 1) ∨ disjFVS(G,W ∪ x, k)

Algorithm 8: O∗(2|W |+k) time algorithm for Disjoint Feedback Vertex Set.

In Line 1 to 9, Algorithm disjFVS checks for several reduction rules: if there is some special
structure that we know how to deal with, then we do this and recurse to some simplified instance
or return the answer immediately. The reduction rules are motivated as follows:

• Line 3: a vertex of degree at most 1 will never be on a cycle so it is not relevant.

• Line 5: since we are looking for a FVS disjoint from W , the only way to hit this cycle is to
include v.

• Line 7: if the neighbors of v are u,w, then u,w are in all cycles that include v, so if v is used
to hit a cycle in the FVS we can as well remove it from the FVS and add u or v instead.
Effectively, we cannot simply remove v in the graphs since it may very well be used to connect
v and w in a cycle, but to compensate this we can simply add the edge (u,w).
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If all of this does not apply, there must be a leaf x of the forest G[V \W ] such that x has at least
two neighbors that are in W (if it had 0, Line 3 would apply; if it had 1, Line 7 would apply). Now
we make a decision on x: will it be in the feedback vertex set or not? Based on this we recurse
on the appropriate sub-instances (if x is picked remove it, otheriwse add it to W ). This ends to
motivation of the correctness of disjFVS.

What about its running time? Clearly we spend polynomial time per recursive call again, but
bounding the number of leaves of the recursion tree seems harder since we do not lower k always.
But if the algorithm makes sense, the recursive call disjFVS(G′,W, k) should somehow solve a
‘simpler’ instance. How do we quantify this?

After a moment’s thought we may realize that, since the reduction rule on Line 5 did not apply,
the neighbors of x that are in W are not connected in G[W ], but in G[W ∪x] they are. So we notice
that #cc(G[W ∪x]) ≤ #cc(G[W ])−1, where #cc(·) denotes the number of connected components.
Thus, on Line 11 we recurse on two instances: in one k decreases and in the other #cc(G[W ])
decreases. Therefore, if we define a measure µ(G,W, k) = k + #cc(G[W ]) of the ‘hardness’ of an
instance and let T (µ) be the maximum number of leaves of the recursion tree of disjFVS(G,W, k)
where µ(G,W, k) = µ then we decrease µ by at least one in every recursion step.

Summarizing, we claim that T (µ) ≤ 2µ. To see this, first note that in the reduction rules µ
never increases, and if µ = 0 then k ≤ 0 so disjFVS(G,W, k) does not recurse. So we get

T (µ) ≤

{
1, if µ ≤ 0

maxd≥1 T (µ− 1) + T (µ− d), if µ > 1,

and similarly to before we can bound this with 2µ = 2#cc(G[W ])+k for all µ ≥ 0. Therefore, disjFVS
runs in time at most O∗(2k+#cc(G[W ])) which is at most O∗(2k+|W |), and the running time of FVS
is bounded by O∗(8k).

5.6 Subset Sum

In the Subset Sum problem we are given integers w1, . . . , wn and an additional integer t and are
interested in determining whether there exists a subset X ⊆ {1, . . . , n} such that

∑
e∈X we = t.

Note that the trivial algorithm would solve this in time O∗(2n). In this section we use a technique
that is quite different from the prevous sections that is sometimes called meet in the middle.

Again, we solve the problem by first designing an algorithm for different problems: in the 2-SUM
problem we are given integers a1, . . . , am and b1, . . . , bm and want to determine whether there exist
i, j such that ai+bj = t. We’ll see soon that this problem can be solved in O(m lgm) time. Now we
can use this algorithm to solve Subset Sum as follows: given integers w1, . . . , wn (possibly adding a
0, we may assume n is even), for every subset X ⊆ {1, . . . , n/2} construct an integer ai =

∑
e∈X wi

and similarly for every X ⊆ {n/2 + 1, . . . , n} construct an integer bi =
∑

e∈X wi. It is easy to see
that pairs ai + bj = t are in 1 to 1 correspondence with Z ⊆ {1, . . . , n} such that

∑
e∈Z we = t.

In the created 2-SUM instance m = 2n/2 so using the O(m lgm) time 2-SUM algorithm solves the
Subset Sum problem in O∗(2n/2) time.

Before we move to the algorithm for 2-SUM let us remark that since this algorithm uses 2n/2

space, a natural question is whether this space usage can be lowered. To this end, we also study
the 4-SUM problem where we are given integers a1, . . . , am, b1, . . . , bm, c1, . . . , cm, d1, . . . , dm, t and
look for i, j, k, l such that ai + bj + ck + dl = t. In turns out that this problem can be solved in
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O(m2 lgm) time and O(m lgm) space, and similarly to our previous algorithm, this can be used to
solve Subset Sum in time O∗(2n/2) time and O∗(2n/4) space (Exercise 5.5).

5.6.1 O(m lgm) time algorithm for 2-SUM

The algorithm for 2SUM is as follows:

Algorithm 2SUM(L,R, t) L and R are lists of length m of integers, t ∈ Z
Output: Whether there exist l ∈ L, r ∈ R such that l + r = t
1: Sort L,R to obtain lists l1, . . . , lm and r1, . . . , rm
2: i← 1, j ← m.
3: while i ≤ n ∧ j ≥ 1 do
4: if li + rj = t then return true
5: if li + rj < t then i← i+ 1 else j ← j − 1
6: return false

Algorithm 9: O(m lgm) time, O(m) space algorithm for 2-SUM.

It is easy to see that this runs in O(m lgm) time. If the algorithm returns true it clearly is
correct. On the other hand, suppose there exist x, y such that lx + ry = t and suppose i reaches
x before j reaches y. Then li + rj > t and the while loop will decrease j until Line 4 applies.
Otherwise, j reaches y before x reaches i and the while loop will increase i until Line 4 applies.

5.6.2 O(m2 lgm) time and O(m lgm) space algorithm for 4-SUM

Algorithm 4SUM(A,B,C,D, t) A,B,C,D are lists of length m of integers, t ∈ Z
Output: Whether there exist a ∈ A, b ∈ B, c ∈ C and d ∈ D such that a+ b+ c+ d = t
1: Sort A,B,C,D to obtain lists a1, . . . , am, b1, . . . , bm, c1, . . . , cm, d1, . . . , dm
2: Initiate a priority queue QL, where the lowest key has the highest priority
3: Initiate a priority queue QR, where the highest key has the highest priority
4: for i = 1, . . . ,m do
5: insert (a1, bi) with key a1 + bi to QL
6: insert (cm, di) with key cm + di to QR
7: while QL and QR are non-empty do
8: (ai, bj)← pull(QL)
9: (ck, dl)← pull(QR)

10: if ai + bj + ck + dl = t then return true
11: if ai + bj + ck + dl < t then
12: if i ≤ m then insert (ai+1, bj) with key ai+1 + bj to QL
13: insert (ck, dl) with key ck + dl to QR
14: else
15: insert (ai, bj) with key ai + bj to QL
16: if k ≥ 1 then insert (ck−1, dl) with key ck−1 + dl to QR
17: return false

Algorithm 10: O(m2 lgm) time, O(m lgm) space algorithm for 4-SUM.
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Now we study an algorithm that mimicks Algorithm 9 in a more space-efficient way. It makes use
of a priority queue data-structure with insert and pull operations (recall the definition from http:

//en.wikipedia.org/wiki/Priority_queue if needed).

If 4SUM returns true, it trivially is correct. Suppose there exists w, x, y, z such aw+bx+cy+dz =
t. Note that the algorithm will run through either all pairs ai, bj or all pairs ck, dl. Suppose it runs
through all pairs ai, bj and it arrives at aw, bx before cy, dz is reached. Then the algorithm will iterate
though the pairs k, l until k = y, l = z is reached. A similar reasoning holds for the other cases
(and indeed the algorithm completely mimicks 2SUM(L,R, t) where L = {ai + bj : 1 ≤ i, j ≤ n}
and R = {ck + dl : 1 ≤ k, l ≤ n}).

For the running time, there are basic datastructures for priority queues such that pull and
insert run in lg(m) time and the loop on Line 7 runs for at most 2m2 iterations since in every
iteration we move in L or R.

5.7 Exercises

Exercise 5.1. Recall that in the Traveling Salesman problem, we are given a graph G = (V,E)
with an integer weight we and the question is to find a Hamiltonian cycle C ⊆ E minimizing∑

e∈C we. Can you solve it in O∗(n!) time?

Exercise 5.2. In the k-coloring problem we are given a graph G and integer k and need to
determine whether G has a k-coloring. Do you expect this problem parameterized by k to be
FPT?

Exercise 5.3. Find an algorithm detecting cliques of size at least k in O(nkk2) time, why is this
running time not sufficient to prove the problem to be FPT?

Exercise 5.4. Show that if G has a FVS of size at most k, it has a k + 2-coloring. Can you give
an example of a graph with a FVS of size at most k but no k + 1 coloring?

Exercise 5.5. Give an O∗(2n/2) time, O∗(2n/4) space algorithm for Subset Sum using the 4SUM
algorithm.

Exercise 5.6. Can you solve 4-coloring in O∗(2n) time? What about 3-coloring in O∗((2 − ε)n)
time, for some ε > 0 (Hint: use that

(
n
k

)
≤ 20.92n for k ≤ n/3)?

Exercise 5.7. Solve Vertex Cover in O∗(1.4656k) time.

Exercise 5.8. Recall the definition of NP. Why can any problem instance x ∈ {0, 1}n of a language
in NP be solved in 2poly(|x|) time?

Exercise 5.9. An algorithm running in time nlg(n)
c

for some constant c is called quasi-polynomial.
Recently, in a big breakthrough4 László Babai showed that the ‘Graph Isomorphism problem’ can
be solved in quasi-polynomial time. Graph Isomorphism is not known to be NP-complete. Can

4(see e.g., http://www.quantamagazine.org/20151214-graph-isomorphism-algorithm/)
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you explain why a quasi-polynomial time algorithm for an NP-complete problem would be a huge
result (Hint: recall the definition of NP-completeness)?

Exercise 5.10. Show that Feedback Vertex Set is NP-hard. In particular, show that given an
instance (G, k) of vertex cover, we can compute in polynomial time an equivalent instance (G′, k)
of feedback vertex set.

Exercise 5.11. The n’th Fibonacci number fn is defined as follows: f1 = 1,f2 = 1 and for n > 2,
fn = fn−1 + fn−2. What is the running time of the following algorithm to compute fn?

Algorithm FIB1(n)
Output: fn
1: if n = 1 or n = 2 then return 1
2: return FIB1(n− 1)+FIB1(n− 2).

Exercise 5.12. In the Set Partition problem we are given F1, . . . , Fm ⊆ U and need to find a
subset of the sets that partition U . Can you do this in O∗(2m/2) time?

Exercise 5.13. In this exercise we’ll look at the d-Hitting Set problem: given sets F1, . . . , Fm ⊆ U
of size d each, where |U | = n, we need to find a subset X ⊆ U with |X| = k that ‘hits’ every set in
the sense that Fi ∩X 6= ∅ for every i.

1. By which other name do you know 2-Hitting Set? Why is it equivalent?

2. Can you solve 3-Hitting Set in time O∗(3k)?

3. Can you solve 3-Hitting Set in time O∗(2.4656k)

• Hint: Use iterative compression. Suppose you are also given a hitting set of size k + 1,
can you solve the problem in time O∗(

∑k+1
i=1

(
k+1
i

)
1.4656i). This equals O∗(2.4656k) by

the binomial theorem.

Exercise 5.14. Give an algorithm that determines whether a given 3-CNF-Sat formula is satisfiable
in time O∗((2− ε)n), for some ε > 0.
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