2MMD30: Graphs and Algorithms Lecture 5 by Jesper Nederlof, 24/02/2016

Solutions to exercises of lecture 5

Exercise 5.1. Recall that in the Traveling Salesman problem, we are given a graph $G=(V, E)$ with an integer weight w_{e} and the question is to find a Hamiltonian cycle $C \subseteq E$ minimizing $\sum_{e \in C} w_{e}$. Can you solve it in $O^{*}(n!)$ time?

Solution: Every Hamiltonian cycle is described by a permutation v_{1}, \ldots, v_{n} of the vertices so we can simply iterate over all permutations v_{1}, \ldots, v_{n} of V and see which one minimizes $w_{\left(v_{n}, v_{1}\right)}+$ $\sum_{i=1}^{n-1} w_{\left(v_{i}, v_{i+1}\right)}$

Exercise 5.2. In the k-coloring problem we are given a graph G and integer k and need to determine whether G has a k-coloring. Do you expect this problem parameterized by k to be FPT?

Solution: Not assuming $P \neq N P$: an $O\left(f(k) n^{c}\right)$ time algorithm for this, for some constant c, would imply an $O\left(n^{c}\right)$ time algorithm for 3-coloring.

Exercise 5.3. Find an algorithm detecting cliques of size at least k in $O\left(n^{k} k^{2}\right)$ time, why is this running time not sufficient to prove the problem to be FPT?

Solution: We cannot write $O\left(n^{k}\right)$ as $f(k) \operatorname{poly}(n)$, since the latter implies a fixed exponent of n while in the first the exponent depends on k.

Exercise 5.4. Show that if G has a FVS of size at most k, it has a $k+2$-coloring. Can you give an example of a graph with a FVS of size at most k but no $k+1$ coloring?

Solution: use colors $1, \ldots, k$ to color all vertices in the FVS with a distinct color, use $k+1, k+2$ for a two-coloring of the forest (which is easily seen to exist by fixing one color and propagating). A complete graph on $k+2$ vertices would be such an example.

Exercise 5.5. Give an $O^{*}\left(2^{n / 2}\right)$ time, $O^{*}\left(2^{n / 4}\right)$ space algorithm for Subset Sum using the 4SUM algorithm.

Solution: Assume n is a multiple of 4 , construct an integer a_{i} for every $W \subseteq\{1, \ldots, n / 4\}, b_{i}$ for every $X \subseteq\{n / 4+1, \ldots, n / 2\}, c_{i}$ for every $Y \subseteq\{n / 2+1, \ldots, 3 n / 4\}, d_{i}$ for every $Z \subseteq\{3 n / 4+1, \ldots, n\}$, set the target of the 4SUM problem to be t. This 4SUM instance has a solution if and only if the subset sum instance has one since every subset $S \subseteq\{1, \ldots, n\}$ can be written as $W \cup X \cup Y \cup Z$.

Exercise 5.6. Can you solve 4 -coloring in $O^{*}\left(2^{n}\right)$ time? What about 3 -coloring in $O^{*}\left((2-\epsilon)^{n}\right)$ time, for some $\epsilon>0$ (Hint: use that $\binom{n}{k} \leq 2^{0.92 n}$ for $k \leq n / 3$)?

Solution: For 4-coloring, we may iterate over all vertex sets $X \subseteq V$ that could have the first two colors. Given such X we just need to see whether both $G[X]$ and $G[V \backslash X]$ are 2-colorable.

For the second question, note that one color class must be of size at most $n / 3$ so in Algorithm $3 c o l v 2$ we may iterate over all sets of size at most $n / 3$ instead.

Exercise 5.7. Solve Vertex Cover in $O^{*}\left(1.4656^{k}\right)$ time.
Solution: Adjust vc2 as follows: if there exists no vertex of degree at least 3, we have a set of cycles, paths and isolated vertices and an optimal solution is computed in polynomial time by a simple greedy argument. Otherwise, branch as in Line 4 of vc2. If $T(k)$ denotes the number of leaves in the branching tree we see that $T(0)=1$ and for $k>0$

$$
T(k) \leq \max _{d \geq 3} T(k-1)+T(k-d) .
$$

We see that $T(k)$ is bounded by 1.4656^{k} since $1.4656^{-1}+1.4656^{-3} \leq 1$
Exercise 5.8. Recall the definition of NP. Why can any problem instance $x \in\{0,1\}^{n}$ of a language in NP be solved in $2^{\text {poly }(|x|)}$ time?

Solution: NP: there exists a polynomial time verifier V, (e.g., an algorithm that runs in time polynomial in x with the following property: there exists a certificate c such that $V(x, c)$ returns true if and only if $x \in L$). Since V runs in time polynomial in the input, $|c|$ needs to be polynomial in $|x|$, so given an instance x, we can iterate over all $2^{|c|}=2^{\text {poly }(|x|)}$ possible c and see whether $V(x, c)$ gives true somewhere.

Exercise 5.9. An algorithm running in time $n^{\lg (n)^{c}}$ for some constant c is called quasi-polynomial. Recently, in a big breakthrough ${ }^{11}$ László Babai showed that the 'Graph Isomorphism problem' can be solved in quasi-polynomial time. Graph Isomorphism is not known to be NP-complete. Can you explain why a quasi-polynomial time algorithm for an NP-complete problem would be a huge result (Hint: recall the definition of NP-completeness)?

Solution: NP-complete: L is NP-complete if for every other problem L^{\prime} in NP there exists a polynomial time reduction from L^{\prime} to L, e.g., an algorithm R such that for every input $x, x \in L^{\prime}$ if and only if $R(x) \in L$. Since R is polynomial time, $|R(x)|$ is polynomial in $|x|$ thus if L is solved in time $|x|^{\lg (|x|)^{c}}$, then this gives an

$$
|R(x)|^{\lg (|R(x)|)^{c}}=\left(|x|^{c^{\prime}}\right)^{\lg \left(|x|^{c^{\prime}}\right)^{c}}=|x|^{c^{\prime} c^{\prime} \lg (|x|)^{c}},
$$

[^0]time algorithm for problem L^{\prime}. So this would be a huge result because it implies a quasi-polynomial time algorithm for any NP-complete problem.

Exercise 5.10. Show that Feedback Vertex Set is NP-hard. In particular, show that given an instance (G, k) of vertex cover, we can compute in polynomial time an equivalent instance $\left(G^{\prime}, k\right)$ of feedback vertex set.

Solution: Given an instance $G=(V, E), k$ of vertex cover, add a vertex v_{e} for every edge (u, v) with neighbors $\{u, v\}$. There always exists an optimal FVS in which no added vertex is picked since v_{e} can be replaced with either u or w if $e=\{u, w\}$, and such a FVS is a FVS of the new graph if and only if it is a vertex cover of the old graph since for every edge $e=(u, w)$ it needs to hit the triangle u, w, v_{e}.

Alternatively, one could apply the degree 2 reduction rule to obtain a multigraph in which all edges occur twice.

Exercise 5.11. The n 'th Fibonacci number f_{n} is defined as follows: $f_{1}=1, f_{2}=1$ and for $n>2$, $f_{n}=f_{n-1}+f_{n-2}$. What is the running time of the following algorithm to compute f_{n} ?

```
Algorithm FIB1(n)
Output: }\mp@subsup{f}{n}{
    if n=1 or }n=2\mathrm{ then return 1
    return FIB1 ( n-1)+FIB1(n-2).
```

Solution: The running time is at most $O(n f(n))$. To see this, note that the number of leaves is exactly $f(n)$. If you insist to be more precise to get rid of the n factor, note that the branching tree has no degree 2 vertices, and for any such tree the number of internal vertices is at most the number of leaves.

Exercise 5.12. In the Set Partition problem we are given $F_{1}, \ldots, F_{m} \subseteq U$ and need to find a subset of the sets that partition U. Can you do this in $O^{*}\left(2^{m / 2}\right)$ time?

Solution: Assume m is even by adding an empty set. Enumerate $L=\left\{\bigcup_{i \in X} F_{i}: X \subseteq\{1, \ldots, m / 2\}\right\}$ and $R=\left\{\bigcup_{i \in X} F_{i}: X \subseteq\{m / 2+1, \ldots, m\}\right\}$. For every $Y \in L$ check whether $U \backslash Y$ is in R, return yes if so and no otherwise.

Exercise 5.13. In this exercise we'll look at the d-Hitting Set problem: given sets $F_{1}, \ldots, F_{m} \subseteq U$ of size d each, where $|U|=n$, we need to find a subset $X \subseteq U$ with $|X|=k$ that 'hits' every set in the sense that $F_{i} \cap X \neq \emptyset$ for every i.

1. By which other name do you know 2-Hitting Set? Why is it equivalent?
2. Can you solve 3 -Hitting Set in time $O^{*}\left(3^{k}\right)$?
3. Can you solve 3 -Hitting Set in time $O^{*}\left(2.4656^{k}\right)$

- Hint: Use iterative compression. Suppose you are also given a hitting set of size $k+1$, can you solve the problem in time $O^{*}\left(\sum_{i=1}^{k+1}\binom{k+1}{i} 1.4656^{i}\right)$. This equals $O^{*}\left(2.4656^{k}\right)$ by the binomial theorem.

Solution: Vertex Cover. The elements are the vertices, the sets the edges and there is a direct correspondence.

Pick a set of size at most 3 and branch on one of the three elements that needs to be included. Suppose we have a 3 -hitting set H of size $k+1$. Guess the subset $X \subseteq H$ that will be in the solution. Remove all sets that intersect with X and remove all elements from H. Since H was a hitting set, all sets are now of size at most 2 . Pick elements in sets of size 1 so only sets of size 2 remain, and we have an instance of vertex cover. This instance of vertex cover can be solved in time $O^{*}\left(1.4656^{k-X}\right)$ using the algorithm of Exercise 5.7. So indeed the running time of one compression step becomes $O^{*}\left(\sum_{i=1}^{k+1}\binom{k+1}{i} 1.4656^{i}\right)$.

Exercise 5.14. Give an algorithm that determines whether a given 3-CNF-Sat formula is satisfiable in time $O^{*}\left((2-\epsilon)^{n}\right)$, for some $\epsilon>0$.

Solution: Use the following branching algorithm: pick a clause of maximum size and branch on all assignments of its variables satisfying it. For example, if the clause is $\neg v_{2} \vee v_{4} \vee \neg v_{6}$, we recurse on the CNF-formula obtained by setting v_{2}, v_{4}, v_{6} to all 8 assignments except $1,0,1$. This results in 7 new recursive calls on formula's with at most $n-3$ variables, so we can use the following recurrence for the number of leaves of the branching tree $T(0)=1$ and for $n>0$

$$
T(n) \leq \max \{7 \cdot T(n-3), 3 \cdot T(n-2), T(n-1)\} .
$$

Setting $T(n)=7^{n / 3}<1.913$ works since

$$
\max \left\{7 \cdot 7^{\frac{n-3}{3}}, 3 \cdot 7^{\frac{n-2}{3}}, 7^{\frac{n-1}{3}}\right\} \leq 7^{n / 3} .
$$

[^0]: ${ }^{1}$ (see e.g., http://www.quantamagazine.org/20151214-graph-isomorphism-algorithm/)

