2MMD30: Graphs and Algorithms Lecture 6 by Jesper Nederlof, 26/02/2016

Solutions to exercises of lecture 6

Exercise 6.1. Download the excel sheet subsetsum.xls from http://www.win.tue.nl/~jnederlo/ 2MMD30/. It was used to solve the instance

$$
w=\{3,20,58,90,267,493,869,961,1000,1153,1246,1598,1766,1922\}, t=5842
$$

of Subset Sum to find the solution $20,58,90,869,961,1000,1246,1598$. Are there more solutions? If so, can you find one?

Solution: The excel sheet uses the following recurrence: for $i=0, \ldots, 14, t=0, \ldots, 5842$ let $A[i, j]$ be the number of subsets X from $\{1, \ldots, i\}$ such that $\sum_{e \in X} w_{e}=j$. We see that

$$
A[i, j]= \begin{cases}0 & \text { if } i=0, j \neq 0 \tag{6.1}\\ A[i-1, j]+A\left[i-1, j-w_{i}\right] & \text { otherwise }\end{cases}
$$

Note that for convenience in excel we use a variant of the recurrence from the lecture notes. In the excel sheet we see the table entries $A[i, j]$ being computed. From the cell $(7842,16)$ we see there are 5 solutions, and from $(7842,15)$ we see there are 4 subsets X of $\{1, \ldots, 13\}$ with $\sum_{e \in X} w_{e}=t$, so 1 solution uses the integer 1922 and from the first 13 integers it will pick integers summing to $5842-1922$, so we continue to look at cell $(5920,14)$ and see the unique solution containing 1922 does not contain $1766,1598,1246$ but contains 1153 . Continuing like this we arrive at the solution $1922,1766,1246,493,90,58$.

Exercise 6.2. How many integers in $\{1, \ldots, 100\}$ are not divisible by 2,3 or 7 ?

Solution: Use inclusion exclusion. Let $U=\{1, \ldots, 100\}, P_{1}=\{i \in U: i$ is not a multiple of 2$\}$, $P_{2}=\{i \in U: i$ is not a multiple of 2$\}, P_{3}=\{i \in U: i$ is not a multiple of 2$\}$. We need to compute $\left|P_{1} \cap P_{2} \cap P_{3}\right|$ which equals by the inclusion exclusion formula

$$
|U|-\left|\overline{P_{1}}\right|-\left|\overline{P_{2}}\right|-\left|\overline{P_{3}}\right|+\left|\overline{P_{1}} \cap \overline{P_{2}}\right|+\left|\overline{P_{2}} \cap \overline{P_{3}}\right|+\left|\overline{P_{1}} \cap \overline{P_{3}}\right|-\left|\overline{P_{1}} \cap \overline{P_{2}} \cap \overline{P_{3}}\right|
$$

and these terms are more easily computed since, e.g., $\left|\overline{P_{2}} \cap \overline{P_{3}}\right|$ is the number integers that are simultaneously multiple of 3 and 7 (so equivalently, since 3 and 7 are co prime, a multiple of 21) which are $21,42,63$ and 84 .

$$
100-50-33-14+16+4+7-2=28
$$

Exercise 6.3. At the 5th of December it is common in the Netherlands to buy presents for each other. To do this when there are n persons p_{1}, \ldots, p_{n} celebrating together, there are various processes to pick a random permutation $f:\{1, \ldots, n\} \leftrightarrow\{1, \ldots, n\}$. We call a permutation good if $f(i) \neq i$ for every i. Suppose $n=5$, how many good permutations are there?

Solution: Use inclusion exclusion. Let U be all permutations, and for $i=1, \ldots, 5$ let P_{i} be the set of permutations f such that $f(i) \neq i$. We see that the number of good permutations (also called derangements) equals $\left|\cap_{i=1}^{5} P_{i}\right|$. We note that $\left|\cap_{i \in F} \overline{P_{i}}\right|$ only depends on $|F|$ by symmetry and

$$
\left|\cap_{i \in F} \overline{P_{i}}\right|=\text { number of permutations where } f(i)=i \text { for every } i \in F=(5-|F|)!
$$

since for all elements in F we have only one choice and for $i \notin F$ there are no restrictions so f can be any permutation restricted to $\{1, \ldots, 5\} \backslash F$. By inclusion exclusion we see that $\left|\cap_{i=1}^{5} P_{i}\right|$ equals

$$
\begin{aligned}
\sum_{F \subseteq\{1, \ldots, 5\}}(-1)^{|F|}(5-|F|)! & =\sum_{i=0}^{5}(-1)^{i}\binom{5}{i}(5-i)! \\
& =\binom{5}{0} 5!-\binom{5}{1} \cdot 4!+\binom{5}{2} 3!-\binom{5}{3} 2!+\binom{5}{4} 1!-\binom{5}{5} 0! \\
& =120-120+60-20+5-1=44 .
\end{aligned}
$$

Exercise 6.4. The n 'th Fibonacci number f_{n} is defined as follows: $f_{1}=1, f_{2}=1$ and for $n>2$, $f_{n}=f_{n-1}+f_{n-2}$. What is the running time of the following algorithm to compute f_{n} ?

```
Algorithm FIB2( \(n\) )
Output: \(f_{n}\)
    Initiate a table \(F\) with \(F[i]=-1\) for \(i=1, \ldots, n\)
    return \(\operatorname{FIBREC}(n)\).
Algorithm FIBREC( \(n\) )
Output: \(f_{n}\)
    if \(n=1\) or \(n=2\) then return 1
    if \(F[n]=-1\) then
        \(x \leftarrow \operatorname{FIBREC}(n-1)+\operatorname{FIBREC}(n-2)\)
        \(F[n] \leftarrow x\)
        return \(x\).
    else
        return \(F[n]\).
```

Solution: $O(n)$ time. To see this, note that in the execution, the condition at Line 2 applies only once for every n. Intuitively, we could still look at the recursion tree of this algorithm, but it will be a very unbalanced tree of depth n where, if the left child is evaluated before the right child, the right child is a leaf since the condition at Line 2 will not apply.

Exercise 6.5. Let G be bipartite graph with parts $A, B,|A|=|B|=n$. Use inclusion exclusion to count the number of perfect matchings of G in $O^{*}\left(2^{n}\right)$ time. Can you do with polynomial space?

Solution: Use inclusion exclusion. A pseudo-matching of $G=(A \dot{\cup} B, E)$ is a set of edges $M \subseteq E$ such that for every $a \in A$ there exists exactly one $e \in M$ incident to a. Note that if $M \subseteq E$ is a pseudo-matching, and for every $b \in B$ there exists an edge $e \in M$ incident to b, then M is a perfect matching. Thus, if U is the set of all pseudo-matchings of G and for every $b \in B, P_{b}$ is the set of all pseudo-matchings M such that there exists at leas \dagger^{1} one $e \in M$ containing b, then $\left|\cap_{b \in B} P_{b}\right|$ is the number of perfect matchings of G. By inclusion exclusion we have that

$$
\left|\bigcap_{b \in B} P_{b}\right|=\sum_{F \subseteq B}(-1)^{|F|}\left|\bigcap_{b \in F} \overline{P_{b}}\right| .
$$

Now, note that $\left|\bigcap_{b \in F} \overline{P_{b}}\right|$ is the number of pseudo-matchings that do contain any edge incident to a vertex of F, which is the number of pseudo-matchings in $G[A \cup B \backslash F, E]$. This number if easily computed in polynomial time: in a pseudo-matching every vertex in A needs to pick a neighbor in B but these choices are independent so we see that

$$
\left|\bigcap_{b \in F} \overline{P_{b}}\right|=\prod_{a \in A}|N(a) \backslash F|,
$$

so this can clearly be computed in polynomial time and thus the inclusion exclusion formula can be computed in $O^{*}\left(2^{n}\right)$ time.

Exercise 6.6. In the Weighted Steiner Tree problem we are given a graph $G=(V, E)$, a weight function $\omega: E \rightarrow \mathbb{N}$ and a set of terminals $T \subseteq V$. We need to find a connected tree (S, E^{\prime}) minimizing $\sum_{e \in E^{\prime}} \omega(e)$ such that $T \subseteq S \subseteq V$. Solve this problem in time $O^{*}\left(2^{n-k}\right)$, where $|V|=n$ and $|T|=k$.

Solution: Iterate over all relevant candidates for subset S, and for each such subset, compute a minimum spanning tree of $G[S]$. Return the minimum tree found. This gives a valid solution and also the optimum solution since once we fixed S the optimal way of connecting the vertex set is via a minimum spanning tree. The running time is $O^{*}\left(2^{n-k}\right)$ since there are at most 2^{n-k} candidates for S and minimum spanning tree can be done in polynomial time.

Exercise 6.7. In the Set Partition and Set Cover problems we are given sets $A_{1}, \ldots, A_{m} \subseteq U$ where $|U|=n$. In the Set Cover problem we need to find $X \subseteq\{1, \ldots, m\}$ such that $\bigcup_{i \in X} A_{i}=U$. In the Set Partition problem we need to find $X \subseteq\{1, \ldots, m\}$ such that $\bigcup_{i \in X} A_{i}=U$ and $A_{i} \cap A_{j}=\emptyset$ for every $i, j \in X$ with $i \neq j$. Solve both problems in $O^{*}\left(2^{n}\right)$ time. Can you also solve both in $O^{*}\left(2^{n}\right)$ time and polynomial space? ${ }^{2}$ Note: $O^{*}(\cdot)$ suppresses factors polynomial in the input size, so $O^{*}\left(2^{n} m^{100}\right)$ is also $O^{*}\left(2^{n}\right)$.

[^0]Solution: Both problems can be done with both dynamic programming and inclusion exclusion. For dynamic programming, define table entries $A[i, Y]$ for $i=1, \ldots, m$ and $Y \subseteq U$ which contains the minimum size of a subset $X \subseteq\{1, \ldots, i\}$ such that $\bigcup_{i \in X} A_{i} \subseteq X$ (and $\bigcup_{i \in X} A_{i}=X$ for Set Partition). We see for Set Cover that

$$
A[i, Y]= \begin{cases}\infty & \text { if } i=0, Y \neq \emptyset \tag{6.3}\\ 0 & \text { if } i=0, Y=\emptyset \\ \min \left\{A[i-1, Y], 1+A\left[i-1, Y \backslash A_{i}\right]\right\} & \text { otherwise }\end{cases}
$$

And we see for Set Partition that

$$
A[i, Y]= \begin{cases}\infty & \text { if } i=0, Y \neq \emptyset \tag{6.6}\\ 0 & \text { if } i=0, Y=\emptyset \\ \min \left\{A[i-1, Y], 1+A\left[i-1, Y \backslash A_{i}\right]\right\} & \text { if } A_{i} \subseteq Y \\ A[i-1, Y] & \text { otherwise }\end{cases}
$$

And $A[n, U]$ can be computed in $O^{*}\left(2^{n}\right)$ time in both cases.
For the inclusion-exclusion approach, set cover is quite a bit easier than set partition, so let us do that one first. We let $l=1, \ldots, m$ and will determine whether there exists X of size l. We apply inclusion exclusion with univers $\xi^{3}\{X \subseteq\{1, \ldots, m\}:|X|=l\}$. For every $e \in U$ we define a property P_{e} which is $\left\{X \subseteq\{1, \ldots, m\}:|X|=l \wedge e \in \bigcup_{i \in X} A_{i}\right\}$. We see that $\left|\bigcap_{e \in U} P_{e}\right|>0$ if and only if there exists a set X as sought in the set cover problem of size l. Moreover, for $\left|\bigcap_{e \in U} \overline{P_{e}}\right|$ the choices of whether A_{i} is included or not are almost independent and in particular we see that

$$
\left|\bigcap_{e \in F} \overline{P_{e}}\right|=\binom{\left|\left\{i \in\{1, \ldots, m\}: A_{i} \cap F=\emptyset\right\}\right|}{l} .
$$

Thus indeed the inclusion exclusion formula in this case can be evaluated in $O^{*}\left(2^{n}\right)$ time.
For set partition, we use a similar application, but we use that a tuple of sets form a set partition if and only if they form a set cover and there sizes add up to U : we use as universe in the inclusion exclusion formula the set $\left\{X \subseteq\{1, \ldots, m\}: \sum_{i \in X}\left|A_{i}\right|=n\right\}$. For every $e \in U$ we define a property P_{e} which is $\left\{X \subseteq\{1, \ldots, m\}: e \in \bigcup_{i \in X} A_{i} \wedge \sum_{i \in X}\left|A_{i}\right|=n\right\}$. We see that $\left|\bigcap_{e \in U} P_{e}\right|>0$ if and only if there exists a set X as sought in the set partition problem of size l. Moreover, for $\left|\bigcap_{e \in U} \overline{P_{e}}\right|$ the choices of whether A_{i} is included or not are almost, and we can use dynamic programming: Define

$$
A_{F}[i, j]=\mid\left\{X \subseteq\{1, \ldots, i\}: \sum_{e \in X}\left|A_{e}\right|=n \wedge \text { for every } e \in X: A_{e} \cap F=\emptyset\right\} \mid .
$$

We see that $\left|\bigcap_{e \in F} \overline{P_{e}}\right|=A_{F}[n, n]$ and for fixed $F, A_{F}[n, n]$ can be computed in polynomial time using dynamic programming based on the recurrence

$$
A_{F}[i, j]= \begin{cases}0 & \text { if } i=0, j \neq 0 \tag{6.10}\\ 1 & \text { if } i=0, j=0, \\ A_{F}[i-1, j] & \text { if } A_{i} \cap F \neq \emptyset \\ A_{F}[i-1, j]+A_{F}\left[i-1, j-\left|A_{i}\right|\right] & \text { otherwise }\end{cases}
$$

[^1]Thus indeed the inclusion exclusion formula in this case can be evaluated in $O^{*}\left(2^{n}\right)$ time.
Exercise 6.8. [Floyd Warshall] Suppose we are given a graph $G=(V, E)$ with for every edge $(u, v) \in E$ a distance $d(u, v)$. Let $V=\{1, \ldots, n\}$. The goal of this exercise if to compute for every pair $i, j \in V$ the shortest path from i to j in a total of $O\left(n^{3}\right)$ time. Show how to do this with dynamic programming. Specifically, let $d_{i, j}^{(k)}$ be the length of the shortest path from i to j for which all intermediate vertices are in the set $\{1, \ldots, k\}$ (see also p630 of the book 'Introduction to Algorithms' by Cormen et al.).

Solution:

$$
d_{i, j}^{(k)}= \begin{cases}d(i, j) & \text { if } k=0 \tag{6.14}\\ \min \left\{d_{i, j}^{(k-1)}, d_{i, k}^{(k-1)}+d_{k, j}^{(k-1)}\right\} & \text { if } k \geq 1\end{cases}
$$

And straightforward evaluation indeed results in an $O\left(n^{3}\right)$ time algorithm since the distances can be read off from $d_{i, j}^{(n)}$.

Exercise 6.9. First solve Knapsack in time $O\left(n \lg \left(v_{\max } n\right) v_{\max }\right)$ where $v_{\max }=\max _{i} v_{i}$. How can you use is to solve Knapsack in time $O\left(n \lg \left(v_{\max } n\right) v_{\max } / S\right)$, if all values are divisible by S ? Argue one could construct an approximation scheme for knapsack similar as in Subsection 6.1.1.|

Solution: For integers $i=1, \ldots, n$ and $t=1, \ldots, n v_{\max }$ define $A[i, t]$ to be $\min \left\{\sum_{e \in X} w_{e}\right.$: $\left.\sum_{e \in X} v_{e} \geq t\right\}$. We see that

$$
A[i, j]= \begin{cases}0 & \text { if } i=0, j \leq 0 \tag{6.16}\\ \infty & \text { if } i=0, j>0 \\ \min \left\{A[i-1, j], w_{i}+A\left[i-1, j-v_{i}\right]\right\} & \text { otherwise }\end{cases}
$$

And the optimum value of the knapsack instance can be found by looking for the largest v such that $A[n, v] \leq W$. We can use this exactly as in Subsection 6.1 .1 if all values are divisible by S by simply dividing all values by S and looking for the largest v such that $A[n, v] \leq W$ in the divided instance. By first rounding the values to the nearest multiple of S and then dividing by S this gives us an $O\left(n^{3} / \epsilon\right)$ approximation algorithm (e.g., if maximum value V is possible it returns a valid solution of value at least $(1-\epsilon) V$) for Knapsack.

[^2]
[^0]: ${ }^{1}$ Of course, the definition of perfect matching requires exactly one, but since we have only n edges, this is equivalent here.
 ${ }^{2}$ I do not expect you to reproduce the $O^{*}\left(2^{n}\right)$ time polynomial space algorithm for Set Partition.

[^1]: ${ }^{3}$ which we won't denote by U this time since it already is used in the problem description

[^2]: ${ }^{4}$ I do not expect you to reproduce the approximation scheme for Knapsack.

