Probabilistic method: First moment methods

1. List coloring. Let G be a bipartite graph with n vertices (in total). For each vertex v you are given a list of colors S(v), from which the color of v must be chosen. Show that it is possible to find a valid coloring of G, if $|S(v)| > \log_2 n$ for each v.

[Hint: Consider all the colors $\cup_v S(v)$ and split them into two random sets A and B.]

2. Show that there exist graphs with Chromatic $\chi(G) \geq n/(3\log n)$, but which have no clique of size more than $3\log n$. So having large cliques is not necessarily the reason why a graph needs many colors to be colored.

[Hint: Consider a random graph G(n, 1/2), and show that the expected number of independent sets of size more $\geq 3 \log n$ is much less than 1.]

3. Show that there are (n, n) bipartite graphs that have at least $\Omega(n^{4/3})$ edges, but do not have a $K_{2,2}$.

[Hint: Construct an appropriate random graph, and do some alteration.]

4. Let $R(k,\ell)$ denote the smallest number n such that for the complete graph K_n , no matter how the edges are colored red or blue, it contains either a red K_k or a blue K_ℓ . Show that $R(k,\ell)$ satisfies $R(k,\ell) \leq R(k,\ell-1) + R(k-1,\ell)$. Together with the base case $R(\ell,2) = R(2,\ell) = \ell$, show that this implies that $R(k,\ell) \leq {k+\ell-1 \choose k-1}$.

[Hint: Consider the complete graph on $R(k, \ell - 1) + R(k - 1, \ell)$ vertices and show that no matter how its edges are colored red and blue, it must contain a red K_k or blue K_ℓ .