1. List coloring. Let G be a bipartite graph with n vertices (in total). For each vertex v you are given a list of colors $S(v)$, from which the color of v must be chosen. Show that it is possible to find a valid coloring of G, if $|S(v)|>\log _{2} n$ for each v.
[Hint: Consider all the colors $\cup_{v} S(v)$ and split them into two random sets A and B.]
2. Show that there exist graphs with Chromatic $\chi(G) \geq n /(3 \log n)$, but which have no clique of size more than $3 \log n$. So having large cliques is not necessarily the reason why a graph needs many colors to be colored.
[Hint: Consider a random graph $G(n, 1 / 2)$, and show that the expected number of independent sets of size more $\geq 3 \log n$ is much less than 1.]
3. Show that there are (n, n) bipartite graphs that have at least $\Omega\left(n^{4 / 3}\right)$ edges, but do not have a $K_{2,2}$.
[Hint: Construct an appropriate random graph, and do some alteration.]
4. Let $R(k, \ell)$ denote the smallest number n such that for the complete graph K_{n}, no matter how the edges are colored red or blue, it contains either a red K_{k} or a blue K_{ℓ}. Show that $R(k, \ell)$ satisfies $R(k, \ell) \leq R(k, \ell-1)+R(k-1, \ell)$. Together with the base case $R(\ell, 2)=R(2, \ell)=\ell$, show that this implies that $R(k, \ell) \leq\binom{ k+\ell-1}{k-1}$.
[Hint: Consider the complete graph on $R(k, \ell-1)+R(k-1, \ell)$ vertices and show that no matter how its edges are colored red and blue, it must contain a red K_{k} or blue K_{ℓ}.
