
Algorithms and Complexity (LNMB), Lecture 7 by Jesper Nederlof, 21/10/2019

Solutions to exercises of lecture 7

Exercise 7.1. Download the excel sheet subsetsum.xls from Canvas. It was used to solve the
instance

w = {3, 20, 58, 90, 267, 493, 869, 961, 1000, 1153, 1246, 1598, 1766, 1922}, t = 5842

of Subset Sum to find the solution 20, 58, 90, 869, 961, 1000, 1246, 1598. In fact, it even counts the
number of subsets with sum equal 5842. Write down the recurrence for A[i, j] that is defined to be
the number subsets X ⊆ {w1, . . . , wi} such that

∑
e∈X we = t that is used in this excel sheet. Are

there more solutions than the one mentioned above? If so, can you find one?

Solution: The excel sheet uses the following recurrence: for i = 0, . . . , 14, t = 0, . . . , 5842 let
A[i, j] be the number of subsets X from {1, . . . , i} such that

∑
e∈X we = j. We see that

A[i, j] =

{
0 if i = 0, j 6= 0, (7.1)

A[i− 1, j] + A[i− 1, j − wi] otherwise. (7.2)

Note that for convenience in excel we use a variant of the recurrence from the lecture notes. In
the excel sheet we see the table entries A[i, j] being computed. From the cell (7842, 16) we see there
are 5 solutions, and from (7842, 15) we see there are 4 subsets X of {1, . . . , 13} with

∑
e∈X we = t,

so 1 solution uses the integer 1922 and from the first 13 integers it will pick integers summing to
5842− 1922, so we continue to look at cell (5920, 14) and see the unique solution containing 1922
does not contain 1766, 1598, 1246 but contains 1153. Continuing like this we arrive at the solution
1922, 1766, 1246, 493, 90, 58.

Exercise 7.2. How many integers in {1, . . . , 100} are not divisible by 2, 3 or 7?

Solution: Use inclusion exclusion. Let U = {1, . . . , 100}, P1 = {i ∈ U : i is not a multiple of 2},
P2 = {i ∈ U : i is not a multiple of 2}, P3 = {i ∈ U : i is not a multiple of 2}. We need to compute
|P1 ∩ P2 ∩ P3| which equals by the inclusion exclusion formula

|U | − |P1| − |P2| − |P3|+ |P1 ∩ P2|+ |P2 ∩ P3|+ |P1 ∩ P3| − |P1 ∩ P2 ∩ P3|,

1

and these terms are more easily computed since, e.g., |P2 ∩ P3| is the number integers that are
simultaneously multiple of 3 and 7 (so equivalently, since 3 and 7 are co prime, a multiple of 21)
which are 21, 42, 63 and 84.

100− 50− 33− 14 + 16 + 4 + 7− 2 = 28

Exercise 7.3. At the 5th of December it is common in the Netherlands to buy presents for
each other. To do this when there are n persons p1, . . . , pn celebrating together, there are various
processes to pick a random permutation f : {1, . . . , n} ↔ {1, . . . , n}. We call a permutation good
if f(i) 6= i for every i. Suppose n = 5, how many good permutations are there?

Solution: Use inclusion exclusion. Let U be all permutations, and for i = 1, . . . , 5 let Pi be the
set of permutations f such that f(i) 6= i. We see that the number of good permutations (also called
derangements) equals | ∩5i=1 Pi|. We note that | ∩i∈F Pi| only depends on |F | by symmetry and

| ∩i∈F Pi| = number of permutations where f(i) = i for every i ∈ F = (5− |F |)!

since for all elements in F we have only one choice and for i /∈ F there are no restrictions so f can
be any permutation restricted to {1, . . . , 5} \F . By inclusion exclusion we see that | ∩5i=1 Pi| equals

∑
F⊆{1,...,5}

(−1)|F |(5− |F |)! =
5∑

i=0

(−1)i
(

5

i

)
(5− i)!

=

(
5

0

)
5!−

(
5

1

)
· 4! +

(
5

2

)
3!−

(
5

3

)
2! +

(
5

4

)
1!−

(
5

5

)
0!

= 120− 120 + 60− 20 + 5− 1 = 44.

Exercise 7.4. The n’th Fibonacci number fn is defined as follows: f1 = 1,f2 = 1 and for n > 2,
fn = fn−1 + fn−2. What is the running time of the following algorithm to compute fn?

Algorithm FIB2(n)
Output: fn

1: Initiate a table F with F [i] = −1 for i = 1, . . . , n
2: return FIBREC(n).

Algorithm FIBREC(n)
Output: fn

1: if n = 1 or n = 2 then return 1
2: if F [n] = −1 then
3: x← FIBREC(n− 1)+FIBREC(n− 2)
4: F [n]← x
5: return x.
6: else
7: return F [n].

2

Solution: O(n) time. To see this, note that in the execution, the condition at Line 2 applies only
once for every n. Intuitively, we could still look at the recursion tree of this algorithm, but it will
be a very unbalanced tree of depth n where, if the left child is evaluated before the right child, the
right child is a leaf since the condition at Line 2 will not apply.

Exercise 7.5. Let G be bipartite graph with parts A,B, |A| = |B| = n. Use inclusion exclusion to
count the number of perfect matchings of G in O∗(2n) time. Can you do with polynomial space?

Solution: Use inclusion exclusion. A pseudo-matching of G = (A∪̇B,E) is a set of edges M ⊆ E
such that for every a ∈ A there exists exactly one e ∈ M incident to a. Note that if M ⊆ E is a
pseudo-matching, and for every b ∈ B there exists an edge e ∈M incident to b, then M is a perfect
matching. Thus, if U is the set of all pseudo-matchings of G and for every b ∈ B, Pb is the set of
all pseudo-matchings M such that there exists at least1 one e ∈M containing b, then | ∩b∈B Pb| is
the number of perfect matchings of G. By inclusion exclusion we have that

|
⋂
b∈B

Pb| =
∑
F⊆B

(−1)|F ||
⋂
b∈F

Pb|.

Now, note that |
⋂

b∈F Pb| is the number of pseudo-matchings that do contain any edge incident
to a vertex of F , which is the number of pseudo-matchings in G[A∪B \F,E]. This number if easily
computed in polynomial time: in a pseudo-matching every vertex in A needs to pick a neighbor in
B but these choices are independent so we see that

|
⋂
b∈F

Pb| =
∏
a∈A
|N(a) \ F |,

so this can clearly be computed in polynomial time and thus the inclusion exclusion formula can
be computed in O∗(2n) time.

Exercise 7.6. In the Weighted Steiner Tree problem we are given a graph G = (V,E), a weight
function ω : E → N and a set of terminals T ⊆ V . We need to find a connected tree (S,E′)
minimizing

∑
e∈E′ ω(e) such that T ⊆ S ⊆ V . Solve this problem in time O∗(2n−k), where |V | = n

and |T | = k.

Solution: Iterate over all relevant candidates for subset S, and for each such subset, compute a
minimum spanning tree of G[S]. Return the minimum tree found. This gives a valid solution and
also the optimum solution since once we fixed S the optimal way of connecting the vertex set is via
a minimum spanning tree. The running time is O∗(2n−k) since there are at most 2n−k candidates
for S and minimum spanning tree can be done in polynomial time.

1Of course, the definition of perfect matching requires exactly one, but since we have only n edges, this is equivalent
here.

3

	Solutions to exercises of lecture 7

