
What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Algorithms and Complexity (AC)

Marie Schmidt
(Based on slides by Gerhard Woeginger and Jesper Nederlof)

Landelijk Netwerk Mathematische Besliskunde

LNMB, Sep�Nov 2019

Marie Schmidt Algorithms and Complexity (AC) 1/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

(Preliminary) program

9 Sep : Introduction, basic concepts, time complexity and
computational models, P versus NP

16 Sep : reductions, NP-hardness and NP-completeness
23 Sep : Pseudopolynomial time, strong/weak NP-hardness, co-NP
30 Sep : Exercise set 1
30 Sep : Approximation algorithms
7 Oct : More on approximation algorithms
14 Oct : Exercise set 2
14 Oct : Exact algorithms for NP-hard problems
21 Oct : More exact algorithms for NP-hard problems

28 Oct : Exercise set 3

28 Oct : Treewidth
4 Nov : Randomized algorithms
11 Nov : Exercise set 4
11 Nov : No lecture!!

Website: http://www.win.tue.nl/~jnederlo/LNMB/

First 5 lectures: Marie Schmidt (schmidt2@rsm.nl), last 4 lectures: Jesper
Nederlof (j.nederlof@tue.nl)

Marie Schmidt Algorithms and Complexity (AC) 2/74

http://www.win.tue.nl/~jnederlo/LNMB/
schmidt2@rsm.nl
j.nederlof@tue.nl

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Program for the �rst three weeks

• Basic de�nitions: decision problems, graphs
• computational models and (worst-case) time complexity
• P versus NP
• Reductions
• NP-hardness
• A catalogue of NP-hard problems
• pseudo-polynomial time
• strong NP-hardness & weak NP-hardness
• co-NP, co-NP versus NP

And maybe more. . . ?

Marie Schmidt Algorithms and Complexity (AC) 3/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Algorithms. . .
. . . and Complexity

Algorithm

Well-de�ned procedure that transforms an input into an output.

Example: Insertion Sort

Input: A sequence of n numbers (a1, a2, . . . , an)
Output: A permutation (a′1, a

′
2, . . . , a

′
n) of the input sequence such that

a′i ≤ a′2 ≤ . . . ≤ a′n

Marie Schmidt Algorithms and Complexity (AC) 4/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Algorithms. . .
. . . and Complexity

Algorithm

Well-de�ned procedure that transforms an input into an output.

Example: Insertion Sort

Input: A sequence of n numbers (a1, a2, . . . , an)
Output: A permutation (a′1, a

′
2, . . . , a

′
n) of the input sequence such that

a′i ≤ a′2 ≤ . . . ≤ a′n

Marie Schmidt Algorithms and Complexity (AC) 4/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Algorithms. . .
. . . and Complexity

Algorithm

Well-de�ned procedure that transforms an input into an output.

Example: Insertion Sort

Input: A sequence of n numbers (a1, a2, . . . , an)
Output: A permutation (a′1, a

′
2, . . . , a

′
n) of the input sequence such that

a′i ≤ a′2 ≤ . . . ≤ a′n

Marie Schmidt Algorithms and Complexity (AC) 4/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Algorithms. . .
. . . and Complexity

Algorithm

Well-de�ned procedure that transforms an input into an output.

Example: Insertion Sort - for a human

Input: A sequence of n numbers (a1, a2, . . . , an)
Output: A permutation (a′1, a

′
2, . . . , a

′
n) of the input sequence such that

a′i ≤ a′2 ≤ . . . ≤ a′n

Set A := (a1)
for i = 2, . . . , n do

update A by inserting ai at the 'correct' position in sorted sequence A
end for

return A

Marie Schmidt Algorithms and Complexity (AC) 4/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Algorithms. . .
. . . and Complexity

Algorithm

Well-de�ned procedure that transforms an input into an output.

Example: Insertion Sort - for a machine

Input: A sequence of n numbers (a1, a2, . . . , an)
Output: A permutation (a′1, a

′
2, . . . , a

′
n) of the input sequence such that

a′i ≤ a′2 ≤ . . . ≤ a′n

Set A := (a1)
for i = 2, . . . , n do

key := A[j]
i := j − 1
while i > 1 and A[i] > key do

A[i + 1] := A[i]
i := i − 1

end while

A[i + 1] := key
end for

return A

Marie Schmidt Algorithms and Complexity (AC) 4/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Algorithms. . .
. . . and Complexity

When we analyze an algorithm, we are interested in:

running time of the algorithm

space (memory) needed by the algorithm (probably not treated in this
course)

for optimization problems: quality of the output
exact algorithm
approximation algorithm
heuristic algorithm

Marie Schmidt Algorithms and Complexity (AC) 5/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Algorithms. . .
. . . and Complexity

Marie Schmidt Algorithms and Complexity (AC) 6/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Algorithms. . .
. . . and Complexity

Marie Schmidt Algorithms and Complexity (AC) 6/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Basic concepts: Graphs

Graph: pair (V ,E) where V is set of vertices and E is a set of pairs of vertices
called edges

a

b c

d

Matching: set of non-adjacent edges (no two edges share a vertex), perfect if
|V |/2 edges

Independent Set: set of pairwise non-adjacent vertices
Clique: set of pairwise adjacent vertices
Vertex Cover: set of vertices such that each edge is incident to at least one
vertex from the set
Much more terminology: cycles, Hamiltonian cycles, trees, forests,...

Marie Schmidt Algorithms and Complexity (AC) 7/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Basic concepts: Graphs

Graph: pair (V ,E) where V is set of vertices and E is a set of pairs of vertices
called edges

a

b c

d

Matching: set of non-adjacent edges (no two edges share a vertex), perfect if
|V |/2 edges

Independent Set: set of pairwise non-adjacent vertices
Clique: set of pairwise adjacent vertices
Vertex Cover: set of vertices such that each edge is incident to at least one
vertex from the set
Much more terminology: cycles, Hamiltonian cycles, trees, forests,...

Marie Schmidt Algorithms and Complexity (AC) 7/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Basic concepts: Graphs

Graph: pair (V ,E) where V is set of vertices and E is a set of pairs of vertices
called edges

a

b c

d

Matching: set of non-adjacent edges (no two edges share a vertex), perfect if
|V |/2 edges
Independent Set: set of pairwise non-adjacent vertices

Clique: set of pairwise adjacent vertices
Vertex Cover: set of vertices such that each edge is incident to at least one
vertex from the set
Much more terminology: cycles, Hamiltonian cycles, trees, forests,...

Marie Schmidt Algorithms and Complexity (AC) 7/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Basic concepts: Graphs

Graph: pair (V ,E) where V is set of vertices and E is a set of pairs of vertices
called edges

a

b c

d

a

c

Matching: set of non-adjacent edges (no two edges share a vertex), perfect if
|V |/2 edges
Independent Set: set of pairwise non-adjacent vertices

Clique: set of pairwise adjacent vertices
Vertex Cover: set of vertices such that each edge is incident to at least one
vertex from the set
Much more terminology: cycles, Hamiltonian cycles, trees, forests,...

Marie Schmidt Algorithms and Complexity (AC) 7/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Basic concepts: Graphs

Graph: pair (V ,E) where V is set of vertices and E is a set of pairs of vertices
called edges

a

b c

d

Matching: set of non-adjacent edges (no two edges share a vertex), perfect if
|V |/2 edges
Independent Set: set of pairwise non-adjacent vertices
Clique: set of pairwise adjacent vertices

Vertex Cover: set of vertices such that each edge is incident to at least one
vertex from the set
Much more terminology: cycles, Hamiltonian cycles, trees, forests,...

Marie Schmidt Algorithms and Complexity (AC) 7/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Basic concepts: Graphs

Graph: pair (V ,E) where V is set of vertices and E is a set of pairs of vertices
called edges

a

b c

d

a

b

d

Matching: set of non-adjacent edges (no two edges share a vertex), perfect if
|V |/2 edges
Independent Set: set of pairwise non-adjacent vertices
Clique: set of pairwise adjacent vertices

Vertex Cover: set of vertices such that each edge is incident to at least one
vertex from the set
Much more terminology: cycles, Hamiltonian cycles, trees, forests,...

Marie Schmidt Algorithms and Complexity (AC) 7/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Basic concepts: Graphs

Graph: pair (V ,E) where V is set of vertices and E is a set of pairs of vertices
called edges

a

b c

d

Matching: set of non-adjacent edges (no two edges share a vertex), perfect if
|V |/2 edges
Independent Set: set of pairwise non-adjacent vertices
Clique: set of pairwise adjacent vertices
Vertex Cover: set of vertices such that each edge is incident to at least one
vertex from the set

Much more terminology: cycles, Hamiltonian cycles, trees, forests,...

Marie Schmidt Algorithms and Complexity (AC) 7/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Basic concepts: Graphs

Graph: pair (V ,E) where V is set of vertices and E is a set of pairs of vertices
called edges

a

b c

d

a

b c

Matching: set of non-adjacent edges (no two edges share a vertex), perfect if
|V |/2 edges
Independent Set: set of pairwise non-adjacent vertices
Clique: set of pairwise adjacent vertices
Vertex Cover: set of vertices such that each edge is incident to at least one
vertex from the set
Much more terminology: cycles, Hamiltonian cycles, trees, forests,...

Marie Schmidt Algorithms and Complexity (AC) 7/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Problems

Problem instance:

• speci�cation of problem data

Example: Instance of decision version of clique

V = {a, b, c, d , e, f , g}; k = 4
E = {{a, b}, {a, d}, {b, c}, {c, d}, {b, d}, {b, e}, {c, e}, {d , e},
{d , f }, {e, f }, {e, g}, {f , g}};

Marie Schmidt Algorithms and Complexity (AC) 8/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Problems

Problem instance:

• speci�cation of problem data

Example: Instance of decision version of clique

V = {a, b, c, d , e, f , g}; k = 4
E = {{a, b}, {a, d}, {b, c}, {c, d}, {b, d}, {b, e}, {c, e}, {d , e},
{d , f }, {e, f }, {e, g}, {f , g}};

Marie Schmidt Algorithms and Complexity (AC) 8/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Basic concepts: Input size and asymptotics

Problem size:

• length (number of symbols) of reasonable encoding of instance (often
denoted as n)

Example for encodings

Graph: adjacency list; adjacency matrix

Set: list of elements; bit vector

Number: decimal; binary; hex; unary

Marie Schmidt Algorithms and Complexity (AC) 9/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Basic concepts: Input size and asymptotics

Problem size:

• length (number of symbols) of reasonable encoding of instance (often
denoted as n)

Example for encodings

Graph: adjacency list; adjacency matrix

Set: list of elements; bit vector

Number: decimal; binary; hex; unary

Marie Schmidt Algorithms and Complexity (AC) 9/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

We do not really care whether an n-vertex graph is encoded with
4n2 + 3n or with 7n2 + 2 symbols.

big-Oh notation

f (n) is O(g(n)) denotes
∃n0,C such that for all n ≥ n0, f (n) ≤ C · g(n).
For example, 4n2 + 3n ∈ O(n2) and 7n2 + 2 ∈ O(n2)

big-Omega, big-Theta

f (n) is Ω(g(n)) denotes that ∃n0,C such that ∀n > n0 f (n) ≥ C · g(n).
f (n) is Θ(g(n)) denotes that f (n) is O(g(n)) and Ω(g(n)).

Marie Schmidt Algorithms and Complexity (AC) 10/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

We do not really care whether an n-vertex graph is encoded with
4n2 + 3n or with 7n2 + 2 symbols.

big-Oh notation

f (n) is O(g(n)) denotes
∃n0,C such that for all n ≥ n0, f (n) ≤ C · g(n).

For example, 4n2 + 3n ∈ O(n2) and 7n2 + 2 ∈ O(n2)

big-Omega, big-Theta

f (n) is Ω(g(n)) denotes that ∃n0,C such that ∀n > n0 f (n) ≥ C · g(n).
f (n) is Θ(g(n)) denotes that f (n) is O(g(n)) and Ω(g(n)).

Marie Schmidt Algorithms and Complexity (AC) 10/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

We do not really care whether an n-vertex graph is encoded with
4n2 + 3n or with 7n2 + 2 symbols.

big-Oh notation

f (n) is O(g(n)) denotes
∃n0,C such that for all n ≥ n0, f (n) ≤ C · g(n).
For example, 4n2 + 3n ∈ O(n2) and 7n2 + 2 ∈ O(n2)

big-Omega, big-Theta

f (n) is Ω(g(n)) denotes that ∃n0,C such that ∀n > n0 f (n) ≥ C · g(n).
f (n) is Θ(g(n)) denotes that f (n) is O(g(n)) and Ω(g(n)).

Marie Schmidt Algorithms and Complexity (AC) 10/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

We do not really care whether an n-vertex graph is encoded with
4n2 + 3n or with 7n2 + 2 symbols.

big-Oh notation

f (n) is O(g(n)) denotes
∃n0,C such that for all n ≥ n0, f (n) ≤ C · g(n).
For example, 4n2 + 3n ∈ O(n2) and 7n2 + 2 ∈ O(n2)

big-Omega, big-Theta

f (n) is Ω(g(n)) denotes that ∃n0,C such that ∀n > n0 f (n) ≥ C · g(n).
f (n) is Θ(g(n)) denotes that f (n) is O(g(n)) and Ω(g(n)).

Marie Schmidt Algorithms and Complexity (AC) 10/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Di�erent types of algorithmic problems:

• Optimization problems (min/max)
• Decision problems (with answer YES/NO)

Example: Optimization problem CLIQUE

Instance: a graph G = (V ,E)
Goal: �nd a clique of maximum size in G . / What is the maximum size of a
clique in G?

Example: Decision problem CLIQUE

Instance: a graph G = (V ,E); a bound k
Question: does G contain a clique of size (at least) k?

Example (neither optimization nor decision problem) SORTING

Instance: A sequence of n numbers (a1, a2, . . . , an)
Task: A permutation (a′1, a

′
2, . . . , a

′
n) of the input sequence such that

a′i ≤ a′2 ≤ . . . ≤ a′n

Marie Schmidt Algorithms and Complexity (AC) 11/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Di�erent types of algorithmic problems:

• Optimization problems (min/max)
• Decision problems (with answer YES/NO)

Example: Optimization problem CLIQUE

Instance: a graph G = (V ,E)
Goal: �nd a clique of maximum size in G . / What is the maximum size of a
clique in G?

Example: Decision problem CLIQUE

Instance: a graph G = (V ,E); a bound k
Question: does G contain a clique of size (at least) k?

Example (neither optimization nor decision problem) SORTING

Instance: A sequence of n numbers (a1, a2, . . . , an)
Task: A permutation (a′1, a

′
2, . . . , a

′
n) of the input sequence such that

a′i ≤ a′2 ≤ . . . ≤ a′n

Marie Schmidt Algorithms and Complexity (AC) 11/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Di�erent types of algorithmic problems:

• Optimization problems (min/max)
• Decision problems (with answer YES/NO)

Example: Optimization problem CLIQUE

Instance: a graph G = (V ,E)
Goal: �nd a clique of maximum size in G . / What is the maximum size of a
clique in G?

Example: Decision problem CLIQUE

Instance: a graph G = (V ,E); a bound k
Question: does G contain a clique of size (at least) k?

Example (neither optimization nor decision problem) SORTING

Instance: A sequence of n numbers (a1, a2, . . . , an)
Task: A permutation (a′1, a

′
2, . . . , a

′
n) of the input sequence such that

a′i ≤ a′2 ≤ . . . ≤ a′n

Marie Schmidt Algorithms and Complexity (AC) 11/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Di�erent types of algorithmic problems:

• Optimization problems (min/max)
• Decision problems (with answer YES/NO)

Example: Optimization problem CLIQUE

Instance: a graph G = (V ,E)
Goal: �nd a clique of maximum size in G . / What is the maximum size of a
clique in G?

Example: Decision problem CLIQUE

Instance: a graph G = (V ,E); a bound k
Question: does G contain a clique of size (at least) k?

Example (neither optimization nor decision problem) SORTING

Instance: A sequence of n numbers (a1, a2, . . . , an)
Task: A permutation (a′1, a

′
2, . . . , a

′
n) of the input sequence such that

a′i ≤ a′2 ≤ . . . ≤ a′n

Marie Schmidt Algorithms and Complexity (AC) 11/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Observation

Every discrete optimization problem can be rewritten into
a sequence of decision problems:

use bisection search on the interval of objective values

Example

Let G be a graph on n vertices.

Does G contain a clique of size at least n/2? � YES
Does G contain a clique of size at least 3n/4? � YES
Does G contain a clique of size at least 7n/8? � NO
Does G contain a clique of size at least 13n/16? � YES
Etc.

Search takes logarithmic number of steps �> fast and simple

Marie Schmidt Algorithms and Complexity (AC) 12/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Observation

Every discrete optimization problem can be rewritten into
a sequence of decision problems:

use bisection search on the interval of objective values

Example

Let G be a graph on n vertices.

Does G contain a clique of size at least n/2? � YES
Does G contain a clique of size at least 3n/4? � YES
Does G contain a clique of size at least 7n/8? � NO
Does G contain a clique of size at least 13n/16? � YES
Etc.

Search takes logarithmic number of steps �> fast and simple

Marie Schmidt Algorithms and Complexity (AC) 12/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Observation

Every discrete optimization problem can be rewritten into
a sequence of decision problems:

use bisection search on the interval of objective values

Example

Let G be a graph on n vertices.

Does G contain a clique of size at least n/2? � YES

Does G contain a clique of size at least 3n/4? � YES
Does G contain a clique of size at least 7n/8? � NO
Does G contain a clique of size at least 13n/16? � YES
Etc.

Search takes logarithmic number of steps �> fast and simple

Marie Schmidt Algorithms and Complexity (AC) 12/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Observation

Every discrete optimization problem can be rewritten into
a sequence of decision problems:

use bisection search on the interval of objective values

Example

Let G be a graph on n vertices.

Does G contain a clique of size at least n/2? � YES
Does G contain a clique of size at least 3n/4? � YES

Does G contain a clique of size at least 7n/8? � NO
Does G contain a clique of size at least 13n/16? � YES
Etc.

Search takes logarithmic number of steps �> fast and simple

Marie Schmidt Algorithms and Complexity (AC) 12/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Observation

Every discrete optimization problem can be rewritten into
a sequence of decision problems:

use bisection search on the interval of objective values

Example

Let G be a graph on n vertices.

Does G contain a clique of size at least n/2? � YES
Does G contain a clique of size at least 3n/4? � YES
Does G contain a clique of size at least 7n/8? � NO

Does G contain a clique of size at least 13n/16? � YES
Etc.

Search takes logarithmic number of steps �> fast and simple

Marie Schmidt Algorithms and Complexity (AC) 12/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Observation

Every discrete optimization problem can be rewritten into
a sequence of decision problems:

use bisection search on the interval of objective values

Example

Let G be a graph on n vertices.

Does G contain a clique of size at least n/2? � YES
Does G contain a clique of size at least 3n/4? � YES
Does G contain a clique of size at least 7n/8? � NO
Does G contain a clique of size at least 13n/16? � YES

Etc.

Search takes logarithmic number of steps �> fast and simple

Marie Schmidt Algorithms and Complexity (AC) 12/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Graph notation
Problems

Observation

Every discrete optimization problem can be rewritten into
a sequence of decision problems:

use bisection search on the interval of objective values

Example

Let G be a graph on n vertices.

Does G contain a clique of size at least n/2? � YES
Does G contain a clique of size at least 3n/4? � YES
Does G contain a clique of size at least 7n/8? � NO
Does G contain a clique of size at least 13n/16? � YES
Etc.

Search takes logarithmic number of steps �> fast and simple

Marie Schmidt Algorithms and Complexity (AC) 12/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Time complexity of an algorithm

Time complexity of an algorithm

number of elementary steps an algorithm makes

→ depends on computational model

Marie Schmidt Algorithms and Complexity (AC) 13/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Time complexity of an algorithm

Time complexity of an algorithm

number of elementary steps an algorithm makes
→ depends on computational model

Marie Schmidt Algorithms and Complexity (AC) 13/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Our choice: Random-access-machine (RAM) model

executes operations one after another (no concurrent operations)

Elementary steps =̂ assumption: can be executed in constant time

arithmetic: add, subtract, multiply, divide, remainder, �oor, ceiling

data movement: load, store, copy

control: unconditional and conditional branch, subroutine call, return

exponentiation?

For 'constant time' assumption: limit on length of each 'word of data'
(often: in input size n: e.g., numbers ≤ c · log n for a constant c)

Why do we use RAM:

similar to how a computer works & approximates running time of
computer well

easier to analyze than many alternatives

Marie Schmidt Algorithms and Complexity (AC) 14/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Our choice: Random-access-machine (RAM) model

executes operations one after another (no concurrent operations)

Elementary steps =̂ assumption: can be executed in constant time

arithmetic: add, subtract, multiply, divide, remainder, �oor, ceiling

data movement: load, store, copy

control: unconditional and conditional branch, subroutine call, return

exponentiation?

For 'constant time' assumption: limit on length of each 'word of data'
(often: in input size n: e.g., numbers ≤ c · log n for a constant c)

Why do we use RAM:

similar to how a computer works & approximates running time of
computer well

easier to analyze than many alternatives

Marie Schmidt Algorithms and Complexity (AC) 14/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Our choice: Random-access-machine (RAM) model

executes operations one after another (no concurrent operations)

Elementary steps =̂ assumption: can be executed in constant time

arithmetic: add, subtract, multiply, divide, remainder, �oor, ceiling

data movement: load, store, copy

control: unconditional and conditional branch, subroutine call, return

exponentiation?

For 'constant time' assumption: limit on length of each 'word of data'
(often: in input size n: e.g., numbers ≤ c · log n for a constant c)

Why do we use RAM:

similar to how a computer works & approximates running time of
computer well

easier to analyze than many alternatives

Marie Schmidt Algorithms and Complexity (AC) 14/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Our choice: Random-access-machine (RAM) model

executes operations one after another (no concurrent operations)

Elementary steps =̂ assumption: can be executed in constant time

arithmetic: add, subtract, multiply, divide, remainder, �oor, ceiling

data movement: load, store, copy

control: unconditional and conditional branch, subroutine call, return

exponentiation?

For 'constant time' assumption: limit on length of each 'word of data'
(often: in input size n: e.g., numbers ≤ c · log n for a constant c)

Why do we use RAM:

similar to how a computer works & approximates running time of
computer well

easier to analyze than many alternatives

Marie Schmidt Algorithms and Complexity (AC) 14/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Time complexity of an algorithm

number of elementary steps an algorithm makes
→ here (and in most other places): using RAM

→ normally: speci�ed in relation to input length (n) using a reasonable
encoding
→ normally: speci�ed in O (or Θ-notation)
→ here: worst-case complexity of an algorithm: the maximum number of steps
for any input of length n

BUT: there are alternatives, e.g.,

alternative computational models

time complexity in output length

average case time complexity

Marie Schmidt Algorithms and Complexity (AC) 15/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Time complexity of an algorithm

number of elementary steps an algorithm makes
→ here (and in most other places): using RAM
→ normally: speci�ed in relation to input length (n) using a reasonable
encoding

→ normally: speci�ed in O (or Θ-notation)
→ here: worst-case complexity of an algorithm: the maximum number of steps
for any input of length n

BUT: there are alternatives, e.g.,

alternative computational models

time complexity in output length

average case time complexity

Marie Schmidt Algorithms and Complexity (AC) 15/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Time complexity of an algorithm

number of elementary steps an algorithm makes
→ here (and in most other places): using RAM
→ normally: speci�ed in relation to input length (n) using a reasonable
encoding
→ normally: speci�ed in O (or Θ-notation)

→ here: worst-case complexity of an algorithm: the maximum number of steps
for any input of length n

BUT: there are alternatives, e.g.,

alternative computational models

time complexity in output length

average case time complexity

Marie Schmidt Algorithms and Complexity (AC) 15/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Time complexity of an algorithm

number of elementary steps an algorithm makes
→ here (and in most other places): using RAM
→ normally: speci�ed in relation to input length (n) using a reasonable
encoding
→ normally: speci�ed in O (or Θ-notation)
→ here: worst-case complexity of an algorithm: the maximum number of steps
for any input of length n

BUT: there are alternatives, e.g.,

alternative computational models

time complexity in output length

average case time complexity

Marie Schmidt Algorithms and Complexity (AC) 15/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Time complexity of an algorithm

number of elementary steps an algorithm makes
→ here (and in most other places): using RAM
→ normally: speci�ed in relation to input length (n) using a reasonable
encoding
→ normally: speci�ed in O (or Θ-notation)
→ here: worst-case complexity of an algorithm: the maximum number of steps
for any input of length n

BUT: there are alternatives, e.g.,

alternative computational models

time complexity in output length

average case time complexity

Marie Schmidt Algorithms and Complexity (AC) 15/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

What is the worst-case time complexity of InsertionSort?

Example: Insertion Sort

Input: A sequence of n numbers (a1, a2, . . . , an)
Output: A permutation (a′1, a

′
2, . . . , a

′
n) of the input sequence such that

a′i ≤ a′2 ≤ . . . ≤ a′n
Set A := (a1)
for i = 2, . . . , n do

key := A[j]
i := j − 1
while i > 1 and A[i] > key do

A[i + 1] := A[i]
i := i − 1

end while
A[i + 1] := key

end for
return A

Marie Schmidt Algorithms and Complexity (AC) 16/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Big-Oh notation

Both for encoding length, and for time complexity, we make use of big-Oh
notation.

big-Oh notation

f (n) is O(g(n)) denotes
∃n0,C such that for all n ≥ n0, f (n) ≤ C · g(n).

For example, 4n2 + 3n ∈ O(n2) and 7n2 + 2 ∈ O(n2)

Marie Schmidt Algorithms and Complexity (AC) 17/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Big-Oh notation

Both for encoding length, and for time complexity, we make use of big-Oh
notation.

big-Oh notation

f (n) is O(g(n)) denotes
∃n0,C such that for all n ≥ n0, f (n) ≤ C · g(n).

For example, 4n2 + 3n ∈ O(n2) and 7n2 + 2 ∈ O(n2)

Marie Schmidt Algorithms and Complexity (AC) 17/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Note: Determining / proving the worst-case time complexity of an algorithm
can be di�cult!

Marie Schmidt Algorithms and Complexity (AC) 18/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Turing machines

Alternative mathematical models of computation

Used in the de�nition of complexity classes P and NP

Not this. But this!

Marie Schmidt Algorithms and Complexity (AC) 19/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Turing machines

Alternative mathematical models of computation

Used in the de�nition of complexity classes P and NP

Not this. But this!

Marie Schmidt Algorithms and Complexity (AC) 19/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Deterministic one-tape Turing machine (DTM)

A DTM consists of

1 a �nite state control

2 a read-write head

3 a tape: two-way in�nite sequence of tape squares

Marie Schmidt Algorithms and Complexity (AC) 20/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

A program for a DTM speci�es:

1 a �nite set Γ of tape symbols, including a subset Σ ⊂ Γ of input symbols and a
distinguished blank symbol b ∈ Γ \ Σ

2 a �nite set Q of states, inclusing a distinguished start state q0 and two
distinguished halt states qY and qN

3 a transition function δ : (Q \ {qY , qN})× Γ→ Q × Γ× {−1, 1}

Marie Schmidt Algorithms and Complexity (AC) 21/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Operation of a DTM program

Input: �nite string x ∈ Σ
Initialize: write string in tape squares 1 to |x |, one symbol per square (all
other tape squares are blank), state q = q0, read-write head scans tape
square 1
while q /∈ {qY , qN} do
look up (q′, s ′∆) := δ(q, s) for current state q and read-write head
pointing at square with symbol s
erase s
write s ′ in its place
move one square to the left if ∆ = −1, one square to the right if ∆ = 1
set q := q′

end while

if q = qY then

return YES
else

return NO
end if

Each iteration of the while-loop counts as a step

Marie Schmidt Algorithms and Complexity (AC) 22/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

A program for a DTM machine

Γ = {0, 1, b}, Σ = {0, 1}, Q = {q + 0, q1, q2, qY , qN}

Let's try this out!

What does this program do?

How many steps do we need?

How many steps would we need at most?

How much space do we need (at most)?

Marie Schmidt Algorithms and Complexity (AC) 23/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

A program for a DTM machine

Γ = {0, 1, b}, Σ = {0, 1}, Q = {q + 0, q1, q2, qY , qN}

Let's try this out!

What does this program do?

How many steps do we need?

How many steps would we need at most?

How much space do we need (at most)?

Marie Schmidt Algorithms and Complexity (AC) 23/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

A program for a DTM machine

Γ = {0, 1, b}, Σ = {0, 1}, Q = {q + 0, q1, q2, qY , qN}

Let's try this out!

What does this program do?

How many steps do we need?

How many steps would we need at most?

How much space do we need (at most)?

Marie Schmidt Algorithms and Complexity (AC) 23/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

A program for a DTM machine

Γ = {0, 1, b}, Σ = {0, 1}, Q = {q + 0, q1, q2, qY , qN}

Let's try this out!

What does this program do?

How many steps do we need?

How many steps would we need at most?

How much space do we need (at most)?

Marie Schmidt Algorithms and Complexity (AC) 23/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

A program for a DTM machine

Γ = {0, 1, b}, Σ = {0, 1}, Q = {q + 0, q1, q2, qY , qN}

Let's try this out!

What does this program do?

How many steps do we need?

How many steps would we need at most?

How much space do we need (at most)?

Marie Schmidt Algorithms and Complexity (AC) 23/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Would you rather own a RAM, or a DTM?

Equivalence of computational models

A RAM and a DTM are equivalent in the sense that any function that can be
computed on a DTM can be computed on a RAM, and vice versa.

Church-Turing thesis

Anything that can be calculated by an e�ective method can be computed by a
deterministic Turing machine.

Marie Schmidt Algorithms and Complexity (AC) 24/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Would you rather own a RAM, or a DTM?

Equivalence of computational models

A RAM and a DTM are equivalent in the sense that any function that can be
computed on a DTM can be computed on a RAM, and vice versa.

Church-Turing thesis

Anything that can be calculated by an e�ective method can be computed by a
deterministic Turing machine.

Marie Schmidt Algorithms and Complexity (AC) 24/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Would you rather own a RAM, or a DTM?

Equivalence of computational models

A RAM and a DTM are equivalent in the sense that any function that can be
computed on a DTM can be computed on a RAM, and vice versa.

Church-Turing thesis

Anything that can be calculated by an e�ective method can be computed by a
deterministic Turing machine.

Marie Schmidt Algorithms and Complexity (AC) 24/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Non-deterministic Turing machine

Non-deterministic Turing machine (NDTM)

1 guessing module: write-only head

2 checking module: deterministic Turing machine

Marie Schmidt Algorithms and Complexity (AC) 25/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

A program for a DTM speci�es:

exactly the same as a DTM program:

1 �nite set of tape symbols Γ of tape symbols, including blank symbol

2 �nite set Q of states, i

3 transition function δ

Operation of a NDTM program

write input string in tape squares 1 to |x |
guessing module: writes �nite string of symbols from Γ in left tape squares
starting from −1 in arbitrary manner

checking module: operates like a DTM

Marie Schmidt Algorithms and Complexity (AC) 26/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

A program for a DTM speci�es:

exactly the same as a DTM program:

1 �nite set of tape symbols Γ of tape symbols, including blank symbol

2 �nite set Q of states, i

3 transition function δ

Operation of a NDTM program

write input string in tape squares 1 to |x |

guessing module: writes �nite string of symbols from Γ in left tape squares
starting from −1 in arbitrary manner

checking module: operates like a DTM

Marie Schmidt Algorithms and Complexity (AC) 26/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

A program for a DTM speci�es:

exactly the same as a DTM program:

1 �nite set of tape symbols Γ of tape symbols, including blank symbol

2 �nite set Q of states, i

3 transition function δ

Operation of a NDTM program

write input string in tape squares 1 to |x |
guessing module: writes �nite string of symbols from Γ in left tape squares
starting from −1 in arbitrary manner

checking module: operates like a DTM

Marie Schmidt Algorithms and Complexity (AC) 26/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

A program for a DTM speci�es:

exactly the same as a DTM program:

1 �nite set of tape symbols Γ of tape symbols, including blank symbol

2 �nite set Q of states, i

3 transition function δ

Operation of a NDTM program

write input string in tape squares 1 to |x |
guessing module: writes �nite string of symbols from Γ in left tape squares
starting from −1 in arbitrary manner

checking module: operates like a DTM

Marie Schmidt Algorithms and Complexity (AC) 26/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Operation of a NDTM program

write input string in tape squares 1 to |x |
guessing module: writes �nite string of symbols from Γ in tape squares starting
from −1 in arbitrary manner

checking module: operates like a DTM

Note: For a given string x and a given NDTM program, there is an in�nite number of
possible computations possible (one for each 'guessed' string)

Terminology & de�nitions

Accepting computation: all computations that terminate in accepting state (qY).
Non-accepting computations: all computations that terminate in non-accepting-state
(qN) or do not terminate at all.

NDTM program M accepts x if there is an accepting computation for x on M.

The time complexity of an NDTM program for a string x is de�ned as the minimum
running time over all accepting computations of x by M.
The worst-case time-complexity of an NDTM program is the maximum time
complexity over all strings x of a certain length n that are accepted by n.

Marie Schmidt Algorithms and Complexity (AC) 27/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Operation of a NDTM program

write input string in tape squares 1 to |x |
guessing module: writes �nite string of symbols from Γ in tape squares starting
from −1 in arbitrary manner

checking module: operates like a DTM

Note: For a given string x and a given NDTM program, there is an in�nite number of
possible computations possible (one for each 'guessed' string)

Terminology & de�nitions

Accepting computation: all computations that terminate in accepting state (qY).
Non-accepting computations: all computations that terminate in non-accepting-state
(qN) or do not terminate at all.

NDTM program M accepts x if there is an accepting computation for x on M.

The time complexity of an NDTM program for a string x is de�ned as the minimum
running time over all accepting computations of x by M.
The worst-case time-complexity of an NDTM program is the maximum time
complexity over all strings x of a certain length n that are accepted by n.

Marie Schmidt Algorithms and Complexity (AC) 27/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Non-deterministic algorithm

non-deterministic algorithm =̂ program for a non-deterministic Turing machine

1 Oracle/guessing stage

2 Checking stage

time complexity of a non-deterministic algorithm
=̂ time complexity of the corresponding program

Marie Schmidt Algorithms and Complexity (AC) 28/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Travelling Salesman Problem (TSP) - Decision version

Instance: cities 1, . . . , n; distances d(i , j) ; a bound B
Question: does there exist a roundtrip of length at most B?

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Non-deterministic algorithm for the
TSP

Oracle:

Specify sequence of edges.

Veri�cation:

Verify that sequence forms a tour
that visits all cities.

Compute tour length.

Is tour length ≤ B?

What is the time complexity of this algorithm?

Marie Schmidt Algorithms and Complexity (AC) 29/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Travelling Salesman Problem (TSP) - Decision version

Instance: cities 1, . . . , n; distances d(i , j) ; a bound B
Question: does there exist a roundtrip of length at most B?

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Non-deterministic algorithm for the
TSP

Oracle:

Specify sequence of edges.

Veri�cation:

Verify that sequence forms a tour
that visits all cities.

Compute tour length.

Is tour length ≤ B?

What is the time complexity of this algorithm?

Marie Schmidt Algorithms and Complexity (AC) 29/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Travelling Salesman Problem (TSP) - Decision version

Instance: cities 1, . . . , n; distances d(i , j) ; a bound B
Question: does there exist a roundtrip of length at most B?

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Non-deterministic algorithm for the
TSP

Oracle:

Specify sequence of edges.

Veri�cation:

Verify that sequence forms a tour
that visits all cities.

Compute tour length.

Is tour length ≤ B?

What is the time complexity of this algorithm?

Marie Schmidt Algorithms and Complexity (AC) 29/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

Time complexity of an algorithm
Turing machines

Warnings:

1 The Church-Turing thesis relates to deterministic Turing machines.

2 A non-deterministic Turing machine is a theoretical construct, not an
actual machine!

Marie Schmidt Algorithms and Complexity (AC) 30/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Worst-case complexity of problems

Polynomial growth rate:
• O(poly(n)) for some polynomial poly

Example: O(n); O(n log n); O(n3); O(n100)

Exponential growth rate:
• everything that grows faster than polynomial

Example: 2n; 3n; n!; 22
n
; nn

Intuition:
Polynomial = desirable, good, harmless, fast, short, small
Exponential = undesirable, bad, evil, slow, wasteful, horrible

De�nition: Complexity class P

A decision problem X lies in the complexity class P,

if it can be solved be a deterministic Turing machine in polynomial time.

(or, alternatively:) if it is solved by an algorithm with polynomial time complexity

Marie Schmidt Algorithms and Complexity (AC) 31/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Worst-case complexity of problems

Polynomial growth rate:
• O(poly(n)) for some polynomial poly

Example: O(n); O(n log n); O(n3); O(n100)

Exponential growth rate:
• everything that grows faster than polynomial

Example: 2n; 3n; n!; 22
n
; nn

Intuition:
Polynomial = desirable, good, harmless, fast, short, small
Exponential = undesirable, bad, evil, slow, wasteful, horrible

De�nition: Complexity class P

A decision problem X lies in the complexity class P,

if it can be solved be a deterministic Turing machine in polynomial time.

(or, alternatively:) if it is solved by an algorithm with polynomial time complexity

Marie Schmidt Algorithms and Complexity (AC) 31/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Worst-case complexity of problems

Polynomial growth rate:
• O(poly(n)) for some polynomial poly

Example: O(n); O(n log n); O(n3); O(n100)

Exponential growth rate:
• everything that grows faster than polynomial

Example: 2n; 3n; n!; 22
n
; nn

Intuition:
Polynomial = desirable, good, harmless, fast, short, small
Exponential = undesirable, bad, evil, slow, wasteful, horrible

De�nition: Complexity class P

A decision problem X lies in the complexity class P,

if it can be solved be a deterministic Turing machine in polynomial time.

(or, alternatively:) if it is solved by an algorithm with polynomial time complexity

Marie Schmidt Algorithms and Complexity (AC) 31/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Worst-case complexity of problems

Polynomial growth rate:
• O(poly(n)) for some polynomial poly

Example: O(n); O(n log n); O(n3); O(n100)

Exponential growth rate:
• everything that grows faster than polynomial

Example: 2n; 3n; n!; 22
n
; nn

Intuition:
Polynomial = desirable, good, harmless, fast, short, small
Exponential = undesirable, bad, evil, slow, wasteful, horrible

De�nition: Complexity class P

A decision problem X lies in the complexity class P,

if it can be solved be a deterministic Turing machine in polynomial time.

(or, alternatively:) if it is solved by an algorithm with polynomial time complexity

Marie Schmidt Algorithms and Complexity (AC) 31/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Worst-case complexity of problems

Polynomial growth rate:
• O(poly(n)) for some polynomial poly

Example: O(n); O(n log n); O(n3); O(n100)

Exponential growth rate:
• everything that grows faster than polynomial

Example: 2n; 3n; n!; 22
n
; nn

Intuition:
Polynomial = desirable, good, harmless, fast, short, small
Exponential = undesirable, bad, evil, slow, wasteful, horrible

De�nition: Complexity class P

A decision problem X lies in the complexity class P,

if it can be solved be a deterministic Turing machine in polynomial time.

(or, alternatively:) if it is solved by an algorithm with polynomial time complexity

Marie Schmidt Algorithms and Complexity (AC) 31/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Example: The Minimum Spanning Tree (MST) problem

Example of a minimization problem
• Given (adjacency list of) G = (V ,E) and we ∈ R for every e ∈ E ,
• Find a spanning tree T ⊆ E minimizing

∑
e∈T we

tree: edge-set without cycles (e.g. at most 1 path between 2 vertices)
spanning: all vertices are incident to an edge

Marie Schmidt Algorithms and Complexity (AC) 32/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Example: The Minimum Spanning Tree (MST) problem

Example of a minimization problem
• Given (adjacency list of) G = (V ,E) and we ∈ R for every e ∈ E ,
• Find a spanning tree T ⊆ E minimizing

∑
e∈T we

tree: edge-set without cycles (e.g. at most 1 path between 2 vertices)

spanning: all vertices are incident to an edge

Marie Schmidt Algorithms and Complexity (AC) 32/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Example: The Minimum Spanning Tree (MST) problem

Example of a minimization problem
• Given (adjacency list of) G = (V ,E) and we ∈ R for every e ∈ E ,
• Find a spanning tree T ⊆ E minimizing

∑
e∈T we

tree: edge-set without cycles (e.g. at most 1 path between 2 vertices)
spanning: all vertices are incident to an edge

Marie Schmidt Algorithms and Complexity (AC) 32/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

Computes a Minimum Spanning Tree T using a greedy approach:
• Consider edges in ascending order of cost
• add the next edge to T unless doing so would create a cycle in T .

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Exercise: this always gives a MST (or see Chapter 23 CLRS)

Run-time O(|E |2) (if implemented naïvely); decision version in P

Marie Schmidt Algorithms and Complexity (AC) 33/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

Computes a Minimum Spanning Tree T using a greedy approach:
• Consider edges in ascending order of cost
• add the next edge to T unless doing so would create a cycle in T .

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Exercise: this always gives a MST (or see Chapter 23 CLRS)
Run-time O(|E |2) (if implemented naïvely); decision version in P

Marie Schmidt Algorithms and Complexity (AC) 33/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

Computes a Minimum Spanning Tree T using a greedy approach:
• Consider edges in ascending order of cost
• add the next edge to T unless doing so would create a cycle in T .

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Exercise: this always gives a MST (or see Chapter 23 CLRS)
Run-time O(|E |2) (if implemented naïvely); decision version in P

Marie Schmidt Algorithms and Complexity (AC) 33/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

Computes a Minimum Spanning Tree T using a greedy approach:
• Consider edges in ascending order of cost
• add the next edge to T unless doing so would create a cycle in T .

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Exercise: this always gives a MST (or see Chapter 23 CLRS)
Run-time O(|E |2) (if implemented naïvely); decision version in P

Marie Schmidt Algorithms and Complexity (AC) 33/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

Computes a Minimum Spanning Tree T using a greedy approach:
• Consider edges in ascending order of cost
• add the next edge to T unless doing so would create a cycle in T .

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Exercise: this always gives a MST (or see Chapter 23 CLRS)
Run-time O(|E |2) (if implemented naïvely); decision version in P

Marie Schmidt Algorithms and Complexity (AC) 33/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

Computes a Minimum Spanning Tree T using a greedy approach:
• Consider edges in ascending order of cost
• add the next edge to T unless doing so would create a cycle in T .

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Exercise: this always gives a MST (or see Chapter 23 CLRS)
Run-time O(|E |2) (if implemented naïvely); decision version in P

Marie Schmidt Algorithms and Complexity (AC) 33/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

Computes a Minimum Spanning Tree T using a greedy approach:
• Consider edges in ascending order of cost
• add the next edge to T unless doing so would create a cycle in T .

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Exercise: this always gives a MST (or see Chapter 23 CLRS)
Run-time O(|E |2) (if implemented naïvely); decision version in P

Marie Schmidt Algorithms and Complexity (AC) 33/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

Computes a Minimum Spanning Tree T using a greedy approach:
• Consider edges in ascending order of cost
• add the next edge to T unless doing so would create a cycle in T .

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Exercise: this always gives a MST (or see Chapter 23 CLRS)
Run-time O(|E |2) (if implemented naïvely); decision version in P

Marie Schmidt Algorithms and Complexity (AC) 33/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

Computes a Minimum Spanning Tree T using a greedy approach:
• Consider edges in ascending order of cost
• add the next edge to T unless doing so would create a cycle in T .

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Exercise: this always gives a MST (or see Chapter 23 CLRS)
Run-time O(|E |2) (if implemented naïvely); decision version in P

Marie Schmidt Algorithms and Complexity (AC) 33/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

Computes a Minimum Spanning Tree T using a greedy approach:
• Consider edges in ascending order of cost
• add the next edge to T unless doing so would create a cycle in T .

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Exercise: this always gives a MST (or see Chapter 23 CLRS)
Run-time O(|E |2) (if implemented naïvely); decision version in P

Marie Schmidt Algorithms and Complexity (AC) 33/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

Computes a Minimum Spanning Tree T using a greedy approach:
• Consider edges in ascending order of cost
• add the next edge to T unless doing so would create a cycle in T .

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Exercise: this always gives a MST (or see Chapter 23 CLRS)
Run-time O(|E |2) (if implemented naïvely); decision version in P

Marie Schmidt Algorithms and Complexity (AC) 33/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

Computes a Minimum Spanning Tree T using a greedy approach:
• Consider edges in ascending order of cost
• add the next edge to T unless doing so would create a cycle in T .

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Exercise: this always gives a MST (or see Chapter 23 CLRS)
Run-time O(|E |2) (if implemented naïvely); decision version in P

Marie Schmidt Algorithms and Complexity (AC) 33/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

Computes a Minimum Spanning Tree T using a greedy approach:
• Consider edges in ascending order of cost
• add the next edge to T unless doing so would create a cycle in T .

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Exercise: this always gives a MST (or see Chapter 23 CLRS)

Run-time O(|E |2) (if implemented naïvely); decision version in P

Marie Schmidt Algorithms and Complexity (AC) 33/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

Computes a Minimum Spanning Tree T using a greedy approach:
• Consider edges in ascending order of cost
• add the next edge to T unless doing so would create a cycle in T .

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Exercise: this always gives a MST (or see Chapter 23 CLRS)
Run-time O(|E |2) (if implemented naïvely); decision version in P

Marie Schmidt Algorithms and Complexity (AC) 33/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

De�nition: Complexity class P

A decision problem X lies in the complexity class P,

if it can be solved be a deterministic Turing machine in polynomial time.

(or, alternatively:) if it is solved by an algorithm with polynomial time
complexity.

Example: Minimum spanning tree (decision version) is in P.

De�nition: Complexity class NP

A decision problem X lies in the complexity class NP, if

if it can be solved in polynomial time on a non-deterministic Turing
machine.

(or, alternatively:) if it is solved by a non-deterministic algorithm with
polynomial time complexity.

(or, alternatively:) if the YES-instances of X possess certi�cates of
polynomial length that can be veri�ed in polynomial time.

Example: Traveling Salesman (decision version) is in NP.

Marie Schmidt Algorithms and Complexity (AC) 34/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

De�nition: Complexity class P

A decision problem X lies in the complexity class P,

if it can be solved be a deterministic Turing machine in polynomial time.

(or, alternatively:) if it is solved by an algorithm with polynomial time
complexity.

Example: Minimum spanning tree (decision version) is in P.

De�nition: Complexity class NP

A decision problem X lies in the complexity class NP, if

if it can be solved in polynomial time on a non-deterministic Turing
machine.

(or, alternatively:) if it is solved by a non-deterministic algorithm with
polynomial time complexity.

(or, alternatively:) if the YES-instances of X possess certi�cates of
polynomial length that can be veri�ed in polynomial time.

Example: Traveling Salesman (decision version) is in NP.

Marie Schmidt Algorithms and Complexity (AC) 34/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

De�nition: Complexity class P

A decision problem X lies in the complexity class P,

if it can be solved be a deterministic Turing machine in polynomial time.

(or, alternatively:) if it is solved by an algorithm with polynomial time
complexity.

Example: Minimum spanning tree (decision version) is in P.

De�nition: Complexity class NP

A decision problem X lies in the complexity class NP, if

if it can be solved in polynomial time on a non-deterministic Turing
machine.

(or, alternatively:) if it is solved by a non-deterministic algorithm with
polynomial time complexity.

(or, alternatively:) if the YES-instances of X possess certi�cates of
polynomial length that can be veri�ed in polynomial time.

Example: Traveling Salesman (decision version) is in NP.

Marie Schmidt Algorithms and Complexity (AC) 34/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

De�nition: Complexity class P

A decision problem X lies in the complexity class P,

if it can be solved be a deterministic Turing machine in polynomial time.

(or, alternatively:) if it is solved by an algorithm with polynomial time
complexity.

Example: Minimum spanning tree (decision version) is in P.

De�nition: Complexity class NP

A decision problem X lies in the complexity class NP, if

if it can be solved in polynomial time on a non-deterministic Turing
machine.

(or, alternatively:) if it is solved by a non-deterministic algorithm with
polynomial time complexity.

(or, alternatively:) if the YES-instances of X possess certi�cates of
polynomial length that can be veri�ed in polynomial time.

Example: Traveling Salesman (decision version) is in NP.

Marie Schmidt Algorithms and Complexity (AC) 34/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

De�nition: Complexity class P

A decision problem X lies in the complexity class P,

if it can be solved be a deterministic Turing machine in polynomial time.

(or, alternatively:) if it is solved by an algorithm with polynomial time
complexity.

Example: Minimum spanning tree (decision version) is in P.

De�nition: Complexity class NP

A decision problem X lies in the complexity class NP, if

if it can be solved in polynomial time on a non-deterministic Turing
machine.

(or, alternatively:) if it is solved by a non-deterministic algorithm with
polynomial time complexity.

(or, alternatively:) if the YES-instances of X possess certi�cates of
polynomial length that can be veri�ed in polynomial time.

Example: Traveling Salesman (decision version) is in NP.

Marie Schmidt Algorithms and Complexity (AC) 34/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Travelling Salesman Problem (TSP) - Decision version

Instance: cities 1, . . . , n; distances d(i , j) ; a bound B
Question: does there exist a roundtrip of length at most B?

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Non-deterministic algorithm for the
TSP

Oracle:

Specify sequence of edges.

Veri�cation:

Verify that sequence forms a tour
that visits all cities.

Compute tour length.

Is tour length ≤ B?

Marie Schmidt Algorithms and Complexity (AC) 35/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Travelling Salesman Problem (TSP) - Decision version

Instance: cities 1, . . . , n; distances d(i , j) ; a bound B
Question: does there exist a roundtrip of length at most B?

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Non-deterministic algorithm for the
TSP

Oracle:

Specify sequence of edges.

Veri�cation:

Verify that sequence forms a tour
that visits all cities.

Compute tour length.

Is tour length ≤ B?

Marie Schmidt Algorithms and Complexity (AC) 35/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-certi�cate Satis�ability

Let X be a set of logical variables.

Truth assignment: t : X → {true, false}
Literals: We call x and ¬x literals corresponding to variable x ∈ X . x it 'true' ⇔
¬x is false

Clause over X : disjunction of literals (l1 ∨ l2 ∨ . . . lj).

Satis�ability (SAT)

Instance:
a set of logical variables X := {x1, . . . , xn} and a set of clauses C over X

Question: does there exist a truth assignment for X that simulsatis�es all clauses in C?

3-SAT: all clauses consist of 3 literals.

Examples

C = {(x ∨ y ∨ z), (¬x ∨ ¬y ∨ ¬z)}
C = {(x ∨ y), (¬x ∨ y), (x ∨ ¬y), (¬x ∨ ¬y)}

Question

What's a good NP-certi�cate for SAT?

Marie Schmidt Algorithms and Complexity (AC) 36/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-certi�cate Satis�ability

Let X be a set of logical variables.

Truth assignment: t : X → {true, false}
Literals: We call x and ¬x literals corresponding to variable x ∈ X . x it 'true' ⇔
¬x is false

Clause over X : disjunction of literals (l1 ∨ l2 ∨ . . . lj).

Satis�ability (SAT)

Instance:
a set of logical variables X := {x1, . . . , xn} and a set of clauses C over X

Question: does there exist a truth assignment for X that simulsatis�es all clauses in C?

3-SAT: all clauses consist of 3 literals.

Examples

C = {(x ∨ y ∨ z), (¬x ∨ ¬y ∨ ¬z)}
C = {(x ∨ y), (¬x ∨ y), (x ∨ ¬y), (¬x ∨ ¬y)}

Question

What's a good NP-certi�cate for SAT?

Marie Schmidt Algorithms and Complexity (AC) 36/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-certi�cate Satis�ability

Let X be a set of logical variables.

Truth assignment: t : X → {true, false}
Literals: We call x and ¬x literals corresponding to variable x ∈ X . x it 'true' ⇔
¬x is false

Clause over X : disjunction of literals (l1 ∨ l2 ∨ . . . lj).

Satis�ability (SAT)

Instance:
a set of logical variables X := {x1, . . . , xn} and a set of clauses C over X

Question: does there exist a truth assignment for X that simulsatis�es all clauses in C?

3-SAT: all clauses consist of 3 literals.

Examples

C = {(x ∨ y ∨ z), (¬x ∨ ¬y ∨ ¬z)}
C = {(x ∨ y), (¬x ∨ y), (x ∨ ¬y), (¬x ∨ ¬y)}

Question

What's a good NP-certi�cate for SAT?

Marie Schmidt Algorithms and Complexity (AC) 36/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-certi�cate Satis�ability

Let X be a set of logical variables.

Truth assignment: t : X → {true, false}
Literals: We call x and ¬x literals corresponding to variable x ∈ X . x it 'true' ⇔
¬x is false

Clause over X : disjunction of literals (l1 ∨ l2 ∨ . . . lj).

Satis�ability (SAT)

Instance:
a set of logical variables X := {x1, . . . , xn} and a set of clauses C over X

Question: does there exist a truth assignment for X that simulsatis�es all clauses in C?

3-SAT: all clauses consist of 3 literals.

Examples

C = {(x ∨ y ∨ z), (¬x ∨ ¬y ∨ ¬z)}
C = {(x ∨ y), (¬x ∨ y), (x ∨ ¬y), (¬x ∨ ¬y)}

Question

What's a good NP-certi�cate for SAT?

Marie Schmidt Algorithms and Complexity (AC) 36/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-certi�cate Satis�ability

Let X be a set of logical variables.

Truth assignment: t : X → {true, false}
Literals: We call x and ¬x literals corresponding to variable x ∈ X . x it 'true' ⇔
¬x is false

Clause over X : disjunction of literals (l1 ∨ l2 ∨ . . . lj).

Satis�ability (SAT)

Instance:
a set of logical variables X := {x1, . . . , xn} and a set of clauses C over X

Question: does there exist a truth assignment for X that simulsatis�es all clauses in C?

3-SAT: all clauses consist of 3 literals.

Examples

C = {(x ∨ y ∨ z), (¬x ∨ ¬y ∨ ¬z)}
C = {(x ∨ y), (¬x ∨ y), (x ∨ ¬y), (¬x ∨ ¬y)}

Question

What's a good NP-certi�cate for SAT?

Marie Schmidt Algorithms and Complexity (AC) 36/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-certi�cate Integer programming

Integer linear programming (ILP)

Instance: an integer matrix A; an integer vector b

Question: does there exist an integer vector x with Ax ≤ b?

Question

What's a good NP-certi�cate for ILP?

Marie Schmidt Algorithms and Complexity (AC) 37/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-certi�cate Integer programming

Integer linear programming (ILP)

Instance: an integer matrix A; an integer vector b

Question: does there exist an integer vector x with Ax ≤ b?

Question

What's a good NP-certi�cate for ILP?

Marie Schmidt Algorithms and Complexity (AC) 37/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-certi�cate Exact cover

Exact cover (Ex-Cov)

Instance: a ground set X ; subsets S1, . . . , Sm of X

Question: do there exist some subsets Si that form a partition of X?

Question

What's a good NP-certi�cate for Ex-Cov?

Marie Schmidt Algorithms and Complexity (AC) 38/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-certi�cate Exact cover

Exact cover (Ex-Cov)

Instance: a ground set X ; subsets S1, . . . , Sm of X

Question: do there exist some subsets Si that form a partition of X?

Question

What's a good NP-certi�cate for Ex-Cov?

Marie Schmidt Algorithms and Complexity (AC) 38/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-certi�cate Exact cover

Exact cover (Ex-Cov)

Instance: a ground set X ; subsets S1, . . . , Sm of X

Question: do there exist some subsets Si that form a partition of X?

Question

What's a good NP-certi�cate for Ex-Cov?

Marie Schmidt Algorithms and Complexity (AC) 38/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-certi�cate Subset Sum

Subset Sum (SS)

Instance: positive integers a1, . . . , an; a bound b

Question: does there exist an index set I ⊆ {1, . . . , n} with
∑

i∈I ai = b?

Example: (a1, . . . , a12) = (1, . . . , 12), b = 50. Yes or no instance?
Yes: 1 + 2 + 3 + 4 + 6 + 7 + 8 + 9 + 10 = 50.

Question

What's a good NP-certi�cate for SS?

Marie Schmidt Algorithms and Complexity (AC) 39/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-certi�cate Subset Sum

Subset Sum (SS)

Instance: positive integers a1, . . . , an; a bound b

Question: does there exist an index set I ⊆ {1, . . . , n} with
∑

i∈I ai = b?

Example: (a1, . . . , a12) = (1, . . . , 12), b = 50. Yes or no instance?

Yes: 1 + 2 + 3 + 4 + 6 + 7 + 8 + 9 + 10 = 50.

Question

What's a good NP-certi�cate for SS?

Marie Schmidt Algorithms and Complexity (AC) 39/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-certi�cate Subset Sum

Subset Sum (SS)

Instance: positive integers a1, . . . , an; a bound b

Question: does there exist an index set I ⊆ {1, . . . , n} with
∑

i∈I ai = b?

Example: (a1, . . . , a12) = (1, . . . , 12), b = 50. Yes or no instance?
Yes: 1 + 2 + 3 + 4 + 6 + 7 + 8 + 9 + 10 = 50.

Question

What's a good NP-certi�cate for SS?

Marie Schmidt Algorithms and Complexity (AC) 39/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-certi�cate Subset Sum

Subset Sum (SS)

Instance: positive integers a1, . . . , an; a bound b

Question: does there exist an index set I ⊆ {1, . . . , n} with
∑

i∈I ai = b?

Example: (a1, . . . , a12) = (1, . . . , 12), b = 50. Yes or no instance?
Yes: 1 + 2 + 3 + 4 + 6 + 7 + 8 + 9 + 10 = 50.

Question

What's a good NP-certi�cate for SS?

Marie Schmidt Algorithms and Complexity (AC) 39/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

P versus NP

• P = class of all problems that are easy to solve
P stands for Polynomial Time

• NP = huge class of problems that ful�ll some soft condition
NP contains lots of interesting and important decision problems
NP stands for Non-deterministic Polynomial Time

Big open question

P=NP ????

Answer YES:
• would trigger a revolution in computing
• if a short solution exists, it can be found quickly

Answer NO:
• that's what most people expect
• even very short solutions may be very hard to �nd

Marie Schmidt Algorithms and Complexity (AC) 40/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

P versus NP

• P = class of all problems that are easy to solve
P stands for Polynomial Time

• NP = huge class of problems that ful�ll some soft condition
NP contains lots of interesting and important decision problems
NP stands for Non-deterministic Polynomial Time

Big open question

P=NP ????

Answer YES:
• would trigger a revolution in computing
• if a short solution exists, it can be found quickly

Answer NO:
• that's what most people expect
• even very short solutions may be very hard to �nd

Marie Schmidt Algorithms and Complexity (AC) 40/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

P versus NP

• P = class of all problems that are easy to solve
P stands for Polynomial Time

• NP = huge class of problems that ful�ll some soft condition
NP contains lots of interesting and important decision problems
NP stands for Non-deterministic Polynomial Time

Big open question

P=NP ????

Answer YES:
• would trigger a revolution in computing
• if a short solution exists, it can be found quickly

Answer NO:
• that's what most people expect
• even very short solutions may be very hard to �nd

Marie Schmidt Algorithms and Complexity (AC) 40/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

P versus NP

• P = class of all problems that are easy to solve
P stands for Polynomial Time

• NP = huge class of problems that ful�ll some soft condition
NP contains lots of interesting and important decision problems
NP stands for Non-deterministic Polynomial Time

Big open question

P=NP ????

Answer YES:
• would trigger a revolution in computing
• if a short solution exists, it can be found quickly

Answer NO:
• that's what most people expect
• even very short solutions may be very hard to �nd

Marie Schmidt Algorithms and Complexity (AC) 40/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

To prove that a problem

can be solved in O(n log n), O(n3), etc

is in P

is in NP

is straightforward (although not always easy):

→ Find an algorithm that runs in time O(n log n) / O(n3) / . . . / polynomial
time / non-deterministic polynomial time.

How do we prove that a problem cannot be solved in a certain time?

Marie Schmidt Algorithms and Complexity (AC) 41/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

To prove that a problem

can be solved in O(n log n), O(n3), etc

is in P

is in NP

is straightforward (although not always easy):

→ Find an algorithm that runs in time O(n log n) / O(n3) / . . . / polynomial
time / non-deterministic polynomial time.

How do we prove that a problem cannot be solved in a certain time?

Marie Schmidt Algorithms and Complexity (AC) 41/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

To prove that a problem

can be solved in O(n log n), O(n3), etc

is in P

is in NP

is straightforward (although not always easy):

→ Find an algorithm that runs in time O(n log n) / O(n3) / . . . / polynomial
time / non-deterministic polynomial time.

How do we prove that a problem cannot be solved in a certain time?

Marie Schmidt Algorithms and Complexity (AC) 41/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Marie Schmidt Algorithms and Complexity (AC) 42/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Marie Schmidt Algorithms and Complexity (AC) 42/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Proving lower bounds (short note)

Example: Find maximum element from unsorted list

Input: A list of numbers m1,m2, . . .mn, a number M.
Question: Is there an element ≥ M in the list.

How fast can you solve this problem?

can be done in time O(n)

requires time Ω(n)

thus: Θ(n)

Note: Most problems need time Ω(n) to be solved.
Can you think of one that does not?

Marie Schmidt Algorithms and Complexity (AC) 43/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Proving lower bounds (short note)

Example: Find maximum element from unsorted list

Input: A list of numbers m1,m2, . . .mn, a number M.
Question: Is there an element ≥ M in the list.

How fast can you solve this problem?

can be done in time O(n)

requires time Ω(n)

thus: Θ(n)

Note: Most problems need time Ω(n) to be solved.
Can you think of one that does not?

Marie Schmidt Algorithms and Complexity (AC) 43/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Proving lower bounds (short note)

Example: Find maximum element from unsorted list

Input: A list of numbers m1,m2, . . .mn, a number M.
Question: Is there an element ≥ M in the list.

How fast can you solve this problem?

can be done in time O(n)

requires time Ω(n)

thus: Θ(n)

Note: Most problems need time Ω(n) to be solved.
Can you think of one that does not?

Marie Schmidt Algorithms and Complexity (AC) 43/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Proving lower bounds (short note)

Example: Find maximum element from unsorted list

Input: A list of numbers m1,m2, . . .mn, a number M.
Question: Is there an element ≥ M in the list.

How fast can you solve this problem?

can be done in time O(n)

requires time Ω(n)

thus: Θ(n)

Note: Most problems need time Ω(n) to be solved.
Can you think of one that does not?

Marie Schmidt Algorithms and Complexity (AC) 43/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Sorting

Input: A sequence of n numbers (a1, a2, . . . , an)
Task: Create a permutation (a′1, a

′
2, . . . , a

′
n) of the input sequence such that

a′i ≤ a′2 ≤ %ldots ≤ a′n

Insertion sort needs O(n2) in the worst case.

Other sorting algorithms (like Merge Sort) need O(n log n). (see CLRS)

Can we sort in O(n)?

Information theoretic lower bound on sorting (sketch)

There are n! di�erent permutations of n numbers.

An algorithm that sorts all of them correctly, needs to follow a di�erent sequence of
steps for each of them.
Thus it needs at least log2(n!) steps.

log2(n!) = log2(n · (n − 1) · (n − 2) · . . . · 2 · 1) = log2(n) + log2(n − 1) + . . . + log(2) + log(1)

=
n∑

i=1

log2(i) =

n
2−1∑
i=1

log2(i)
n∑

i= n
2

log2(i) ≥ 0 +
n∑

i= n
2

log2(
n

2
) =

n

2
log2(

n

2
) = Ω(n log(n))

For a more extensive proof, see here
https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf

Marie Schmidt Algorithms and Complexity (AC) 44/74

https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Sorting

Input: A sequence of n numbers (a1, a2, . . . , an)
Task: Create a permutation (a′1, a

′
2, . . . , a

′
n) of the input sequence such that

a′i ≤ a′2 ≤ %ldots ≤ a′n

Insertion sort needs O(n2) in the worst case.

Other sorting algorithms (like Merge Sort) need O(n log n). (see CLRS)

Can we sort in O(n)?

Information theoretic lower bound on sorting (sketch)

There are n! di�erent permutations of n numbers.

An algorithm that sorts all of them correctly, needs to follow a di�erent sequence of
steps for each of them.
Thus it needs at least log2(n!) steps.

log2(n!) = log2(n · (n − 1) · (n − 2) · . . . · 2 · 1) = log2(n) + log2(n − 1) + . . . + log(2) + log(1)

=
n∑

i=1

log2(i) =

n
2−1∑
i=1

log2(i)
n∑

i= n
2

log2(i) ≥ 0 +
n∑

i= n
2

log2(
n

2
) =

n

2
log2(

n

2
) = Ω(n log(n))

For a more extensive proof, see here
https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf

Marie Schmidt Algorithms and Complexity (AC) 44/74

https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Sorting

Input: A sequence of n numbers (a1, a2, . . . , an)
Task: Create a permutation (a′1, a

′
2, . . . , a

′
n) of the input sequence such that

a′i ≤ a′2 ≤ %ldots ≤ a′n

Insertion sort needs O(n2) in the worst case.

Other sorting algorithms (like Merge Sort) need O(n log n). (see CLRS)

Can we sort in O(n)?

Information theoretic lower bound on sorting (sketch)

There are n! di�erent permutations of n numbers.

An algorithm that sorts all of them correctly, needs to follow a di�erent sequence of
steps for each of them.
Thus it needs at least log2(n!) steps.

log2(n!) = log2(n · (n − 1) · (n − 2) · . . . · 2 · 1) = log2(n) + log2(n − 1) + . . . + log(2) + log(1)

=
n∑

i=1

log2(i) =

n
2−1∑
i=1

log2(i)
n∑

i= n
2

log2(i) ≥ 0 +
n∑

i= n
2

log2(
n

2
) =

n

2
log2(

n

2
) = Ω(n log(n))

For a more extensive proof, see here
https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf

Marie Schmidt Algorithms and Complexity (AC) 44/74

https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Sorting

Input: A sequence of n numbers (a1, a2, . . . , an)
Task: Create a permutation (a′1, a

′
2, . . . , a

′
n) of the input sequence such that

a′i ≤ a′2 ≤ %ldots ≤ a′n

Insertion sort needs O(n2) in the worst case.

Other sorting algorithms (like Merge Sort) need O(n log n). (see CLRS)

Can we sort in O(n)?

Information theoretic lower bound on sorting (sketch)

There are n! di�erent permutations of n numbers.

An algorithm that sorts all of them correctly, needs to follow a di�erent sequence of
steps for each of them.
Thus it needs at least log2(n!) steps.

log2(n!) = log2(n · (n − 1) · (n − 2) · . . . · 2 · 1) = log2(n) + log2(n − 1) + . . . + log(2) + log(1)

=
n∑

i=1

log2(i) =

n
2−1∑
i=1

log2(i)
n∑

i= n
2

log2(i) ≥ 0 +
n∑

i= n
2

log2(
n

2
) =

n

2
log2(

n

2
) = Ω(n log(n))

For a more extensive proof, see here
https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf

Marie Schmidt Algorithms and Complexity (AC) 44/74

https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Sorting

Input: A sequence of n numbers (a1, a2, . . . , an)
Task: Create a permutation (a′1, a

′
2, . . . , a

′
n) of the input sequence such that

a′i ≤ a′2 ≤ %ldots ≤ a′n

Insertion sort needs O(n2) in the worst case.

Other sorting algorithms (like Merge Sort) need O(n log n). (see CLRS)

Can we sort in O(n)?

Information theoretic lower bound on sorting (sketch)

There are n! di�erent permutations of n numbers.
An algorithm that sorts all of them correctly, needs to follow a di�erent sequence of
steps for each of them.

Thus it needs at least log2(n!) steps.

log2(n!) = log2(n · (n − 1) · (n − 2) · . . . · 2 · 1) = log2(n) + log2(n − 1) + . . . + log(2) + log(1)

=
n∑

i=1

log2(i) =

n
2−1∑
i=1

log2(i)
n∑

i= n
2

log2(i) ≥ 0 +
n∑

i= n
2

log2(
n

2
) =

n

2
log2(

n

2
) = Ω(n log(n))

For a more extensive proof, see here
https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf

Marie Schmidt Algorithms and Complexity (AC) 44/74

https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Sorting

Input: A sequence of n numbers (a1, a2, . . . , an)
Task: Create a permutation (a′1, a

′
2, . . . , a

′
n) of the input sequence such that

a′i ≤ a′2 ≤ %ldots ≤ a′n

Insertion sort needs O(n2) in the worst case.

Other sorting algorithms (like Merge Sort) need O(n log n). (see CLRS)

Can we sort in O(n)?

Information theoretic lower bound on sorting (sketch)

There are n! di�erent permutations of n numbers.
An algorithm that sorts all of them correctly, needs to follow a di�erent sequence of
steps for each of them.
Thus it needs at least log2(n!) steps.

log2(n!) = log2(n · (n − 1) · (n − 2) · . . . · 2 · 1) = log2(n) + log2(n − 1) + . . . + log(2) + log(1)

=
n∑

i=1

log2(i) =

n
2−1∑
i=1

log2(i)
n∑

i= n
2

log2(i) ≥ 0 +
n∑

i= n
2

log2(
n

2
) =

n

2
log2(

n

2
) = Ω(n log(n))

For a more extensive proof, see here
https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf

Marie Schmidt Algorithms and Complexity (AC) 44/74

https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Sorting

Input: A sequence of n numbers (a1, a2, . . . , an)
Task: Create a permutation (a′1, a

′
2, . . . , a

′
n) of the input sequence such that

a′i ≤ a′2 ≤ %ldots ≤ a′n

Insertion sort needs O(n2) in the worst case.

Other sorting algorithms (like Merge Sort) need O(n log n). (see CLRS)

Can we sort in O(n)?

Information theoretic lower bound on sorting (sketch)

There are n! di�erent permutations of n numbers.
An algorithm that sorts all of them correctly, needs to follow a di�erent sequence of
steps for each of them.
Thus it needs at least log2(n!) steps.

log2(n!) = log2(n · (n − 1) · (n − 2) · . . . · 2 · 1) = log2(n) + log2(n − 1) + . . . + log(2) + log(1)

=
n∑

i=1

log2(i) =

n
2−1∑
i=1

log2(i)
n∑

i= n
2

log2(i) ≥ 0 +
n∑

i= n
2

log2(
n

2
) =

n

2
log2(

n

2
) = Ω(n log(n))

For a more extensive proof, see here
https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf

Marie Schmidt Algorithms and Complexity (AC) 44/74

https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Sorting

Input: A sequence of n numbers (a1, a2, . . . , an)
Task: Create a permutation (a′1, a

′
2, . . . , a

′
n) of the input sequence such that

a′i ≤ a′2 ≤ %ldots ≤ a′n

Insertion sort needs O(n2) in the worst case.

Other sorting algorithms (like Merge Sort) need O(n log n). (see CLRS)

Can we sort in O(n)?

Information theoretic lower bound on sorting (sketch)

There are n! di�erent permutations of n numbers.
An algorithm that sorts all of them correctly, needs to follow a di�erent sequence of
steps for each of them.
Thus it needs at least log2(n!) steps.

log2(n!) = log2(n · (n − 1) · (n − 2) · . . . · 2 · 1) = log2(n) + log2(n − 1) + . . . + log(2) + log(1)

=
n∑

i=1

log2(i) =

n
2−1∑
i=1

log2(i)
n∑

i= n
2

log2(i) ≥ 0 +
n∑

i= n
2

log2(
n

2
) =

n

2
log2(

n

2
) = Ω(n log(n))

For a more extensive proof, see here
https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf

Marie Schmidt Algorithms and Complexity (AC) 44/74

https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

3-Satis�ability (3-SAT)

Instance:
a set of logical variables X := {x1, . . . , xn} and a set of clauses C of three

literals over X

Question: does there exist a truth assignment for X that simulsatis�es all
clauses in C?

From stackexchange

(https://cstheory.stackexchange.com/questions/1060/best-upper-bounds-on-sat?rq=1 and

https://cstheory.stackexchange.com/questions/93/what-are-the-best-current-lower-bounds-on-3sat)

(retrieved 13.9.19)

Best found non-randomized algorithm (for 3-SAT) seems to be 1.32793n

Best found randomized algorithm similar (O(1.321n)?)

No one so far has been able to prove Ω(n2)

Marie Schmidt Algorithms and Complexity (AC) 45/74

https://cstheory.stackexchange.com/questions/1060/best-upper-bounds-on-sat?rq=1
https://cstheory.stackexchange.com/questions/93/what-are-the-best-current-lower-bounds-on-3sat

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

3-Satis�ability (3-SAT)

Instance:
a set of logical variables X := {x1, . . . , xn} and a set of clauses C of three

literals over X

Question: does there exist a truth assignment for X that simulsatis�es all
clauses in C?

From stackexchange

(https://cstheory.stackexchange.com/questions/1060/best-upper-bounds-on-sat?rq=1 and

https://cstheory.stackexchange.com/questions/93/what-are-the-best-current-lower-bounds-on-3sat)

(retrieved 13.9.19)

Best found non-randomized algorithm (for 3-SAT) seems to be 1.32793n

Best found randomized algorithm similar (O(1.321n)?)

No one so far has been able to prove Ω(n2)

Marie Schmidt Algorithms and Complexity (AC) 45/74

https://cstheory.stackexchange.com/questions/1060/best-upper-bounds-on-sat?rq=1
https://cstheory.stackexchange.com/questions/93/what-are-the-best-current-lower-bounds-on-3sat

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Lower bounds on problem complexity tend to be rare / weak / di�cult to prove.

→ We look at a di�erent approach.

Marie Schmidt Algorithms and Complexity (AC) 46/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Marie Schmidt Algorithms and Complexity (AC) 47/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Reductions

De�nition

For two decision problems X and Y , we say that X (polynomially) reduces to
Y (and we write X ≤p Y)
if there exists a polynomial time transformation f that translates instance of X
into instances of Y with I ∈YES(X) ⇐⇒ f (I) ∈YES(Y).

Often, we omit the word 'polynomially' and just say that X reduces to Y .

Intuition:
• X can be modelled as a special case of Y
• the `computational hardness' of X is upper bounded by Y 's
• If Y is easy, then also X is easy
• If X is di�cult, then also Y is di�cult

Marie Schmidt Algorithms and Complexity (AC) 48/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Reductions

De�nition

For two decision problems X and Y , we say that X (polynomially) reduces to
Y (and we write X ≤p Y)
if there exists a polynomial time transformation f that translates instance of X
into instances of Y with I ∈YES(X) ⇐⇒ f (I) ∈YES(Y).

Often, we omit the word 'polynomially' and just say that X reduces to Y .

Intuition:
• X can be modelled as a special case of Y
• the `computational hardness' of X is upper bounded by Y 's
• If Y is easy, then also X is easy
• If X is di�cult, then also Y is di�cult

Marie Schmidt Algorithms and Complexity (AC) 48/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Hamiltonian cycle / TSP

Hamiltonian cycle (HC)

Instance: an undirected graph G = (V ,E)
Question: does G contain a Hamiltonian cycle?

(a simple cycle that visits every vertex exactly once)

Travelling Salesman Problem (TSP)

Instance: cities 1, . . . , n; distances d(i , j) ; a bound B
Question: does there exist a roundtrip of length at most B?

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Theorem

HC ≤p TSP.

Proof: .

Marie Schmidt Algorithms and Complexity (AC) 49/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Hamiltonian cycle / TSP

Hamiltonian cycle (HC)

Instance: an undirected graph G = (V ,E)
Question: does G contain a Hamiltonian cycle?

(a simple cycle that visits every vertex exactly once)

Travelling Salesman Problem (TSP)

Instance: cities 1, . . . , n; distances d(i , j) ; a bound B
Question: does there exist a roundtrip of length at most B?

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

Theorem

HC ≤p TSP.

Proof: .

Marie Schmidt Algorithms and Complexity (AC) 49/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Clique

Instance: a graph G = (V ,E); an integer k
Question: does G contain a clique of size (at least) k?

Theorem

SAT ≤p CLIQUE.

Proof:

Given a set of clauses {c1, c2, . . . , cm}, over x1, . . . , xn
de�ne instance instance of clique (our function f):

V = {(l , i)|l is a literal in ci}
E = {{(l , i), (l ′, i ′)}|l 6= ¬l ′ ∧ i 6= i ′}
k = m

Marie Schmidt Algorithms and Complexity (AC) 50/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Clique

Instance: a graph G = (V ,E); an integer k
Question: does G contain a clique of size (at least) k?

Theorem

SAT ≤p CLIQUE.

Proof: Given a set of clauses {c1, c2, . . . , cm}, over x1, . . . , xn

de�ne instance instance of clique (our function f):

V = {(l , i)|l is a literal in ci}
E = {{(l , i), (l ′, i ′)}|l 6= ¬l ′ ∧ i 6= i ′}
k = m

Marie Schmidt Algorithms and Complexity (AC) 50/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Clique

Instance: a graph G = (V ,E); an integer k
Question: does G contain a clique of size (at least) k?

Theorem

SAT ≤p CLIQUE.

Proof: Given a set of clauses {c1, c2, . . . , cm}, over x1, . . . , xn
de�ne instance instance of clique (our function f):

V = {(l , i)|l is a literal in ci}
E = {{(l , i), (l ′, i ′)}|l 6= ¬l ′ ∧ i 6= i ′}
k = m

Marie Schmidt Algorithms and Complexity (AC) 50/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Clique

Instance: a graph G = (V ,E); an integer k
Question: does G contain a clique of size (at least) k?

Theorem

SAT ≤p CLIQUE.

Proof: Given a set of clauses {c1, c2, . . . , cm}, over x1, . . . , xn
de�ne instance instance of clique (our function f):

V = {(l , i)|l is a literal in ci}
E = {{(l , i), (l ′, i ′)}|l 6= ¬l ′ ∧ i 6= i ′}
k = m

Marie Schmidt Algorithms and Complexity (AC) 50/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Lemma

Reducibility is a transitive relation:
X ≤p Y and Y ≤p Z implies X ≤p Z

Proof: by putting the two tranformations into series

Marie Schmidt Algorithms and Complexity (AC) 51/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Lemma

Reducibility is a transitive relation:
X ≤p Y and Y ≤p Z implies X ≤p Z

Proof: by putting the two tranformations into series

Marie Schmidt Algorithms and Complexity (AC) 51/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness

De�nition

A decision problem X is NP-hard,
if all problems Y ∈ NP can be reduced to it
(that is, if Y ≤p X holds for all Y ∈ NP)

De�nition

A decision problem X is NP-complete,
if X ∈ NP and X is NP-hard.

Intuition:
• NP-complete problems are the hardest problems in NP
• Recall: NP is huge and contains tons of important problems
• Some people consider NP-complete problems to be intractable.

Marie Schmidt Algorithms and Complexity (AC) 52/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness

De�nition

A decision problem X is NP-hard,
if all problems Y ∈ NP can be reduced to it
(that is, if Y ≤p X holds for all Y ∈ NP)

De�nition

A decision problem X is NP-complete,
if X ∈ NP and X is NP-hard.

Intuition:
• NP-complete problems are the hardest problems in NP
• Recall: NP is huge and contains tons of important problems
• Some people consider NP-complete problems to be intractable.

Marie Schmidt Algorithms and Complexity (AC) 52/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness

De�nition

A decision problem X is NP-hard,
if all problems Y ∈ NP can be reduced to it
(that is, if Y ≤p X holds for all Y ∈ NP)

De�nition

A decision problem X is NP-complete,
if X ∈ NP and X is NP-hard.

Intuition:
• NP-complete problems are the hardest problems in NP
• Recall: NP is huge and contains tons of important problems
• Some people consider NP-complete problems to be intractable.

Marie Schmidt Algorithms and Complexity (AC) 52/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness

Theorem

If one NP-complete problem X has a polynomial time algorithm
then all NP-complete problems have polynomial time algorithms
(and hence P=NP)

Why? Can reduce to X and then solve produced instance of X .

Marie Schmidt Algorithms and Complexity (AC) 53/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness

Theorem

If one NP-complete problem X has a polynomial time algorithm
then all NP-complete problems have polynomial time algorithms
(and hence P=NP)

Why?

Can reduce to X and then solve produced instance of X .

Marie Schmidt Algorithms and Complexity (AC) 53/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness

Theorem

If one NP-complete problem X has a polynomial time algorithm
then all NP-complete problems have polynomial time algorithms
(and hence P=NP)

Why? Can reduce to X and then solve produced instance of X .

Marie Schmidt Algorithms and Complexity (AC) 53/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Marie Schmidt Algorithms and Complexity (AC) 54/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Cook-Levin theorem (1971)

SAT is NP-complete.

• Stephen Cook (born 1939):
American-Canadian computer scientist and mathematician

• Leonid Levin (born 1948):
Russian computer scientist, discovered the result somewhat earlier

Marie Schmidt Algorithms and Complexity (AC) 55/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Cook-Levin theorem (1971)

SAT is NP-complete.

• Stephen Cook (born 1939):
American-Canadian computer scientist and mathematician

• Leonid Levin (born 1948):
Russian computer scientist, discovered the result somewhat earlier

Marie Schmidt Algorithms and Complexity (AC) 55/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Proof of Cook-Levin

Variable Range Intended meaning
Q[i , k] 0 ≤ i ≤ p(n), 0 ≤

k ≤ |Q|
at time i , M is in state k

H[i , j] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1

at time i , the read-write head of M scans
tape square j

S[i , j , k] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1, 0 ≤ k ≤ |Γ|

at time i , the entry on tape square j is sk

clause group restriction imposed
G1 at each time i , M is in exactly one state
G2 at each time i , the read-write head is scanning exactly one tape

square
G3 at each time i , each tape square contains exactly one symbol

from Γ
G4 at time 0, the computation is in the initial con�guration of its

checking stage for input x
G5 By time p(n), M has entered state qy and hence has accepted x
G6 For each time i the con�guration of M at time i + 1 follows by

a single application of the transition function δ from the con�g-
uration at time i

Marie Schmidt Algorithms and Complexity (AC) 56/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Proof of Cook-Levin

Variable Range Intended meaning
Q[i , k] 0 ≤ i ≤ p(n), 0 ≤

k ≤ |Q|
at time i , M is in state k

H[i , j] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1

at time i , the read-write head of M scans
tape square j

S[i , j , k] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1, 0 ≤ k ≤ |Γ|

at time i , the entry on tape square j is sk

clause group restriction imposed
G1 at each time i , M is in exactly one state
G2 at each time i , the read-write head is scanning exactly one tape

square
G3 at each time i , each tape square contains exactly one symbol

from Γ
G4 at time 0, the computation is in the initial con�guration of its

checking stage for input x
G5 By time p(n), M has entered state qy and hence has accepted x
G6 For each time i the con�guration of M at time i + 1 follows by

a single application of the transition function δ from the con�g-
uration at time i

Marie Schmidt Algorithms and Complexity (AC) 56/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Proof of Cook-Levin

G1: at each time i , M is in exactly one state

Q[i , 0] ∨ Q[i , 1] ∨ . . . ∨ Q[i , r] for all 0 ≤ i ≤ p(n)
¬Q[i , j] ∨ ¬Q[i , j ′] for all 0 ≤ i ≤ p(n), 0 ≤ j ≤ j ′ ≤ r

Variable Range Intended meaning
Q[i , k] 0 ≤ i ≤ p(n), 0 ≤

k ≤ |Q|
at time i , M is in state k

H[i , j] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1

at time i , the read-write head of M scans
tape square j

S[i , j , k] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1, 0 ≤ k ≤ |Γ|

at time i , the entry on tape square j is sk

Marie Schmidt Algorithms and Complexity (AC) 57/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Proof of Cook-Levin

G1: at each time i , M is in exactly one state

Q[i , 0] ∨ Q[i , 1] ∨ . . . ∨ Q[i , r] for all 0 ≤ i ≤ p(n)
¬Q[i , j] ∨ ¬Q[i , j ′] for all 0 ≤ i ≤ p(n), 0 ≤ j ≤ j ′ ≤ r

Variable Range Intended meaning
Q[i , k] 0 ≤ i ≤ p(n), 0 ≤

k ≤ |Q|
at time i , M is in state k

H[i , j] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1

at time i , the read-write head of M scans
tape square j

S[i , j , k] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1, 0 ≤ k ≤ |Γ|

at time i , the entry on tape square j is sk

Marie Schmidt Algorithms and Complexity (AC) 57/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Proof of Cook-Levin

G2: at each time i , the read-write head is scanning exactly one tape square

H[i ,−p(n)] ∨ H[i ,−p(n) + 1] ∨ . . . ∨ H[i , p(n) + 1] for all 0 ≤ i ≤ p(n)
¬H[i , j] ∨ ¬H[i , j ′] for all 0 ≤ i ≤ p(n),−p(n) ≤ j ≤ j ′ ≤ p(n) + 1

Variable Range Intended meaning
Q[i , k] 0 ≤ i ≤ p(n), 0 ≤

k ≤ |Q|
at time i , M is in state k

H[i , j] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1

at time i , the read-write head of M scans
tape square j

S[i , j , k] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1, 0 ≤ k ≤ |Γ|

at time i , the entry on tape square j is sk

Marie Schmidt Algorithms and Complexity (AC) 58/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Proof of Cook-Levin

G2: at each time i , the read-write head is scanning exactly one tape square

H[i ,−p(n)] ∨ H[i ,−p(n) + 1] ∨ . . . ∨ H[i , p(n) + 1] for all 0 ≤ i ≤ p(n)
¬H[i , j] ∨ ¬H[i , j ′] for all 0 ≤ i ≤ p(n),−p(n) ≤ j ≤ j ′ ≤ p(n) + 1

Variable Range Intended meaning
Q[i , k] 0 ≤ i ≤ p(n), 0 ≤

k ≤ |Q|
at time i , M is in state k

H[i , j] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1

at time i , the read-write head of M scans
tape square j

S[i , j , k] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1, 0 ≤ k ≤ |Γ|

at time i , the entry on tape square j is sk

Marie Schmidt Algorithms and Complexity (AC) 58/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Proof of Cook-Levin

G3: at each time i , each tape square contains at least one symbol from Γ

S[i , j , 0] ∨ S[i , j , 1] ∨ . . . ∨ S[i , j , |Γ|] for all 0 ≤ i ≤ p(n), −p(n) ≤ j ≤ p(n) + 1
¬S[i , j , k] ∨ ¬S[i , j , k ′] for all 0 ≤ i ≤ p(n),−p(n) ≤ j ≤ p(n) + 1, 0 ≤ k ≤ k ′ ≤ |Γ|

Variable Range Intended meaning
Q[i , k] 0 ≤ i ≤ p(n), 0 ≤

k ≤ |Q|
at time i , M is in state k

H[i , j] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1

at time i , the read-write head of M scans
tape square j

S[i , j , k] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1, 0 ≤ k ≤ |Γ|

at time i , the entry on tape square j is sk

Marie Schmidt Algorithms and Complexity (AC) 59/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Proof of Cook-Levin

G3: at each time i , each tape square contains at least one symbol from Γ

S[i , j , 0] ∨ S[i , j , 1] ∨ . . . ∨ S[i , j , |Γ|] for all 0 ≤ i ≤ p(n), −p(n) ≤ j ≤ p(n) + 1
¬S[i , j , k] ∨ ¬S[i , j , k ′] for all 0 ≤ i ≤ p(n),−p(n) ≤ j ≤ p(n) + 1, 0 ≤ k ≤ k ′ ≤ |Γ|

Variable Range Intended meaning
Q[i , k] 0 ≤ i ≤ p(n), 0 ≤

k ≤ |Q|
at time i , M is in state k

H[i , j] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1

at time i , the read-write head of M scans
tape square j

S[i , j , k] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1, 0 ≤ k ≤ |Γ|

at time i , the entry on tape square j is sk

Marie Schmidt Algorithms and Complexity (AC) 59/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Proof of Cook-Levin

G4: at time 0, the computation is in the initial con�guration of its checking
stage for input x

Q[0, 0],H[0, 1], S[0, 0, 0]
S[0, 1, k1], S[0, 2, k2], . . . ,S[0, n, kn], with x = (sk1 , sk2 , . . . , skn)
S[0, n + 1, 0], S[0, n + 2, 0], . . . , S[0, p(n) + 1, 0]

Variable Range Intended meaning
Q[i , k] 0 ≤ i ≤ p(n), 0 ≤

k ≤ |Q|
at time i , M is in state k

H[i , j] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1

at time i , the read-write head of M scans
tape square j

S[i , j , k] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1, 0 ≤ k ≤ |Γ|

at time i , the entry on tape square j is sk

Marie Schmidt Algorithms and Complexity (AC) 60/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Proof of Cook-Levin

G4: at time 0, the computation is in the initial con�guration of its checking
stage for input x

Q[0, 0],H[0, 1], S[0, 0, 0]
S[0, 1, k1], S[0, 2, k2], . . . ,S[0, n, kn], with x = (sk1 , sk2 , . . . , skn)
S[0, n + 1, 0], S[0, n + 2, 0], . . . , S[0, p(n) + 1, 0]

Variable Range Intended meaning
Q[i , k] 0 ≤ i ≤ p(n), 0 ≤

k ≤ |Q|
at time i , M is in state k

H[i , j] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1

at time i , the read-write head of M scans
tape square j

S[i , j , k] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1, 0 ≤ k ≤ |Γ|

at time i , the entry on tape square j is sk

Marie Schmidt Algorithms and Complexity (AC) 60/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Proof of Cook-Levin

G5: by time p(n), M has entered state qy

Q[p(n), 1]

Variable Range Intended meaning
Q[i , k] 0 ≤ i ≤ p(n), 0 ≤

k ≤ |Q|
at time i , M is in state k

H[i , j] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1

at time i , the read-write head of M scans
tape square j

S[i , j , k] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1, 0 ≤ k ≤ |Γ|

at time i , the entry on tape square j is sk

Marie Schmidt Algorithms and Complexity (AC) 61/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Proof of Cook-Levin

G5: by time p(n), M has entered state qy

Q[p(n), 1]

Variable Range Intended meaning
Q[i , k] 0 ≤ i ≤ p(n), 0 ≤

k ≤ |Q|
at time i , M is in state k

H[i , j] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1

at time i , the read-write head of M scans
tape square j

S[i , j , k] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1, 0 ≤ k ≤ |Γ|

at time i , the entry on tape square j is sk

Marie Schmidt Algorithms and Complexity (AC) 61/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Proof of Cook-Levin

G6: Changes according to transition function

¬H[i , j] ∨ ¬Q[i , k] ∨ ¬S[i , j , l] ∨ H[i + 1, j + ∆]
¬H[i , j] ∨ ¬Q[i , k] ∨ ¬S[i , j , l] ∨ Q[i + 1, k ′]
¬H[i , j] ∨ ¬Q[i , k] ∨ ¬S[i , j , l] ∨ S[i + 1, j , l ′]

with for q ∈ Q \ {qY , qN}: δ(qk , sl) = (qk′ , sl′ , δ) and
for q ∈ {qY , qN}: δ = 0, k ′ = k, l ′ = l

Variable Range Intended meaning
Q[i , k] 0 ≤ i ≤ p(n), 0 ≤

k ≤ |Q|
at time i , M is in state k

H[i , j] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1

at time i , the read-write head of M scans
tape square j

S[i , j , k] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1, 0 ≤ k ≤ |Γ|

at time i , the entry on tape square j is sk

Marie Schmidt Algorithms and Complexity (AC) 62/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Proof of Cook-Levin

G6: Changes according to transition function

¬H[i , j] ∨ ¬Q[i , k] ∨ ¬S[i , j , l] ∨ H[i + 1, j + ∆]
¬H[i , j] ∨ ¬Q[i , k] ∨ ¬S[i , j , l] ∨ Q[i + 1, k ′]
¬H[i , j] ∨ ¬Q[i , k] ∨ ¬S[i , j , l] ∨ S[i + 1, j , l ′]

with for q ∈ Q \ {qY , qN}: δ(qk , sl) = (qk′ , sl′ , δ) and
for q ∈ {qY , qN}: δ = 0, k ′ = k, l ′ = l

Variable Range Intended meaning
Q[i , k] 0 ≤ i ≤ p(n), 0 ≤

k ≤ |Q|
at time i , M is in state k

H[i , j] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1

at time i , the read-write head of M scans
tape square j

S[i , j , k] 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n)+
1, 0 ≤ k ≤ |Γ|

at time i , the entry on tape square j is sk

Marie Schmidt Algorithms and Complexity (AC) 62/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: 3-SAT

3-SAT

Instance: a set of logical variables X := {x1, . . . , xn} and a set of clauses C of
three literals over X

Question: does there exist a truth assignment for X that simultaneously
satis�es all clauses in C?

Theorem

3-SAT is NP-hard (and NP-complete).

Proof: By reduction from SAT. Let I = (X ,C) an instance of SAT. We
construct the following instance (X ′,C ′) of 3-SAT:

X0 := X

For each clause cj we construct a set of variables Xj and additional clauses
Cj (with 3 literals each)

X ′ :=
⋃|C |

j=0 Xj , C
′ :=

⋃|C |
j=1 Cj

Marie Schmidt Algorithms and Complexity (AC) 63/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: 3-SAT

3-SAT

Instance: a set of logical variables X := {x1, . . . , xn} and a set of clauses C of
three literals over X

Question: does there exist a truth assignment for X that simultaneously
satis�es all clauses in C?

Theorem

3-SAT is NP-hard (and NP-complete).

Proof: By reduction from SAT. Let I = (X ,C) an instance of SAT. We
construct the following instance (X ′,C ′) of 3-SAT:

X0 := X

For each clause cj we construct a set of variables Xj and additional clauses
Cj (with 3 literals each)

X ′ :=
⋃|C |

j=0 Xj , C
′ :=

⋃|C |
j=1 Cj

Marie Schmidt Algorithms and Complexity (AC) 63/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b
Question: does there exist an integer vector y with Ay ≤ b?

Theorem

ILP is NP-hard (and NP-complete).

Proof:

by reduction from SAT. Let (X ,C) with X = x1, . . . , xn and
C = {c1, c2, . . . , cm} be an instance of SAT.
De�ne A and b, use decision vars yj ∈ {0, 1} to indicate if t(xj) = true.
We de�ne matrix A as

aij =


− 1 if xj is in ci
1 if ¬xj is in ci
0 xj is not in ci ,

and bi = #negated literals in ci -1.
encode yj ∈ {0, 1} as 0 ≤ yj ≤ 1.
To show: There is a satisfying truth assignment for (X ,C)⇔ there is a vector y
ful�lling Ay ≤ b

Marie Schmidt Algorithms and Complexity (AC) 64/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b
Question: does there exist an integer vector y with Ay ≤ b?

Theorem

ILP is NP-hard (and NP-complete).

Proof: by reduction from SAT.

Let (X ,C) with X = x1, . . . , xn and
C = {c1, c2, . . . , cm} be an instance of SAT.
De�ne A and b, use decision vars yj ∈ {0, 1} to indicate if t(xj) = true.
We de�ne matrix A as

aij =


− 1 if xj is in ci
1 if ¬xj is in ci
0 xj is not in ci ,

and bi = #negated literals in ci -1.
encode yj ∈ {0, 1} as 0 ≤ yj ≤ 1.
To show: There is a satisfying truth assignment for (X ,C)⇔ there is a vector y
ful�lling Ay ≤ b

Marie Schmidt Algorithms and Complexity (AC) 64/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b
Question: does there exist an integer vector y with Ay ≤ b?

Theorem

ILP is NP-hard (and NP-complete).

Proof: by reduction from SAT. Let (X ,C) with X = x1, . . . , xn and
C = {c1, c2, . . . , cm} be an instance of SAT.

De�ne A and b, use decision vars yj ∈ {0, 1} to indicate if t(xj) = true.
We de�ne matrix A as

aij =


− 1 if xj is in ci
1 if ¬xj is in ci
0 xj is not in ci ,

and bi = #negated literals in ci -1.
encode yj ∈ {0, 1} as 0 ≤ yj ≤ 1.
To show: There is a satisfying truth assignment for (X ,C)⇔ there is a vector y
ful�lling Ay ≤ b

Marie Schmidt Algorithms and Complexity (AC) 64/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b
Question: does there exist an integer vector y with Ay ≤ b?

Theorem

ILP is NP-hard (and NP-complete).

Proof: by reduction from SAT. Let (X ,C) with X = x1, . . . , xn and
C = {c1, c2, . . . , cm} be an instance of SAT.
De�ne A and b, use decision vars yj ∈ {0, 1} to indicate if t(xj) = true.

We de�ne matrix A as

aij =


− 1 if xj is in ci
1 if ¬xj is in ci
0 xj is not in ci ,

and bi = #negated literals in ci -1.
encode yj ∈ {0, 1} as 0 ≤ yj ≤ 1.
To show: There is a satisfying truth assignment for (X ,C)⇔ there is a vector y
ful�lling Ay ≤ b

Marie Schmidt Algorithms and Complexity (AC) 64/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b
Question: does there exist an integer vector y with Ay ≤ b?

Theorem

ILP is NP-hard (and NP-complete).

Proof: by reduction from SAT. Let (X ,C) with X = x1, . . . , xn and
C = {c1, c2, . . . , cm} be an instance of SAT.
De�ne A and b, use decision vars yj ∈ {0, 1} to indicate if t(xj) = true.
We de�ne matrix A as

aij =



− 1 if xj is in ci
1 if ¬xj is in ci
0 xj is not in ci ,

and bi = #negated literals in ci -1.
encode yj ∈ {0, 1} as 0 ≤ yj ≤ 1.
To show: There is a satisfying truth assignment for (X ,C)⇔ there is a vector y
ful�lling Ay ≤ b

Marie Schmidt Algorithms and Complexity (AC) 64/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b
Question: does there exist an integer vector y with Ay ≤ b?

Theorem

ILP is NP-hard (and NP-complete).

Proof: by reduction from SAT. Let (X ,C) with X = x1, . . . , xn and
C = {c1, c2, . . . , cm} be an instance of SAT.
De�ne A and b, use decision vars yj ∈ {0, 1} to indicate if t(xj) = true.
We de�ne matrix A as

aij =


− 1 if xj is in ci

1 if ¬xj is in ci
0 xj is not in ci ,

and bi = #negated literals in ci -1.
encode yj ∈ {0, 1} as 0 ≤ yj ≤ 1.
To show: There is a satisfying truth assignment for (X ,C)⇔ there is a vector y
ful�lling Ay ≤ b

Marie Schmidt Algorithms and Complexity (AC) 64/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b
Question: does there exist an integer vector y with Ay ≤ b?

Theorem

ILP is NP-hard (and NP-complete).

Proof: by reduction from SAT. Let (X ,C) with X = x1, . . . , xn and
C = {c1, c2, . . . , cm} be an instance of SAT.
De�ne A and b, use decision vars yj ∈ {0, 1} to indicate if t(xj) = true.
We de�ne matrix A as

aij =


− 1 if xj is in ci
1 if ¬xj is in ci

0 xj is not in ci ,

and bi = #negated literals in ci -1.
encode yj ∈ {0, 1} as 0 ≤ yj ≤ 1.
To show: There is a satisfying truth assignment for (X ,C)⇔ there is a vector y
ful�lling Ay ≤ b

Marie Schmidt Algorithms and Complexity (AC) 64/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b
Question: does there exist an integer vector y with Ay ≤ b?

Theorem

ILP is NP-hard (and NP-complete).

Proof: by reduction from SAT. Let (X ,C) with X = x1, . . . , xn and
C = {c1, c2, . . . , cm} be an instance of SAT.
De�ne A and b, use decision vars yj ∈ {0, 1} to indicate if t(xj) = true.
We de�ne matrix A as

aij =


− 1 if xj is in ci
1 if ¬xj is in ci
0 xj is not in ci ,

and bi = #negated literals in ci -1.
encode yj ∈ {0, 1} as 0 ≤ yj ≤ 1.
To show: There is a satisfying truth assignment for (X ,C)⇔ there is a vector y
ful�lling Ay ≤ b

Marie Schmidt Algorithms and Complexity (AC) 64/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b
Question: does there exist an integer vector y with Ay ≤ b?

Theorem

ILP is NP-hard (and NP-complete).

Proof: by reduction from SAT. Let (X ,C) with X = x1, . . . , xn and
C = {c1, c2, . . . , cm} be an instance of SAT.
De�ne A and b, use decision vars yj ∈ {0, 1} to indicate if t(xj) = true.
We de�ne matrix A as

aij =


− 1 if xj is in ci
1 if ¬xj is in ci
0 xj is not in ci ,

and bi = #negated literals in ci -1.

encode yj ∈ {0, 1} as 0 ≤ yj ≤ 1.
To show: There is a satisfying truth assignment for (X ,C)⇔ there is a vector y
ful�lling Ay ≤ b

Marie Schmidt Algorithms and Complexity (AC) 64/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b
Question: does there exist an integer vector y with Ay ≤ b?

Theorem

ILP is NP-hard (and NP-complete).

Proof: by reduction from SAT. Let (X ,C) with X = x1, . . . , xn and
C = {c1, c2, . . . , cm} be an instance of SAT.
De�ne A and b, use decision vars yj ∈ {0, 1} to indicate if t(xj) = true.
We de�ne matrix A as

aij =


− 1 if xj is in ci
1 if ¬xj is in ci
0 xj is not in ci ,

and bi = #negated literals in ci -1.
encode yj ∈ {0, 1} as 0 ≤ yj ≤ 1.

To show: There is a satisfying truth assignment for (X ,C)⇔ there is a vector y
ful�lling Ay ≤ b

Marie Schmidt Algorithms and Complexity (AC) 64/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b
Question: does there exist an integer vector y with Ay ≤ b?

Theorem

ILP is NP-hard (and NP-complete).

Proof: by reduction from SAT. Let (X ,C) with X = x1, . . . , xn and
C = {c1, c2, . . . , cm} be an instance of SAT.
De�ne A and b, use decision vars yj ∈ {0, 1} to indicate if t(xj) = true.
We de�ne matrix A as

aij =


− 1 if xj is in ci
1 if ¬xj is in ci
0 xj is not in ci ,

and bi = #negated literals in ci -1.
encode yj ∈ {0, 1} as 0 ≤ yj ≤ 1.
To show: There is a satisfying truth assignment for (X ,C)⇔ there is a vector y
ful�lling Ay ≤ b

Marie Schmidt Algorithms and Complexity (AC) 64/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b
Question: does there exist an integer vector y with Ay ≤ b?

Theorem

SAT ≤p ILP, and therefore ILP is NP-hard (and NP-complete).

Consequence: Every problem in NP can be modelled as an ILP.

Marie Schmidt Algorithms and Complexity (AC) 65/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Clique

Clique

Instance: a graph G = (V ,E); an integer k
Question: does G contain a clique of size (at least) k?

Theorem

CLIQUE is NP-hard (and NP-complete).

Proof: SAT is NP-hard and SAT ≤p CLIQUE.

Marie Schmidt Algorithms and Complexity (AC) 66/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Independent set

Independent set (IS)

Instance: a graph G = (V ,E); an integer k
Question: does G contain an independent set of size (at least) k?

(a set of vertices that does not span any edge)

Theorem

IS is NP-hard (and NP-complete).

Proof:

By reduction from CLIQUE:
Given an instance (G = (V ,E), k) of clique, construct the following instance of
IS:
V ′ := V , E ′ := {{i , j} : i 6= j ∈ V , {i , j} /∈ E}, k ′ := k.
Show:
X ⊂ V is a clique in G ⇔ X is an independent set in G ′

Marie Schmidt Algorithms and Complexity (AC) 67/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Independent set

Independent set (IS)

Instance: a graph G = (V ,E); an integer k
Question: does G contain an independent set of size (at least) k?

(a set of vertices that does not span any edge)

Theorem

IS is NP-hard (and NP-complete).

Proof: By reduction from CLIQUE:

Given an instance (G = (V ,E), k) of clique, construct the following instance of
IS:
V ′ := V , E ′ := {{i , j} : i 6= j ∈ V , {i , j} /∈ E}, k ′ := k.
Show:
X ⊂ V is a clique in G ⇔ X is an independent set in G ′

Marie Schmidt Algorithms and Complexity (AC) 67/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Independent set

Independent set (IS)

Instance: a graph G = (V ,E); an integer k
Question: does G contain an independent set of size (at least) k?

(a set of vertices that does not span any edge)

Theorem

IS is NP-hard (and NP-complete).

Proof: By reduction from CLIQUE:
Given an instance (G = (V ,E), k) of clique, construct the following instance of
IS:
V ′ := V , E ′ := {{i , j} : i 6= j ∈ V , {i , j} /∈ E}, k ′ := k.

Show:
X ⊂ V is a clique in G ⇔ X is an independent set in G ′

Marie Schmidt Algorithms and Complexity (AC) 67/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Independent set

Independent set (IS)

Instance: a graph G = (V ,E); an integer k
Question: does G contain an independent set of size (at least) k?

(a set of vertices that does not span any edge)

Theorem

IS is NP-hard (and NP-complete).

Proof: By reduction from CLIQUE:
Given an instance (G = (V ,E), k) of clique, construct the following instance of
IS:
V ′ := V , E ′ := {{i , j} : i 6= j ∈ V , {i , j} /∈ E}, k ′ := k.
Show:
X ⊂ V is a clique in G ⇔ X is an independent set in G ′

Marie Schmidt Algorithms and Complexity (AC) 67/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Exact cover

Exact cover (Ex-Cov)

Instance: a ground set X ; subsets S1, . . . , Sm of X

Question: do there exist some subsets Si that form a partition of X?

Theorem

(Ex-Cov) is NP-hard (and NP-complete).

Proof:

by reduction from IS.
Let (G , k) with G = (V ,E) be an instance of IS.
De�ne an instance of (Ex-Cov) as follows: X := E ∪ {1, . . . , k}
and subsets
Sih := {{i , j} : {i , j} ∈ E} ∪ {h} for i ∈ V , h = 1, . . . k
S{i,j} := {{i , j}} for {i , j} ∈ E
Show:
If S is a solution to (Ex-Cov), i : Sih ∈ S is an independent set of size k.
If X = {x1, x2, . . . , xk} ⊂ V is an independent set,

⋃k
j=1 Sxj j ∪ {{i , j} : i , j /∈ X}

is a solution to (Ex-Cov).

Marie Schmidt Algorithms and Complexity (AC) 68/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Exact cover

Exact cover (Ex-Cov)

Instance: a ground set X ; subsets S1, . . . , Sm of X

Question: do there exist some subsets Si that form a partition of X?

Theorem

(Ex-Cov) is NP-hard (and NP-complete).

Proof: by reduction from IS.

Let (G , k) with G = (V ,E) be an instance of IS.
De�ne an instance of (Ex-Cov) as follows: X := E ∪ {1, . . . , k}
and subsets
Sih := {{i , j} : {i , j} ∈ E} ∪ {h} for i ∈ V , h = 1, . . . k
S{i,j} := {{i , j}} for {i , j} ∈ E
Show:
If S is a solution to (Ex-Cov), i : Sih ∈ S is an independent set of size k.
If X = {x1, x2, . . . , xk} ⊂ V is an independent set,

⋃k
j=1 Sxj j ∪ {{i , j} : i , j /∈ X}

is a solution to (Ex-Cov).

Marie Schmidt Algorithms and Complexity (AC) 68/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Exact cover

Exact cover (Ex-Cov)

Instance: a ground set X ; subsets S1, . . . , Sm of X

Question: do there exist some subsets Si that form a partition of X?

Theorem

(Ex-Cov) is NP-hard (and NP-complete).

Proof: by reduction from IS.
Let (G , k) with G = (V ,E) be an instance of IS.

De�ne an instance of (Ex-Cov) as follows: X := E ∪ {1, . . . , k}
and subsets
Sih := {{i , j} : {i , j} ∈ E} ∪ {h} for i ∈ V , h = 1, . . . k
S{i,j} := {{i , j}} for {i , j} ∈ E
Show:
If S is a solution to (Ex-Cov), i : Sih ∈ S is an independent set of size k.
If X = {x1, x2, . . . , xk} ⊂ V is an independent set,

⋃k
j=1 Sxj j ∪ {{i , j} : i , j /∈ X}

is a solution to (Ex-Cov).

Marie Schmidt Algorithms and Complexity (AC) 68/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Exact cover

Exact cover (Ex-Cov)

Instance: a ground set X ; subsets S1, . . . , Sm of X

Question: do there exist some subsets Si that form a partition of X?

Theorem

(Ex-Cov) is NP-hard (and NP-complete).

Proof: by reduction from IS.
Let (G , k) with G = (V ,E) be an instance of IS.
De�ne an instance of (Ex-Cov) as follows: X := E ∪ {1, . . . , k}
and subsets
Sih := {{i , j} : {i , j} ∈ E} ∪ {h} for i ∈ V , h = 1, . . . k
S{i,j} := {{i , j}} for {i , j} ∈ E

Show:
If S is a solution to (Ex-Cov), i : Sih ∈ S is an independent set of size k.
If X = {x1, x2, . . . , xk} ⊂ V is an independent set,

⋃k
j=1 Sxj j ∪ {{i , j} : i , j /∈ X}

is a solution to (Ex-Cov).

Marie Schmidt Algorithms and Complexity (AC) 68/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Exact cover

Exact cover (Ex-Cov)

Instance: a ground set X ; subsets S1, . . . , Sm of X

Question: do there exist some subsets Si that form a partition of X?

Theorem

(Ex-Cov) is NP-hard (and NP-complete).

Proof: by reduction from IS.
Let (G , k) with G = (V ,E) be an instance of IS.
De�ne an instance of (Ex-Cov) as follows: X := E ∪ {1, . . . , k}
and subsets
Sih := {{i , j} : {i , j} ∈ E} ∪ {h} for i ∈ V , h = 1, . . . k
S{i,j} := {{i , j}} for {i , j} ∈ E
Show:
If S is a solution to (Ex-Cov), i : Sih ∈ S is an independent set of size k.
If X = {x1, x2, . . . , xk} ⊂ V is an independent set,

⋃k
j=1 Sxj j ∪ {{i , j} : i , j /∈ X}

is a solution to (Ex-Cov).
Marie Schmidt Algorithms and Complexity (AC) 68/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Subset Sum

Subset Sum (SS)

Instance: positive integers a1, . . . , an; a bound b

Question: does there exist an index set J ⊆ {1, . . . , n} with
∑

j∈J aj = b?

Theorem

SS is NP-hard (and NP-complete).

Proof:

by reduction from Ex-Cov.
Let (X = {x1, . . . , xm}, {S1, . . . ,Sn}) be an instance of Ex-Cov.
De�ne numbers aj as aj :=

∑m
i=1 cij · di with cij = 1 if xi ∈ Sj and di = (n + 1)i−1.

Set b :=
∑m

i=1(n + 1)i−1.

Show:
J is the index set of a solution to Ex-Cov ⇔ J is the index set of a solution to SS.
Also: argue why this is a polynomial-time transformation.

Marie Schmidt Algorithms and Complexity (AC) 69/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Subset Sum

Subset Sum (SS)

Instance: positive integers a1, . . . , an; a bound b

Question: does there exist an index set J ⊆ {1, . . . , n} with
∑

j∈J aj = b?

Theorem

SS is NP-hard (and NP-complete).

Proof: by reduction from Ex-Cov.

Let (X = {x1, . . . , xm}, {S1, . . . ,Sn}) be an instance of Ex-Cov.
De�ne numbers aj as aj :=

∑m
i=1 cij · di with cij = 1 if xi ∈ Sj and di = (n + 1)i−1.

Set b :=
∑m

i=1(n + 1)i−1.

Show:
J is the index set of a solution to Ex-Cov ⇔ J is the index set of a solution to SS.
Also: argue why this is a polynomial-time transformation.

Marie Schmidt Algorithms and Complexity (AC) 69/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Subset Sum

Subset Sum (SS)

Instance: positive integers a1, . . . , an; a bound b

Question: does there exist an index set J ⊆ {1, . . . , n} with
∑

j∈J aj = b?

Theorem

SS is NP-hard (and NP-complete).

Proof: by reduction from Ex-Cov.
Let (X = {x1, . . . , xm}, {S1, . . . ,Sn}) be an instance of Ex-Cov.
De�ne numbers aj as aj :=

∑m
i=1 cij · di with cij = 1 if xi ∈ Sj and di = (n + 1)i−1.

Set b :=
∑m

i=1(n + 1)i−1.

Show:
J is the index set of a solution to Ex-Cov ⇔ J is the index set of a solution to SS.
Also: argue why this is a polynomial-time transformation.

Marie Schmidt Algorithms and Complexity (AC) 69/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Subset Sum

Subset Sum (SS)

Instance: positive integers a1, . . . , an; a bound b

Question: does there exist an index set J ⊆ {1, . . . , n} with
∑

j∈J aj = b?

Theorem

SS is NP-hard (and NP-complete).

Proof: by reduction from Ex-Cov.
Let (X = {x1, . . . , xm}, {S1, . . . ,Sn}) be an instance of Ex-Cov.
De�ne numbers aj as aj :=

∑m
i=1 cij · di with cij = 1 if xi ∈ Sj and di = (n + 1)i−1.

Set b :=
∑m

i=1(n + 1)i−1.

Show:
J is the index set of a solution to Ex-Cov ⇔ J is the index set of a solution to SS.

Also: argue why this is a polynomial-time transformation.

Marie Schmidt Algorithms and Complexity (AC) 69/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Subset Sum

Subset Sum (SS)

Instance: positive integers a1, . . . , an; a bound b

Question: does there exist an index set J ⊆ {1, . . . , n} with
∑

j∈J aj = b?

Theorem

SS is NP-hard (and NP-complete).

Proof: by reduction from Ex-Cov.
Let (X = {x1, . . . , xm}, {S1, . . . ,Sn}) be an instance of Ex-Cov.
De�ne numbers aj as aj :=

∑m
i=1 cij · di with cij = 1 if xi ∈ Sj and di = (n + 1)i−1.

Set b :=
∑m

i=1(n + 1)i−1.

Show:
J is the index set of a solution to Ex-Cov ⇔ J is the index set of a solution to SS.
Also: argue why this is a polynomial-time transformation.

Marie Schmidt Algorithms and Complexity (AC) 69/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: 2-Partition

2-PARTITION

Instance: positive integers a1, . . . , an with
∑n

i=1 ai = 2A.

Question: does there exist an index set I ⊆ {1, . . . , n} with
∑

i∈I ai = A?

Theorem

2-PARTITION is NP-hard (and thus NP-complete).

Proof:

by reduction from SS.

Marie Schmidt Algorithms and Complexity (AC) 70/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: 2-Partition

2-PARTITION

Instance: positive integers a1, . . . , an with
∑n

i=1 ai = 2A.

Question: does there exist an index set I ⊆ {1, . . . , n} with
∑

i∈I ai = A?

Theorem

2-PARTITION is NP-hard (and thus NP-complete).

Proof: by reduction from SS.

Marie Schmidt Algorithms and Complexity (AC) 70/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Vertex cover (VC)

Instance: a graph G = (V ,E); an integer k
Question: does G contain a vertex cover of size (at most) k?

(a set of vertices that touches every edge)

Theorem

VC is NP-hard (and thus NP-complete).

Proof:

by reduction from IS.

Marie Schmidt Algorithms and Complexity (AC) 71/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Vertex cover (VC)

Instance: a graph G = (V ,E); an integer k
Question: does G contain a vertex cover of size (at most) k?

(a set of vertices that touches every edge)

Theorem

VC is NP-hard (and thus NP-complete).

Proof: by reduction from IS.

Marie Schmidt Algorithms and Complexity (AC) 71/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Hamiltonian cycle / TSP

Directed Hamiltonian cycle (dir-HC)

Instance: a directed graph (V ,E)
Question: does this graph contain a directed Hamiltonian cycle?

Theorem

Dir-HC is NP-complete.

Proof: Easy to see: in NP.
To show NP-hard: reduction from VC.
Given instance G = (V ,E), k of VC. De�ne G ′ = (V ′,E ′):

V ′ = {(i , j), {i , j}, (j , i)|{i , j} ∈ E} ∪ {1, . . . , k}
E ′ = {((i , j), {i , j}), ({i , j}, (i , j)), ((j , i), {i , j}), ({i , j}, (j , i))|{i , j} ∈ E}
∪ {((i , j), q), (q, (i , j)), ((j , i), q), (q, (j , i))|{i , j} ∈ E , q = 1, . . . , k}
∪ {((h, i), (i , j))|{h, i} ∈ E , {i , j} ∈ E , h 6= j}
∪ {(i , j), (j , i)|1 ≤ i < j ≤ k}

Marie Schmidt Algorithms and Complexity (AC) 72/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Hamiltonian cycle / TSP

Directed Hamiltonian cycle (dir-HC)

Instance: a directed graph (V ,E)
Question: does this graph contain a directed Hamiltonian cycle?

Theorem

Dir-HC is NP-complete.

Proof: Easy to see: in NP.
To show NP-hard: reduction from VC.
Given instance G = (V ,E), k of VC. De�ne G ′ = (V ′,E ′):

V ′ = {(i , j), {i , j}, (j , i)|{i , j} ∈ E} ∪ {1, . . . , k}
E ′ = {((i , j), {i , j}), ({i , j}, (i , j)), ((j , i), {i , j}), ({i , j}, (j , i))|{i , j} ∈ E}
∪ {((i , j), q), (q, (i , j)), ((j , i), q), (q, (j , i))|{i , j} ∈ E , q = 1, . . . , k}
∪ {((h, i), (i , j))|{h, i} ∈ E , {i , j} ∈ E , h 6= j}
∪ {(i , j), (j , i)|1 ≤ i < j ≤ k}

Marie Schmidt Algorithms and Complexity (AC) 72/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Hamiltonian cycle / TSP

Directed Hamiltonian cycle (dir-HC)

Instance: a directed graph (V ,E)
Question: does this graph contain a directed Hamiltonian cycle?

Theorem

Dir-HC is NP-complete.

Proof: Easy to see: in NP.
To show NP-hard: reduction from VC.
Given instance G = (V ,E), k of VC. De�ne G ′ = (V ′,E ′):

V ′ = {(i , j), {i , j}, (j , i)|{i , j} ∈ E} ∪ {1, . . . , k}
E ′ = {((i , j), {i , j}), ({i , j}, (i , j)), ((j , i), {i , j}), ({i , j}, (j , i))|{i , j} ∈ E}
∪ {((i , j), q), (q, (i , j)), ((j , i), q), (q, (j , i))|{i , j} ∈ E , q = 1, . . . , k}
∪ {((h, i), (i , j))|{h, i} ∈ E , {i , j} ∈ E , h 6= j}
∪ {(i , j), (j , i)|1 ≤ i < j ≤ k}

Marie Schmidt Algorithms and Complexity (AC) 72/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

NP-hardness: Hamiltonian cycle / TSP

Theorem

HC is NP-hard (and thus NP-complete).

Proof: Reduction from dir-HC.

Theorem

TSP is NP-complete.

Proof: already seen: in NP and TSP≤p HC.

Marie Schmidt Algorithms and Complexity (AC) 73/74

What is this course about?
Basic concepts

Computational models and worst-case time complexity of algorithms
Worst-case complexity of problems

P and NP
How to prove that something is hard?
Reductions
NP-hardness and NP-completeness

Recommended reading

Garey and Johnson. 'Algorithms and Complexity'
Lenstra and Rinnooy Kan. Computational complexity of discrete optimization
problems.
Annals of Discrete Mathematics 4 (pp 121-140), 1979.
Electronic copy available on website

Cormen, Leiserson, Rivest and Stein `Introduction to Algorithms':

Chapter 1-3 (basics)

Chapter 23 (minimum spanning trees)

Chapter 34 (P, NP, NP-completeness, Cook-Levin theorem, reductions)

Marie Schmidt Algorithms and Complexity (AC) 74/74

	What is this course about?
	Algorithms…
	…and Complexity

	Basic concepts
	Graph notation
	Problems

	Computational models and worst-case time complexity of algorithms
	Time complexity of an algorithm
	Turing machines

	Worst-case complexity of problems
	P and NP
	How to prove that something is hard?
	Reductions
	NP-hardness and NP-completeness

