Algorithms and Complexity (AC)

Marie Schmidt

(Based on slides by Gerhard Woeginger and Jesper Nederlof)

Landelijk Netwerk Mathematische Besliskunde

LNMB, Sep-Nov 2019

(Preliminary) program

- 9 Sep : Introduction, basic concepts, time complexity and computational models, P versus NP
- 16 Sep : reductions, NP-hardness and NP-completeness
- 23 Sep : Pseudopolynomial time, strong/weak NP-hardness, co-NP
- 30 Sep : Exercise set 1
- 30 Sep : Approximation algorithms
- 7 Oct : More on approximation algorithms
- 14 Oct : Exercise set 2
- 14 Oct : Exact algorithms for NP-hard problems
- 21 Oct : More exact algorithms for NP-hard problems
- 28 Oct : Exercise set 3
- 28 Oct : Treewidth
- 4 Nov : Randomized algorithms
- 11 Nov : Exercise set 4
- 11 Nov : No lecture!!

Website: http://www.win.tue.nl/~jnederlo/LNMB/

First 5 lectures: Marie Schmidt (schmidt2@rsm.nl), last 4 lectures: Jesper Nederlof (j.nederlof@tue.nl)

Program for the first three weeks

- Basic definitions: decision problems, graphs
- computational models and (worst-case) time complexity
- P versus NP
- Reductions
- NP-hardness
- A catalogue of NP-hard problems
- pseudo-polynomial time
- strong NP-hardness & weak NP-hardness
- co-NP, co-NP versus NP

And maybe more...?

Algorithms....and Complexity

Algorithm

Well-defined procedure that transforms an input into an output.

Algorithmsand Complexity

Algorithm

Well-defined procedure that transforms an input into an output.

Example: Insertion Sort

Input: A sequence of *n* numbers (a_1, a_2, \ldots, a_n) **Output**: A permutation $(a'_1, a'_2, \ldots, a'_n)$ of the input sequence such that $a'_i \leq a'_2 \leq \ldots \leq a'_n$

Algorithmsand Complexity

Algorithm

Well-defined procedure that transforms an input into an output.

Example: Insertion Sort

Input: A sequence of *n* numbers (a_1, a_2, \ldots, a_n) **Output**: A permutation $(a'_1, a'_2, \ldots, a'_n)$ of the input sequence such that $a'_i \leq a'_2 \leq \ldots \leq a'_n$

Algorithms....and Complexity

Algorithm

Well-defined procedure that transforms an input into an output.

Example: Insertion Sort - for a human

Input: A sequence of *n* numbers $(a_1, a_2, ..., a_n)$ **Output:** A permutation $(a'_1, a'_2, ..., a'_n)$ of the input sequence such that $a'_i \le a'_2 \le ... \le a'_n$

```
Set A := (a_1)
for i = 2, ..., n do
update A by inserting a_i at the 'correct' position in sorted sequence A
end for
return A
```

Algorithmsand Complexity

Algorithm

Well-defined procedure that transforms an input into an output.

Example: Insertion Sort - for a machine

Input: A sequence of *n* numbers (a_1, a_2, \ldots, a_n) **Output:** A permutation $(a'_1, a'_2, \ldots, a'_n)$ of the input sequence such that $a'_i \leq a'_2 \leq \ldots \leq a'_n$

Set
$$A := (a_1)$$

for $i = 2, ..., n$ do
 $key := A[j]$
 $i := j - 1$
while $i > 1$ and $A[i] > key$ do
 $A[i + 1] := A[i]$
 $i := i - 1$
end while
 $A[i + 1] := key$
end for
return A

When we analyze an algorithm, we are interested in:

- running time of the algorithm
- space (memory) needed by the algorithm (probably not treated in this course)
- for optimization problems: quality of the output
 - exact algorithm
 - approximation algorithm
 - heuristic algorithm

and Complexity

"I can't find an efficient algorithm, I guess I'm just too dumb."

What is this course about? Basic concepts Algorithms... Computational models and worst-case time complexity of algorithm ...and Complexity Worst-case complexity of problems ...and Complexity

"I can't find an efficient algorithm, because no such algorithm is possible!"

Graph notation Problems

Basic concepts: Graphs

Graph: pair (V, E) where V is set of vertices and E is a set of pairs of vertices called edges

Matching: set of non-adjacent edges (no two edges share a vertex), perfect if |V|/2 edges

Graph notation Problems

Basic concepts: Graphs

Graph: pair (V, E) where V is set of vertices and E is a set of pairs of vertices called edges

Matching: set of non-adjacent edges (no two edges share a vertex), perfect if |V|/2 edges

Graph notation Problems

Basic concepts: Graphs

Graph: pair (V, E) where V is set of vertices and E is a set of pairs of vertices called edges

Matching: set of non-adjacent edges (no two edges share a vertex), *perfect* if |V|/2 edges Independent Set: set of pairwise non-adjacent vertices

Graph notation Problems

Basic concepts: Graphs

Graph: pair (V, E) where V is set of vertices and E is a set of pairs of vertices called edges

Matching: set of non-adjacent edges (no two edges share a vertex), *perfect* if |V|/2 edges Independent Set: set of pairwise non-adjacent vertices

Graph notation Problems

Basic concepts: Graphs

Graph: pair (V, E) where V is set of vertices and E is a set of pairs of vertices called edges

Matching: set of non-adjacent edges (no two edges share a vertex), *perfect* if |V|/2 edges Independent Set: set of pairwise non-adjacent vertices Clique: set of pairwise adjacent vertices

Graph notation Problems

Basic concepts: Graphs

Graph: pair (V, E) where V is set of vertices and E is a set of pairs of vertices called edges

Matching: set of non-adjacent edges (no two edges share a vertex), *perfect* if |V|/2 edges Independent Set: set of pairwise non-adjacent vertices Clique: set of pairwise adjacent vertices

Graph notation Problems

Basic concepts: Graphs

Graph: pair (V, E) where V is set of vertices and E is a set of pairs of vertices called edges

Matching: set of non-adjacent edges (no two edges share a vertex), perfect if |V|/2 edges

Independent Set: set of pairwise non-adjacent vertices

Clique: set of pairwise adjacent vertices

Vertex Cover: set of vertices such that each edge is incident to at least one vertex from the set

Graph notation Problems

Basic concepts: Graphs

Graph: pair (V, E) where V is set of vertices and E is a set of pairs of vertices called edges

Matching: set of non-adjacent edges (no two edges share a vertex), perfect if |V|/2 edges

Independent Set: set of pairwise non-adjacent vertices

Clique: set of pairwise adjacent vertices

Vertex Cover: set of vertices such that each edge is incident to at least one vertex from the set

Much more terminology: cycles, Hamiltonian cycles, trees, forests,...

Problems

Graph notation Problems

Problem instance:

• specification of problem data

Problems

Graph notation Problems

Problem instance:

• specification of problem data

Example: Instance of decision version of clique

$$\begin{split} &V = \{a, b, c, d, e, f, g\}; \ k = 4 \\ &E = \{\{a, b\}, \{a, d\}, \{b, c\}, \{c, d\}, \{b, d\}, \{b, e\}, \{c, e\}, \{d, e\}, \\ &\{d, f\}, \{e, f\}, \{e, g\}, \{f, g\}\}; \end{split}$$

Graph notation Problems

Basic concepts: Input size and asymptotics

Problem size:

• length (number of symbols) of reasonable encoding of instance (often denoted as n)

Graph notation Problems

Basic concepts: Input size and asymptotics

Problem size:

• length (number of symbols) of reasonable encoding of instance (often denoted as n)

Example for encodings

- Graph: adjacency list; adjacency matrix
- Set: list of elements; bit vector
- Number: decimal; binary; hex; unary

big-Oh notation

f(n) is O(g(n)) denotes $\exists n_0, C$ such that for all $n \ge n_0, f(n) \le C \cdot g(n)$.

big-Oh notation

f(n) is O(g(n)) denotes $\exists n_0, C$ such that for all $n \ge n_0, f(n) \le C \cdot g(n)$. For example, $4n^2 + 3n \in O(n^2)$ and $7n^2 + 2 \in O(n^2)$

big-Oh notation

 $\begin{array}{l} f(n) \text{ is } O(g(n)) \text{ denotes} \\ \exists n_0, C \text{ such that for all } n \geq n_0, f(n) \leq C \cdot g(n). \\ \text{For example, } 4n^2 + 3n \in O(n^2) \text{ and } 7n^2 + 2 \in O(n^2) \end{array}$

big-Omega, big-Theta

f(n) is $\Omega(g(n))$ denotes that $\exists n_0, C$ such that $\forall n > n_0$ $f(n) \ge C \cdot g(n)$. f(n) is $\Theta(g(n))$ denotes that f(n) is O(g(n)) and $\Omega(g(n))$.

Graph notation Problems

Different types of algorithmic problems:

- Optimization problems (min/max)
- Decision problems (with answer YES/NO)

Graph notation Problems

Different types of algorithmic problems:

- Optimization problems (min/max)
- Decision problems (with answer YES/NO)

Example: Optimization problem CLIQUE

Instance: a graph G = (V, E)Goal: find a clique of maximum size in G. / What is the maximum size of a clique in G?

Graph notation Problems

Different types of algorithmic problems:

- Optimization problems (min/max)
- Decision problems (with answer YES/NO)

Example: Optimization problem CLIQUE

Instance: a graph G = (V, E)Goal: find a clique of maximum size in G. / What is the maximum size of a clique in G?

Example: Decision problem CLIQUE

Instance: a graph G = (V, E); a bound k Question: does G contain a clique of size (at least) k?

Graph notation Problems

Different types of algorithmic problems:

- Optimization problems (min/max)
- Decision problems (with answer YES/NO)

Example: Optimization problem CLIQUE

Instance: a graph G = (V, E)Goal: find a clique of maximum size in G. / What is the maximum size of a clique in G?

Example: Decision problem CLIQUE

Instance: a graph G = (V, E); a bound k Question: does G contain a clique of size (at least) k?

Example (neither optimization nor decision problem) SORTING

Instance: A sequence of *n* numbers (a_1, a_2, \ldots, a_n) Task: A permutation $(a'_1, a'_2, \ldots, a'_n)$ of the input sequence such that $a'_i \leq a'_2 \leq \ldots \leq a'_n$

Every discrete optimization problem can be rewritten into a sequence of decision problems: use bisection search on the interval of objective values

Every discrete optimization problem can be rewritten into a sequence of decision problems: use bisection search on the interval of objective values

Example

Let G be a graph on n vertices.

Every discrete optimization problem can be rewritten into a sequence of decision problems: use bisection search on the interval of objective values

Example

Let G be a graph on n vertices.

Does G contain a clique of size at least n/2? – YES

Graph notation Problems

Observation

Every discrete optimization problem can be rewritten into a sequence of decision problems: use bisection search on the interval of objective values

Example

Let G be a graph on n vertices.

Does G contain a clique of size at least n/2? – YES Does G contain a clique of size at least 3n/4? – YES

Every discrete optimization problem can be rewritten into a sequence of decision problems: use bisection search on the interval of objective values

Example

Let G be a graph on n vertices.

Does G contain a clique of size at least n/2? – YES Does G contain a clique of size at least 3n/4? – YES Does G contain a clique of size at least 7n/8? – NO

Problems
Observation

Every discrete optimization problem can be rewritten into a sequence of decision problems: use bisection search on the interval of objective values

Example

Let G be a graph on n vertices.

Does G contain a clique of size at least n/2? – YES Does G contain a clique of size at least 3n/4? – YES Does G contain a clique of size at least 7n/8? – NO Does G contain a clique of size at least 13n/16? – YES

Problems

Observation

Every discrete optimization problem can be rewritten into a sequence of decision problems: use bisection search on the interval of objective values

Example

Let G be a graph on n vertices.

```
Does G contain a clique of size at least n/2? – YES
Does G contain a clique of size at least 3n/4? – YES
Does G contain a clique of size at least 7n/8? – NO
Does G contain a clique of size at least 13n/16? – YES
Etc.
```

Search takes logarithmic number of steps -> fast and simple

Problems

Time complexity of an algorithm Turing machines

Time complexity of an algorithm

Time complexity of an algorithm

number of elementary steps an algorithm makes

Time complexity of an algorithm Turing machines

Time complexity of an algorithm

Time complexity of an algorithm

number of elementary steps an algorithm makes

 \rightarrow depends on computational model

executes operations one after another (no concurrent operations)

Elementary steps $\hat{=}$ assumption: can be executed in constant time

- arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling
- data movement: load, store, copy
- control: unconditional and conditional branch, subroutine call, return

executes operations one after another (no concurrent operations)

Elementary steps $\hat{=}$ assumption: can be executed in constant time

- arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling
- data movement: load, store, copy
- control: unconditional and conditional branch, subroutine call, return

For 'constant time' assumption: limit on length of each 'word of data' (often: in input size *n*: e.g., numbers $\leq c \cdot \log n$ for a constant *c*)

executes operations one after another (no concurrent operations)

Elementary steps $\hat{=}$ assumption: can be executed in constant time

- arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling
- data movement: load, store, copy
- control: unconditional and conditional branch, subroutine call, return

• exponentiation?

For 'constant time' assumption: limit on length of each 'word of data' (often: in input size *n*: e.g., numbers $\leq c \cdot \log n$ for a constant *c*)

executes operations one after another (no concurrent operations)

Elementary steps $\hat{=}$ assumption: can be executed in constant time

- arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling
- data movement: load, store, copy
- control: unconditional and conditional branch, subroutine call, return
- exponentiation?

For 'constant time' assumption: limit on length of each 'word of data' (often: in input size n: e.g., numbers $\leq c \cdot \log n$ for a constant c)

Why do we use RAM:

- similar to how a computer works & approximates running time of computer well
- easier to analyze than many alternatives

number of elementary steps an algorithm makes \rightarrow here (and in most other places): using RAM

number of elementary steps an algorithm makes \rightarrow here (and in most other places): using RAM \rightarrow normally: specified in relation to input length (*n*) using a *reasonable* encoding

number of elementary steps an algorithm makes

- \rightarrow here (and in most other places): using RAM
- \rightarrow normally: specified in relation to input length (*n*) using a *reasonable* encoding
- \rightarrow normally: specified in *O* (or Θ -notation)

number of elementary steps an algorithm makes

- \rightarrow here (and in most other places): using RAM
- \rightarrow normally: specified in relation to input length (n) using a reasonable encoding
- \rightarrow normally: specified in *O* (or Θ -notation)
- \rightarrow here: worst-case complexity of an algorithm: the maximum number of steps

for any input of length n

number of elementary steps an algorithm makes

- \rightarrow here (and in most other places): using RAM
- \rightarrow normally: specified in relation to input length (n) using a reasonable encoding
- \rightarrow normally: specified in *O* (or Θ -notation)

 \rightarrow here: *worst-case* complexity of an algorithm: the maximum number of steps for *any* input of length *n*

BUT: there are alternatives, e.g.,

- alternative computational models
- time complexity in *output length*
- average case time complexity

Time complexity of an algorithm Turing machines

What is the worst-case time complexity of InsertionSort?

Example: Insertion Sort

```
Input: A sequence of n numbers (a_1, a_2, ..., a_n)

Output: A permutation (a'_1, a'_2, ..., a'_n) of the input sequence such that

a'_i \le a'_2 \le ... \le a'_n

Set A := (a_1)

for i = 2, ..., n do

key := A[j]

i := j - 1

while i > 1 and A[i] > key do

A[i + 1] := A[i]

i := i - 1

end while

A[i + 1] := key

end for

return A
```

Big-Oh notation

Time complexity of an algorithm Turing machines

Both for encoding length, and for time complexity, we make use of big-Oh notation.

big-Oh notation f(n) is O(g(n)) denotes $\exists n_0, C$ such that for all $n \ge n_0, f(n) \le C \cdot g(n)$.

Big-Oh notation

Time complexity of an algorithm Turing machines

Both for encoding length, and for time complexity, we make use of big-Oh notation.

big-Oh notation

f(n) is O(g(n)) denotes $\exists n_0, C$ such that for all $n \ge n_0, f(n) \le C \cdot g(n)$.

For example, $4n^2 + 3n \in O(n^2)$ and $7n^2 + 2 \in O(n^2)$

Note: Determining / proving the worst-case time complexity of an algorithm can be difficult!

Turing machines

- Alternative mathematical models of computation
- Used in the definition of complexity classes P and NP

Time complexity of an algorithm

Turing machines

Turing machines

- Alternative mathematical models of computation
- Used in the definition of complexity classes P and NP

Time complexity of an algorithm

Turing machines

Not this.

But this!

Deterministic one-tape Turing machine (DTM)

- A DTM consists of
 - a finite state control
 - a read-write head
 - a tape: two-way infinite sequence of tape squares

- **3** a finite set Γ of tape symbols, including a subset $\Sigma \subset \Gamma$ of *input symbols* and a distinguished *blank symbol* $b \in \Gamma \setminus \Sigma$
- (2) a finite set Q of states, inclusing a distinguished start state q_0 and two distinguished halt states q_Y and q_N
- 3 a transition function $\delta : (Q \setminus \{q_Y, q_N\}) \times \Gamma \rightarrow Q \times \Gamma \times \{-1, 1\}$

Operation of a DTM program

```
Input: finite string x \in \Sigma
  Initialize: write string in tape squares 1 to |x|, one symbol per square (all
  other tape squares are blank), state q = q_0, read-write head scans tape
  square 1
  while q \notin \{q_Y, q_N\} do
     look up (q', s'\Delta) := \delta(q, s) for current state q and read-write head
     pointing at square with symbol s
     erase s
    write s' in its place
     move one square to the left if \Delta = -1, one square to the right if \Delta = 1
    set q := q'
  end while
  if q = q_Y then
     return YES
  else
     return
             NO
  end if
```

Each iteration of the while-loop counts as a step

Time complexity of an algorithm Turing machines

A program for a DTM machine

$$\Gamma = \{0, 1, b\}, \ \Sigma = \{0, 1\}, \ Q = \{q + 0, q_1, q_2, q_Y, q_N\}$$

 $\delta(q,s)$

• Let's try this out!

Time complexity of an algorithm Turing machines

A program for a DTM machine

$$\Gamma = \{0, 1, b\}$$
, $\Sigma = \{0, 1\}$, $Q = \{q + 0, q_1, q_2, q_Y, q_N\}$

 $\delta(q,s)$

- Let's try this out!
- What does this program do?

Time complexity of an algorithm Turing machines

A program for a DTM machine

$$\Gamma = \{0, 1, b\}$$
, $\Sigma = \{0, 1\}$, $Q = \{q + 0, q_1, q_2, q_Y, q_N\}$

 $\delta(q,s)$

- Let's try this out!
- What does this program do?
- How many steps do we need?

Time complexity of an algorithm Turing machines

A program for a DTM machine

$$\Gamma = \{0, 1, b\}, \ \Sigma = \{0, 1\}, \ Q = \{q + 0, q_1, q_2, q_Y, q_N\}$$

 $\delta(q,s)$

- Let's try this out!
- What does this program do?
- How many steps do we need?
- How many steps would we need at most?

Time complexity of an algorithm Turing machines

A program for a DTM machine

$$\Gamma = \{0, 1, b\}$$
, $\Sigma = \{0, 1\}$, $Q = \{q + 0, q_1, q_2, q_Y, q_N\}$

$$\delta(q,s)$$

- Let's try this out!
- What does this program do?
- How many steps do we need?
- How many steps would we need at most?
- How much space do we need (at most)?

• Would you rather own a RAM, or a DTM?

• Would you rather own a RAM, or a DTM?

Equivalence of computational models

A RAM and a DTM are equivalent in the sense that any function that can be computed on a DTM can be computed on a RAM, and vice versa.

• Would you rather own a RAM, or a DTM?

Equivalence of computational models

A RAM and a DTM are equivalent in the sense that any function that can be computed on a DTM can be computed on a RAM, and vice versa.

Church-Turing thesis

Anything that can be calculated by an *effective method* can be computed by a deterministic Turing machine.

Time complexity of an algorithm Turing machines

Non-deterministic Turing machine

Non-deterministic Turing machine (NDTM)

- guessing module: write-only head
- Ochecking module: deterministic Turing machine

exactly the same as a DTM program:

- Inite set of tape symbols Γ of tape symbols, including blank symbol
- Inite set Q of states, i
- \bigcirc transition function δ

exactly the same as a DTM program:

- Inite set of tape symbols I of tape symbols, including blank symbol
- Inite set Q of states, i
- \bigcirc transition function δ

Operation of a NDTM program

• write input string in tape squares 1 to |x|

exactly the same as a DTM program:

- Inite set of tape symbols I of tape symbols, including blank symbol
- Inite set Q of states, i
- \bigcirc transition function δ

Operation of a NDTM program

- write input string in tape squares 1 to |x|
- guessing module: writes finite string of symbols from Γ in left tape squares starting from -1 in arbitrary manner

exactly the same as a DTM program:

- Inite set of tape symbols I of tape symbols, including blank symbol
- Inite set Q of states, i
- \bigcirc transition function δ

Operation of a NDTM program

- write input string in tape squares 1 to |x|
- guessing module: writes finite string of symbols from Γ in left tape squares starting from -1 in arbitrary manner
- o checking module: operates like a DTM

Operation of a NDTM program

- write input string in tape squares 1 to |x|
- guessing module: writes finite string of symbols from Γ in tape squares starting from -1 in arbitrary manner
- checking module: operates like a DTM

Note: For a given string x and a given NDTM program, there is an *infinite* number of possible computations possible (one for each 'guessed' string)
Operation of a NDTM program

- write input string in tape squares 1 to |x|
- guessing module: writes finite string of symbols from Γ in tape squares starting from -1 in arbitrary manner
- checking module: operates like a DTM

Note: For a given string x and a given NDTM program, there is an *infinite* number of possible computations possible (one for each 'guessed' string)

Terminology & definitions

Accepting computation: all computations that terminate in accepting state (q_Y) . Non-accepting computations: all computations that terminate in non-accepting-state (q_N) or do not terminate at all.

NDTM program M accepts x if there is an accepting computation for x on M.

The **time complexity** of an NDTM program for a string x is defined as the *minimum* running time over all accepting computations of x by M.

The worst-case time-complexity of an NDTM program is the maximum time complexity over all strings x of a certain length n that are accepted by n.

Time complexity of an algorithm Turing machines

Non-deterministic algorithm

non-deterministic algorithm $\hat{=}$ program for a non-deterministic Turing machine

- Oracle/guessing stage
- Onecking stage

time complexity of a non-deterministic algorithm $\hat{=}$ time complexity of the corresponding program

Time complexity of an algorithm Turing machines

Travelling Salesman Problem (TSP) - Decision version

Instance: cities $1, \ldots, n$; distances d(i, j); a bound B Question: does there exist a roundtrip of length at most B?

Time complexity of an algorithm Turing machines

Travelling Salesman Problem (TSP) - Decision version

Instance: cities $1, \ldots, n$; distances d(i, j); a bound B Question: does there exist a roundtrip of length at most B?

Non-deterministic algorithm for the TSP

Oracle:

• Specify sequence of edges.

Verification:

- Verify that sequence forms a tour that visits all cities.
- Compute tour length.
- Is tour length $\leq B$?
- What is the time complexity of this algorithm?

Time complexity of an algorithm Turing machines

Travelling Salesman Problem (TSP) - Decision version

Instance: cities $1, \ldots, n$; distances d(i, j); a bound B Question: does there exist a roundtrip of length at most B?

Non-deterministic algorithm for the TSP

Oracle:

• Specify sequence of edges.

Verification:

- Verify that sequence forms a tour that visits all cities.
- Compute tour length.
- Is tour length $\leq B$?
- What is the time complexity of this algorithm?

Warnings:

- The Church-Turing thesis relates to *deterministic* Turing machines.
- A non-deterministic Turing machine is a *theoretical* construct, not an actual machine!

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Worst-case complexity of problems

Polynomial growth rate:

• O(poly(n)) for some polynomial poly

P and NP How to prove that something is hard Reductions NP-hardness and NP-completeness

Worst-case complexity of problems

Polynomial growth rate:

• O(poly(n)) for some polynomial poly

Example: O(n); $O(n \log n)$; $O(n^3)$; $O(n^{100})$

Exponential growth rate:

• everything that grows faster than polynomial

P and NP How to prove that something is hard Reductions NP-hardness and NP-completeness

Worst-case complexity of problems

Polynomial growth rate:

• O(poly(n)) for some polynomial poly

Example: O(n); $O(n \log n)$; $O(n^3)$; $O(n^{100})$

Exponential growth rate:

• everything that grows faster than polynomial

Example: 2ⁿ; 3ⁿ; n!; 2^{2ⁿ}; nⁿ

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Worst-case complexity of problems

Polynomial growth rate:

• O(poly(n)) for some polynomial poly

Example: O(n); $O(n \log n)$; $O(n^3)$; $O(n^{100})$

Exponential growth rate:

• everything that grows faster than polynomial

```
Example: 2<sup>n</sup>; 3<sup>n</sup>; n!; 2<sup>2<sup>n</sup></sup>; n<sup>n</sup>
```

Intuition:

```
Polynomial = desirable, good, harmless, fast, short, small
Exponential = undesirable, bad, evil, slow, wasteful, horrible
```

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Worst-case complexity of problems

Polynomial growth rate:

• O(poly(n)) for some polynomial poly

Example: O(n); $O(n \log n)$; $O(n^3)$; $O(n^{100})$

Exponential growth rate:

• everything that grows faster than polynomial

```
Example: 2<sup>n</sup>; 3<sup>n</sup>; n!; 2<sup>2<sup>n</sup></sup>; n<sup>n</sup>
```

Intuition:

```
Polynomial = desirable, good, harmless, fast, short, small
Exponential = undesirable, bad, evil, slow, wasteful, horrible
```

Definition: Complexity class P

A decision problem X lies in the complexity class P,

- if it can be solved be a deterministic Turing machine in polynomial time.
- (or, alternatively:) if it is solved by an algorithm with polynomial time complexity

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Example: The Minimum Spanning Tree (MST) problem

Example of a minimization problem

- Given (adjacency list of) G = (V, E) and $w_e \in \mathbb{R}$ for every $e \in E$,
- Find a spanning tree $T \subseteq E$ minimizing $\sum_{e \in T} w_e$

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Example: The Minimum Spanning Tree (MST) problem

Example of a minimization problem

- Given (adjacency list of) G = (V, E) and $w_e \in \mathbb{R}$ for every $e \in E$,
- Find a spanning tree $T \subseteq E$ minimizing $\sum_{e \in T} w_e$

tree: edge-set without cycles (e.g. at most 1 path between 2 vertices)

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Example: The Minimum Spanning Tree (MST) problem

Example of a minimization problem

- Given (adjacency list of) G = (V, E) and $w_e \in \mathbb{R}$ for every $e \in E$,
- Find a spanning tree $T \subseteq E$ minimizing $\sum_{e \in T} w_e$

tree: edge-set without cycles (e.g. at most 1 path between 2 vertices) spanning: all vertices are incident to an edge

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

- Consider edges in ascending order of cost
- add the next edge to T unless doing so would create a cycle in T.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

- Consider edges in ascending order of cost
- add the next edge to T unless doing so would create a cycle in T.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

- Consider edges in ascending order of cost
- add the next edge to T unless doing so would create a cycle in T.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

- Consider edges in ascending order of cost
- add the next edge to T unless doing so would create a cycle in T.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

- Consider edges in ascending order of cost
- add the next edge to T unless doing so would create a cycle in T.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

- Consider edges in ascending order of cost
- add the next edge to T unless doing so would create a cycle in T.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

- Consider edges in ascending order of cost
- add the next edge to T unless doing so would create a cycle in T.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

- Consider edges in ascending order of cost
- add the next edge to T unless doing so would create a cycle in T.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

- Consider edges in ascending order of cost
- add the next edge to T unless doing so would create a cycle in T.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

- Consider edges in ascending order of cost
- add the next edge to T unless doing so would create a cycle in T.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

- Consider edges in ascending order of cost
- add the next edge to T unless doing so would create a cycle in T.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

- Consider edges in ascending order of cost
- add the next edge to T unless doing so would create a cycle in T.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

Computes a Minimum Spanning Tree T using a greedy approach:

- Consider edges in ascending order of cost
- add the next edge to T unless doing so would create a cycle in T.

Exercise: this always gives a MST (or see Chapter 23 CLRS)

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Kruskal's algorithm for Minimum Spanning Tree

Computes a Minimum Spanning Tree T using a greedy approach:

- Consider edges in ascending order of cost
- add the next edge to T unless doing so would create a cycle in T.

Exercise: this always gives a MST (or see Chapter 23 CLRS) Run-time $O(|E|^2)$ (if implemented naïvely); decision version in P

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Definition: Complexity class P

A decision problem X lies in the complexity class P,

- if it can be solved be a deterministic Turing machine in polynomial time.
- (or, alternatively:) if it is solved by an algorithm with polynomial time complexity.

Example: Minimum spanning tree (decision version) is in P.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Definition: Complexity class P

A decision problem X lies in the complexity class P,

- if it can be solved be a deterministic Turing machine in polynomial time.
- (or, alternatively:) if it is solved by an algorithm with polynomial time complexity.

Example: Minimum spanning tree (decision version) is in P.

Definition: Complexity class NP

A decision problem X lies in the complexity class NP, if

• if it can be solved in polynomial time on a non-deterministic Turing machine.

Definition: Complexity class P

A decision problem X lies in the complexity class P,

- if it can be solved be a deterministic Turing machine in polynomial time.
- (or, alternatively:) if it is solved by an algorithm with polynomial time complexity.

Example: Minimum spanning tree (decision version) is in P.

Definition: Complexity class NP

A decision problem X lies in the complexity class NP, if

- if it can be solved in polynomial time on a non-deterministic Turing machine.
- (or, alternatively:) if it is solved by a *non-deterministic* algorithm with polynomial time complexity.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Definition: Complexity class P

A decision problem X lies in the complexity class P,

- if it can be solved be a deterministic Turing machine in polynomial time.
- (or, alternatively:) if it is solved by an algorithm with polynomial time complexity.

Example: Minimum spanning tree (decision version) is in P.

Definition: Complexity class NP

A decision problem X lies in the complexity class NP, if

- if it can be solved in polynomial time on a non-deterministic Turing machine.
- (or, alternatively:) if it is solved by a *non-deterministic* algorithm with polynomial time complexity.

Example: Traveling Salesman (decision version) is in NP.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Definition: Complexity class P

A decision problem X lies in the complexity class P,

- if it can be solved be a deterministic Turing machine in polynomial time.
- (or, alternatively:) if it is solved by an algorithm with polynomial time complexity.

Example: Minimum spanning tree (decision version) is in P.

Definition: Complexity class NP

A decision problem X lies in the complexity class NP, if

- if it can be solved in polynomial time on a non-deterministic Turing machine.
- (or, alternatively:) if it is solved by a *non-deterministic* algorithm with polynomial time complexity.
- (or, alternatively:) if the YES-instances of X possess certificates of polynomial length that can be verified in polynomial time.

Example: Traveling Salesman (decision version) is in NP.

What is this course about?	P and NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Travelling Salesman Problem (TSP) - Decision version

Instance: cities $1, \ldots, n$; distances d(i, j); a bound B Question: does there exist a roundtrip of length at most B?

Non-deterministic algorithm for the TSP

Oracle:

• Specify sequence of edges.

Verification:

- Verify that sequence forms a tour that visits all cities.
- Compute tour length.
- Is tour length $\leq B$?

What is this course about?	P and NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Travelling Salesman Problem (TSP) - Decision version

Instance: cities $1, \ldots, n$; distances d(i, j); a bound B Question: does there exist a roundtrip of length at most B?

Non-deterministic algorithm for the TSP

Oracle:

• Specify sequence of edges.

Verification:

- Verify that sequence forms a tour that visits all cities.
- Compute tour length.
- Is tour length $\leq B$?

NP-certificate Satisfiability

Let X be a set of logical variables.

- Truth assignment: $t: X \rightarrow \{true, false\}$
- Literals: We call x and $\neg x$ literals corresponding to variable $x \in X$. x it 'true' $\Leftrightarrow \neg x$ is false

P and NP

Reductions

How to prove that something is hard?

NP-hardness and NP-completeness

• Clause over X: disjunction of literals $(I_1 \vee I_2 \vee \ldots I_j)$.
NP-certificate Satisfiability

Let X be a set of logical variables.

- Truth assignment: $t : X \rightarrow \{true, false\}$
- Literals: We call x and $\neg x$ literals corresponding to variable $x \in X$. x it 'true' $\Leftrightarrow \neg x$ is false

P and NP

Reductions

How to prove that something is hard?

NP-hardness and NP-completeness

• Clause over X: disjunction of literals $(I_1 \vee I_2 \vee \ldots I_j)$.

Satisfiability (SAT)

Instance:

a set of logical variables $X := \{x_1, \ldots, x_n\}$ and a set of clauses C over X

Question: does there exist a truth assignment for X that simulsatisfies all clauses in C?

NP-certificate Satisfiability

Let X be a set of logical variables.

- Truth assignment: $t : X \rightarrow \{true, false\}$
- Literals: We call x and $\neg x$ literals corresponding to variable $x \in X$. x it 'true' $\Leftrightarrow \neg x$ is false

P and NP

Reductions

How to prove that something is hard?

NP-hardness and NP-completeness

• Clause over X: disjunction of literals $(I_1 \vee I_2 \vee \ldots I_j)$.

Satisfiability (SAT)

Instance:

a set of logical variables $X := \{x_1, \ldots, x_n\}$ and a set of clauses C over X

Question: does there exist a truth assignment for X that simulsatisfies all clauses in C?

3-SAT: all clauses consist of 3 literals.

NP-certificate Satisfiability

Let X be a set of logical variables.

- Truth assignment: $t : X \rightarrow \{true, false\}$
- Literals: We call x and $\neg x$ literals corresponding to variable $x \in X$. x it 'true' $\Leftrightarrow \neg x$ is false
- Clause over X: disjunction of literals $(I_1 \vee I_2 \vee \ldots I_j)$.

Satisfiability (SAT)

Instance:

a set of logical variables $X := \{x_1, \ldots, x_n\}$ and a set of clauses C over X

Question: does there exist a truth assignment for X that simulsatisfies all clauses in C?

3-SAT: all clauses consist of 3 literals.

Examples

$$C = \{(x \lor y \lor z), (\neg x \lor \neg y \lor \neg z)\}$$

$$C = \{(x \lor y), (\neg x \lor y), (x \lor \neg y), (\neg x \lor \neg y)\}$$

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-certificate Satisfiability

Let X be a set of logical variables.

- Truth assignment: $t: X \rightarrow \{true, false\}$
- Literals: We call x and $\neg x$ literals corresponding to variable $x \in X$. x it 'true' $\Leftrightarrow \neg x$ is false
- Clause over X: disjunction of literals $(I_1 \vee I_2 \vee \ldots I_j)$.

Satisfiability (SAT)

Instance:

a set of logical variables $X := \{x_1, \ldots, x_n\}$ and a set of clauses C over X

Question: does there exist a truth assignment for X that simulsatisfies all clauses in C?

3-SAT: all clauses consist of 3 literals.

Examples

$$C = \{(x \lor y \lor z), (\neg x \lor \neg y \lor \neg z)\}$$

$$C = \{(x \lor y), (\neg x \lor y), (x \lor \neg y), (\neg x \lor \neg y)\}$$

Question

What's a good NP-certificate for SAT?

P and NP How to prove that something is hard?

Reductions NP-hardness and NP-completeness

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-certificate Integer programming

Integer linear programming (ILP)

Instance: an integer matrix A; an integer vector b

Question: does there exist an integer vector x with $Ax \leq b$?

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-certificate Integer programming

Integer linear programming (ILP)

Instance: an integer matrix A; an integer vector b

Question: does there exist an integer vector x with $Ax \leq b$?

Question

What's a good NP-certificate for ILP?

NP-certificate Exact cover

Exact cover (Ex-Cov)

Instance: a ground set X; subsets S_1, \ldots, S_m of X

Question: do there exist some subsets S_i that form a partition of X?

P and NP

Reductions

How to prove that something is hard?

NP-hardness and NP-completeness

NP-certificate Exact cover

Exact cover (Ex-Cov)

Instance: a ground set X; subsets S_1, \ldots, S_m of X

Question: do there exist some subsets S_i that form a partition of X?

P and NP

Reductions

How to prove that something is hard?

NP-hardness and NP-completeness

NP-certificate Exact cover

Exact cover (Ex-Cov)

Instance: a ground set X; subsets S_1, \ldots, S_m of X

Question: do there exist some subsets S_i that form a partition of X?

P and NP

Reductions

How to prove that something is hard?

NP-hardness and NP-completeness

Question

What's a good NP-certificate for Ex-Cov?

NP-certificate Subset Sum

P and NP

How to prove that something is hard? Reductions NP-hardness and NP-completeness

Subset Sum (SS)

Instance: positive integers a_1, \ldots, a_n ; a bound b

Question: does there exist an index set $I \subseteq \{1, ..., n\}$ with $\sum_{i \in I} a_i = b$?

NP-certificate Subset Sum

Pand NP

How to prove that something is hard? Reductions NP-hardness and NP-completeness

Subset Sum (SS)

Instance: positive integers a_1, \ldots, a_n ; a bound b

Question: does there exist an index set $I \subseteq \{1, ..., n\}$ with $\sum_{i \in I} a_i = b$?

Example: $(a_1, \ldots, a_{12}) = (1, \ldots, 12), b = 50$. Yes or no instance?

NP-certificate Subset Sum

Pand NP

How to prove that something is hard? Reductions NP-hardness and NP-completeness

Subset Sum (SS)

Instance: positive integers a_1, \ldots, a_n ; a bound b

Question: does there exist an index set $I \subseteq \{1, ..., n\}$ with $\sum_{i \in I} a_i = b$?

Example: $(a_1, \ldots, a_{12}) = (1, \ldots, 12), b = 50$. Yes or no instance? Yes: 1 + 2 + 3 + 4 + 6 + 7 + 8 + 9 + 10 = 50.

NP-certificate Subset Sum

P and NP

How to prove that something is hard? Reductions NP-hardness and NP-completeness

Subset Sum (SS)

Instance: positive integers a_1, \ldots, a_n ; a bound b

Question: does there exist an index set $I \subseteq \{1, ..., n\}$ with $\sum_{i \in I} a_i = b$?

Example: $(a_1, \ldots, a_{12}) = (1, \ldots, 12), b = 50$. Yes or no instance? Yes: 1 + 2 + 3 + 4 + 6 + 7 + 8 + 9 + 10 = 50.

Question

What's a good NP-certificate for SS?

P versus NP

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

- P = class of all problems that are easy to solve P stands for Polynomial Time
- NP = huge class of problems that fulfill some soft condition NP contains lots of interesting and important decision problems NP stands for Non-deterministic Polynomial Time

P versus NP

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

- P = class of all problems that are easy to solve P stands for Polynomial Time
- NP = huge class of problems that fulfill some soft condition NP contains lots of interesting and important decision problems NP stands for Non-deterministic Polynomial Time

Big open question

P=NP ????

P versus NP

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

- P = class of all problems that are easy to solve P stands for Polynomial Time
- NP = huge class of problems that fulfill some soft condition NP contains lots of interesting and important decision problems NP stands for Non-deterministic Polynomial Time

Big open question

P=NP ????

Answer YES:

- would trigger a revolution in computing
- if a short solution exists, it can be found quickly

P versus NP

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

- P = class of all problems that are easy to solve P stands for Polynomial Time
- NP = huge class of problems that fulfill some soft condition NP contains lots of interesting and important decision problems NP stands for Non-deterministic Polynomial Time

Big open question

P=NP ????

Answer YES:

- would trigger a revolution in computing
- if a short solution exists, it can be found quickly

Answer NO:

- that's what most people expect
- even very short solutions may be very hard to find

What is this course about?	Pand NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

To prove that a problem

- can be solved in $O(n \log n)$, $O(n^3)$, etc
- is in P
- is in NP

is straightforward (although not always easy):

What is this course about?	Pand NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

To prove that a problem

- can be solved in $O(n \log n)$, $O(n^3)$, etc
- is in P
- is in NP

is straightforward (although not always easy):

 \rightarrow Find an algorithm that runs in time $O(n \log n) / O(n^3) / \dots /$ polynomial time / non-deterministic polynomial time.

What is this course about?	Pand NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

To prove that a problem

- can be solved in $O(n \log n)$, $O(n^3)$, etc
- is in P
- is in NP

is straightforward (although not always easy):

 \rightarrow Find an algorithm that runs in time $O(n \log n) / O(n^3) / \dots /$ polynomial time / non-deterministic polynomial time.

How do we prove that a problem cannot be solved in a certain time?

What is this course about?	P and NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

"I can't find an efficient algorithm, I guess I'm just too dumb."

What is this course about?	P and NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

"I can't find an efficient algorithm, because no such algorithm is possible!"

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Proving lower bounds (short note)

Example: Find maximum element from unsorted list

Input: A list of numbers $m_1, m_2, ..., m_n$, a number M. **Question:** Is there an element $\geq M$ in the list.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Proving lower bounds (short note)

Example: Find maximum element from unsorted list

Input: A list of numbers $m_1, m_2, ..., m_n$, a number M. **Question:** Is there an element $\geq M$ in the list.

How fast can you solve this problem?

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Proving lower bounds (short note)

Example: Find maximum element from unsorted list

Input: A list of numbers $m_1, m_2, ..., m_n$, a number M. **Question**: Is there an element $\geq M$ in the list.

How fast can you solve this problem?

- can be done in time O(n)
- requires time $\Omega(n)$
- thus: $\Theta(n)$

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Proving lower bounds (short note)

Example: Find maximum element from unsorted list

```
Input: A list of numbers m_1, m_2, ..., m_n, a number M.
Question: Is there an element \geq M in the list.
```

How fast can you solve this problem?

- can be done in time O(n)
- requires time $\Omega(n)$
- thus: $\Theta(n)$

Note: Most problems need time $\Omega(n)$ to be solved. Can you think of one that does not?

What is this course about?	Pand NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Input: A sequence of *n* numbers (a_1, a_2, \ldots, a_n) **Task:** Create a permutation $(a'_1, a'_2, \ldots, a'_n)$ of the input sequence such that $a'_i \leq a'_2 \leq \%$ *ldots* $\leq a'_n$

• Insertion sort needs $O(n^2)$ in the worst case.

What is this course about?	Pand NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Input: A sequence of *n* numbers (a_1, a_2, \ldots, a_n) **Task:** Create a permutation $(a'_1, a'_2, \ldots, a'_n)$ of the input sequence such that $a'_i \leq a'_2 \leq \%$ *ldots* $\leq a'_n$

- Insertion sort needs $O(n^2)$ in the worst case.
- Other sorting algorithms (like Merge Sort) need $O(n \log n)$ (see CLRS)

What is this course about?	Pand NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Input: A sequence of *n* numbers (a_1, a_2, \ldots, a_n) **Task:** Create a permutation $(a'_1, a'_2, \ldots, a'_n)$ of the input sequence such that $a'_i \leq a'_2 \leq \%$ *Idots* $\leq a'_n$

- Insertion sort needs $O(n^2)$ in the worst case.
- Other sorting algorithms (like Merge Sort) need $O(n \log n)$ (see CLRS)
- Can we sort in O(n)?

What is this course about?	Pand NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Input: A sequence of *n* numbers (a_1, a_2, \ldots, a_n) **Task:** Create a permutation $(a'_1, a'_2, \ldots, a'_n)$ of the input sequence such that $a'_i \leq a'_2 \leq \%$ /dots $\leq a'_n$

- Insertion sort needs $O(n^2)$ in the worst case.
- Other sorting algorithms (like Merge Sort) need $O(n \log n)$ (see CLRS)
- Can we sort in O(n)?

Information theoretic lower bound on sorting (sketch)

There are n! different permutations of n numbers.

What is this course about?	Pand NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Input: A sequence of *n* numbers (a_1, a_2, \ldots, a_n) **Task:** Create a permutation $(a'_1, a'_2, \ldots, a'_n)$ of the input sequence such that $a'_i \leq a'_2 \leq \%$ /dots $\leq a'_n$

- Insertion sort needs $O(n^2)$ in the worst case.
- Other sorting algorithms (like Merge Sort) need $O(n \log n)$ (see CLRS)
- Can we sort in O(n)?

Information theoretic lower bound on sorting (sketch)

There are *n*! different permutations of *n* numbers.

An algorithm that sorts all of them correctly, needs to follow a different sequence of steps for each of them.

What is this course about?	Pand NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Input: A sequence of *n* numbers (a_1, a_2, \ldots, a_n) **Task:** Create a permutation $(a'_1, a'_2, \ldots, a'_n)$ of the input sequence such that $a'_i \leq a'_2 \leq \%$ /dots $\leq a'_n$

- Insertion sort needs $O(n^2)$ in the worst case.
- Other sorting algorithms (like Merge Sort) need $O(n \log n)$ (see CLRS)
- Can we sort in O(n)?

Information theoretic lower bound on sorting (sketch)

There are n! different permutations of n numbers. An algorithm that sorts all of them correctly, needs to follow a different sequence of steps for each of them. Thus it needs at least $\log_2(n!)$ steps.

What is this course about?	Pand NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Input: A sequence of *n* numbers (a_1, a_2, \ldots, a_n) **Task:** Create a permutation $(a'_1, a'_2, \ldots, a'_n)$ of the input sequence such that $a'_i \leq a'_2 \leq \%$ /dots $\leq a'_n$

- Insertion sort needs $O(n^2)$ in the worst case.
- Other sorting algorithms (like Merge Sort) need $O(n \log n)$ (see CLRS)
- Can we sort in O(n)?

Information theoretic lower bound on sorting (sketch)

There are *n*! different permutations of *n* numbers.

An algorithm that sorts all of them correctly, needs to follow a different sequence of steps for each of them.

Thus it needs at least $\log_2(n!)$ steps.

$$\begin{aligned} \log_2(n!) &= \log_2(n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1) = \log_2(n) + \log_2(n-1) + \ldots + \log(2) + \log(1) \\ &= \sum_{i=1}^n \log_2(i) = \sum_{i=1}^{\frac{n}{2}-1} \log_2(i) \sum_{i=\frac{n}{2}}^n \log_2(i) \ge 0 + \sum_{i=\frac{n}{2}}^n \log_2(\frac{n}{2}) = \frac{n}{2} \log_2(\frac{n}{2}) = \Omega(n \log(n)) \end{aligned}$$

What is this course about?	P and NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Input: A sequence of *n* numbers (a_1, a_2, \ldots, a_n) **Task:** Create a permutation $(a'_1, a'_2, \ldots, a'_n)$ of the input sequence such that $a'_i \leq a'_2 \leq \%$ /dots $\leq a'_n$

- Insertion sort needs $O(n^2)$ in the worst case.
- Other sorting algorithms (like Merge Sort) need $O(n \log n)$ (see CLRS)
- Can we sort in O(n)?

Information theoretic lower bound on sorting (sketch)

There are *n*! different permutations of *n* numbers.

An algorithm that sorts all of them correctly, needs to follow a different sequence of steps for each of them.

Thus it needs at least $\log_2(n!)$ steps.

$$\log_2(n!) = \log_2(n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1) = \log_2(n) + \log_2(n-1) + \ldots + \log(2) + \log(1)$$

$$=\sum_{i=1}^{n}\log_{2}(i)=\sum_{i=1}^{\frac{n}{2}-1}\log_{2}(i)\sum_{i=\frac{n}{2}}^{n}\log_{2}(i)\geq 0+\sum_{i=\frac{n}{2}}^{n}\log_{2}(\frac{n}{2})=\frac{n}{2}\log_{2}(\frac{n}{2})=\Omega(n\log(n))$$

For a more extensive proof, see here https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf

What is this course about?	P and NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

3-Satisfiability (3-SAT)

Instance:

a set of logical variables $X := \{x_1, \ldots, x_n\}$ and a set of clauses C of three literals over X

Question: does there exist a truth assignment for X that simulsatisfies all clauses in C?

What is this course about?	P and NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

3-Satisfiability (3-SAT)

Instance:

a set of logical variables $X := \{x_1, \ldots, x_n\}$ and a set of clauses C of three literals over X

Question: does there exist a truth assignment for X that simulsatisfies all clauses in C?

From stackexchange

```
(https://cstheory.stackexchange.com/questions/1060/best-upper-bounds-on-sat?rq=1 and
https://cstheory.stackexchange.com/questions/93/what-are-the-best-current-lower-bounds-on-3sat)
(retrieved 13.9.19)
```

- Best found non-randomized algorithm (for 3-SAT) seems to be 1.32793ⁿ
- Best found randomized algorithm similar $(O(1.321^n)?)$
- No one so far has been able to prove $\Omega(n^2)$
| What is this course about? | Pand NP |
|--|--------------------------------------|
| Basic concepts | How to prove that something is hard? |
| Computational models and worst-case time complexity of algorithm | Reductions |
| Worst-case complexity of problems | NP-hardness and NP-completeness |

Lower bounds on problem complexity tend to be rare / weak / difficult to prove.

 \rightarrow We look at a different approach.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

"I can't find an efficient algorithm, but neither can all these famous people."

Reductions

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Definition

For two decision problems X and Y, we say that X (polynomially) reduces to Y (and we write $X \leq_p Y$) if there exists a polynomial time transformation f that translates instance of X into instances of Y with $I \in YES(X) \iff f(I) \in YES(Y)$.

Often, we omit the word 'polynomially' and just say that X reduces to Y.

Reductions

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Definition

For two decision problems X and Y, we say that X (polynomially) **reduces** to Y (and we write $X \leq_p Y$) if there exists a polynomial time transformation f that translates instance of X into instances of Y with $I \in YES(X) \iff f(I) \in YES(Y)$.

Often, we omit the word 'polynomially' and just say that X reduces to Y.

Intuition:

- X can be modelled as a special case of Y
- the 'computational hardness' of X is upper bounded by Y's
- If Y is easy, then also X is easy
- If X is difficult, then also Y is difficult

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Hamiltonian cycle / TSP

Hamiltonian cycle (HC)

Instance: an undirected graph G = (V, E)Question: does G contain a Hamiltonian cycle? (a simple cycle that visits every vertex exactly once)

Travelling Salesman Problem (TSP)

Instance: cities $1, \ldots, n$; distances d(i, j); a bound B Question: does there exist a roundtrip of length at most B?

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Hamiltonian cycle / TSP

Hamiltonian cycle (HC)

Instance: an undirected graph G = (V, E)Question: does G contain a Hamiltonian cycle? (a simple cycle that visits every vertex exactly once)

Travelling Salesman Problem (TSP)

Instance: cities $1, \ldots, n$; distances d(i, j); a bound B Question: does there exist a roundtrip of length at most B?

What is this course about?	Pand NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Instance: a graph G = (V, E); an integer k Question: does G contain a clique of size (at least) k?

Theorem

SAT \leq_{p} CLIQUE.

Proof:

What is this course about?	Pand NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Instance: a graph G = (V, E); an integer k Question: does G contain a clique of size (at least) k?

Theorem

SAT \leq_{p} CLIQUE.

Proof: Given a set of clauses $\{c_1, c_2, \ldots, c_m\}$, over x_1, \ldots, x_n

What is this course about?	P and NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Instance: a graph G = (V, E); an integer k Question: does G contain a clique of size (at least) k?

Theorem

SAT \leq_{p} CLIQUE.

Proof: Given a set of clauses $\{c_1, c_2, \ldots, c_m\}$, over x_1, \ldots, x_n define instance instance of clique (our function f):

What is this course about?	Pand NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Instance: a graph G = (V, E); an integer k Question: does G contain a clique of size (at least) k?

Theorem

SAT \leq_{p} CLIQUE.

Proof: Given a set of clauses $\{c_1, c_2, \ldots, c_m\}$, over x_1, \ldots, x_n define instance instance of clique (our function f):

$$V = \{(I, i)|I \text{ is a literal in } c_i\}$$
$$E = \{\{(I, i), (I', i')\}|I \neq \neg I' \land i \neq i'\}$$
$$k = m$$

What is this course about?	P and NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Lemma

Reducibility is a transitive relation: $X \leq_p Y$ and $Y \leq_p Z$ implies $X \leq_p Z$

What is this course about?	P and NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Lemma

Reducibility is a transitive relation: $X \leq_p Y$ and $Y \leq_p Z$ implies $X \leq_p Z$

Proof: by putting the two tranformations into series

NP-hardness

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Definition

A decision problem X is NP-hard, if **all** problems $Y \in NP$ can be reduced to it (that is, if $Y \leq_p X$ holds for all $Y \in NP$)

NP-hardness

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Definition

A decision problem X is NP-hard, if **all** problems $Y \in NP$ can be reduced to it (that is, if $Y \leq_p X$ holds for all $Y \in NP$)

Definition

A decision problem X is NP-complete, if $X \in NP$ and X is NP-hard.

NP-hardness

Definition

A decision problem X is NP-hard, if **all** problems $Y \in NP$ can be reduced to it (that is, if $Y \leq_{p} X$ holds for all $Y \in NP$)

Definition

A decision problem X is NP-complete, if $X \in NP$ and X is NP-hard.

Intuition:

- NP-complete problems are the hardest problems in NP
- Recall: NP is huge and contains tons of important problems
- Some people consider NP-complete problems to be intractable.

P and NP

Reductions

How to prove that something is hard?

NP-hardness and NP-completeness

NP-hardness

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Theorem

If one NP-complete problem X has a polynomial time algorithm then all NP-complete problems have polynomial time algorithms (and hence P=NP)

NP-hardness

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Theorem

If one NP-complete problem X has a polynomial time algorithm then all NP-complete problems have polynomial time algorithms (and hence P=NP)

Why?

NP-hardness

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Theorem

If one NP-complete problem X has a polynomial time algorithm then all NP-complete problems have polynomial time algorithms (and hence P=NP)

Why? Can reduce to X and then solve produced instance of X.

What is this course about?	Pand NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

"I can't find an efficient algorithm, but neither can all these famous people."

What is this course about?	P and NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Cook-Levin theorem (1971)

SAT is NP-complete.

What is this course about?	Pand NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Cook-Levin theorem (1971)

SAT is NP-complete.

- Stephen Cook (born 1939): American-Canadian computer scientist and mathematician
- Leonid Levin (born 1948): Russian computer scientist, discovered the result somewhat earlier

	What is this course about?
	Basic concepts
Computational models	and worst-case time complexity of algorithm
	Worst-case complexity of problems

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Proof of Cook-Levin

Variable	Range	Intended meaning
Q[i, k]	$0 \leq i \leq p(n), 0 \leq$	at time i , M is in state k
	$k \leq Q $	
H[i, j]	$0 \leq i \leq p(n),$	at time <i>i</i> , the read-write head of <i>M</i> scans
	$-p(n) \leq j \leq p(n)+$	tape square <i>j</i>
	1	
S[i, j, k]	$0 \leq i \leq p(n),$	at time <i>i</i> , the entry on tape square <i>j</i> is <i>s_k</i>
	$-p(n) \leq j \leq p(n)+$	
	1, 0 $\leq k \leq \Gamma $	

What is this co	urse about?
Ba	sic concepts
Computational models and worst-case time complex	xity of algorithm
Worst-case complexity	of problems

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Proof of Cook-Levin

Variable	Range	Intended meaning
Q[i, k]	$0 \leq i \leq p(n), 0 \leq$	at time <i>i</i> , <i>M</i> is in state <i>k</i>
	$k \leq Q $	
H[i, j]	$0 \leq i \leq p(n),$	at time <i>i</i> , the read-write head of <i>M</i> scans
	$-p(n) \leq j \leq p(n)+$	tape square j
	1	
S[i, j, k]	$0 \leq i \leq p(n),$	at time i , the entry on tape square j is s_k
	$-p(n) \leq j \leq p(n) +$	
	1, 0 $\leq k \leq \Gamma $	

1			
clause gro	up	restriction	Imposed

at each time <i>i</i> , <i>M</i> is in exactly one state
at each time <i>i</i> , the read-write head is scanning exactly one tape
square
at each time <i>i</i> , each tape square contains exactly one symbol
from I
at time 0, the computation is in the initial configuration of its checking stage for input x
By time $p(n)$, M has entered state q_y and hence has accepted x
For each time i the configuration of M at time $i+1$ follows by a single application of the transition function δ from the configuration at time i

Proof of Cook-Levin

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

G_1 : at each time *i*, *M* is in exactly one state

Variable	Range	Intended meaning
Q[i, k]	$0 \leq i \leq p(n), 0 \leq$	at time <i>i</i> , <i>M</i> is in state <i>k</i>
	$k \leq Q $	
H[i, j]	$0 \leq i \leq p(n),$	at time <i>i</i> , the read-write head of <i>M</i> scans
	$-p(n) \leq j \leq p(n) +$	tape square <i>j</i>
	1	
S[i, j, k]	$0 \leq i \leq p(n),$	at time i , the entry on tape square j is s_k
	$-p(n) \leq j \leq p(n) +$	
	1, 0 $\leq k \leq \Gamma $	

Proof of Cook-Levin

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

G_1 : at each time *i*, *M* is in exactly one state

$Q[i,0] \lor Q[i,1] \lor \ldots \lor Q[i,r]$	for all $0 \leq i \leq p(n)$
$ eg Q[i,j] \lor \neg Q[i,j']$	for all $0 \le i \le p(n), 0 \le j \le j' \le r$

Variable	Range	Intended meaning
Q[i, k]	$0 \leq i \leq p(n), 0 \leq$	at time <i>i</i> , <i>M</i> is in state <i>k</i>
	$k \leq Q $	
H[i, j]	$0 \leq i \leq p(n),$	at time i , the read-write head of M scans
	$-p(n) \leq j \leq p(n)+$	tape square <i>j</i>
	1	
S[i, j, k]	$0 \leq i \leq p(n),$	at time i , the entry on tape square j is s_k
	$-p(n) \leq j \leq p(n) +$	
	1, $0 \leq k \leq \Gamma $	

Proof of Cook-Levin

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

G_2 : at each time *i*, the read-write head is scanning exactly one tape square

Variable	Range	Intended meaning
Q[i, k]	$0 \leq i \leq p(n), 0 \leq$	at time <i>i</i> , <i>M</i> is in state <i>k</i>
	$k \leq Q $	
H[i, j]	$0 \leq i \leq p(n),$	at time <i>i</i> , the read-write head of <i>M</i> scans
	$-p(n) \leq j \leq p(n)+$	tape square <i>j</i>
	1	
S[i, j, k]	$0 \leq i \leq p(n),$	at time <i>i</i> , the entry on tape square <i>j</i> is <i>s_k</i>
	$-p(n) \leq j \leq p(n) +$	
	1, 0 $\leq k \leq \Gamma $	

Proof of Cook-Levin

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

G_2 : at each time *i*, the read-write head is scanning exactly one tape square

Variable	Range	Intended meaning
Q[i, k]	$0 \leq i \leq p(n), 0 \leq$	at time <i>i</i> , <i>M</i> is in state <i>k</i>
	$k \leq Q $	
H[i, j]	$0 \leq i \leq p(n),$	at time <i>i</i> , the read-write head of <i>M</i> scans
	$-p(n) \leq j \leq p(n) +$	tape square <i>j</i>
	1	
S[i, j, k]	$0 \leq i \leq p(n),$	at time i , the entry on tape square j is s_k
	$-p(n) \leq j \leq p(n) +$	
	1, 0 \leq k \leq $ \Gamma $	

Proof of Cook-Levin

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

G_3 : at each time i, each tape square contains at least one symbol from Γ

Variable	Range	Intended meaning
Q[i, k]	$0 \leq i \leq p(n), 0 \leq$	at time <i>i</i> , <i>M</i> is in state <i>k</i>
	$k \leq Q $	
H[i, j]	$0 \leq i \leq p(n),$	at time <i>i</i> , the read-write head of <i>M</i> scans
	$-p(n) \leq j \leq p(n)+$	tape square <i>j</i>
	1	
S[i, j, k]	$0 \leq i \leq p(n),$	at time i , the entry on tape square j is s_k
	$-p(n) \leq j \leq p(n)+$	
	1, 0 $\leq k \leq \Gamma $	

Proof of Cook-Levin

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

G_3 : at each time i, each tape square contains at least one symbol from Γ

$S[i, j, 0] \vee S[i, j, 1] \vee \ldots \vee S[i, j, \Gamma]$	for all $0 \leq i \leq p(n), -p(n) \leq j \leq p(n) + 1$
$ eg S[i,j,k] \lor eg S[i,j,k']$	for all $0 \leq i \leq p(n), -p(n) \leq j \leq p(n)+1, \ 0 \leq k \leq n$

Variable	Range	Intended meaning
Q [<i>i</i> , <i>k</i>]	$0 \leq i \leq p(n), 0 \leq$	at time <i>i</i> , <i>M</i> is in state <i>k</i>
	$k \leq Q $	
H[i, j]	$0 \leq i \leq p(n),$	at time i , the read-write head of M scans
	$-p(n) \leq j \leq p(n) +$	tape square <i>j</i>
	1	
S[i, j, k]	$0 \leq i \leq p(n),$	at time i , the entry on tape square j is s_k
	$-p(n) \leq j \leq p(n) +$	
	1, 0 $\leq k \leq \Gamma $	

Proof of Cook-Levin

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

${\it G}_4:$ at time 0, the computation is in the initial configuration of its checking stage for input x

Variable	Range	Intended meaning
Q[i, k]	$0 \leq i \leq p(n), 0 \leq$	at time <i>i</i> , <i>M</i> is in state <i>k</i>
	$k \leq Q $	
H[i, j]	$0 \leq i \leq p(n),$	at time <i>i</i> , the read-write head of <i>M</i> scans
	$-p(n) \leq j \leq p(n)+$	tape square <i>j</i>
	1	
S[i, j, k]	$0 \leq i \leq p(n),$	at time i , the entry on tape square j is s_k
	$-p(n) \leq j \leq p(n)+$	
	1, 0 $\leq k \leq \Gamma $	

Proof of Cook-Levin

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

 $G_4:$ at time 0, the computation is in the initial configuration of its checking stage for input \boldsymbol{x}

Q[0, 0], H[0, 1], S[0, 0, 0] $S[0, 1, k_1], S[0, 2, k_2], \dots, S[0, n, k_n],$ $S[0, n + 1, 0], S[0, n + 2, 0], \dots, S[0, p(n) + 1, 0]$

with
$$x = (s_{k_1}, s_{k_2}, ..., s_{k_n})$$

Variable	Range	Intended meaning
Q[i, k]	$0 \leq i \leq p(n), 0 \leq$	at time <i>i</i> , <i>M</i> is in state <i>k</i>
	$k \leq Q $	
H[i, j]	$0 \leq i \leq p(n),$	at time <i>i</i> , the read-write head of <i>M</i> scans
	$-p(n) \leq j \leq p(n) +$	tape square <i>j</i>
	1	
S[i, j, k]	$0 \leq i \leq p(n),$	at time i , the entry on tape square j is s_k
	$-p(n) \leq j \leq p(n) +$	
	1, $0 \leq k \leq \Gamma $	

Proof of Cook-Levin

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

G_5 : by time p(n), M has entered state q_y

Variable	Range	Intended meaning
Q[i, k]	$0 \leq i \leq p(n), 0 \leq$	at time <i>i</i> , <i>M</i> is in state <i>k</i>
	$k \leq Q $	
H[i, j]	$0 \leq i \leq p(n),$	at time <i>i</i> , the read-write head of <i>M</i> scans
	$-p(n) \leq j \leq p(n) +$	tape square <i>j</i>
	1	
S[i, j, k]	$0 \leq i \leq p(n),$	at time i , the entry on tape square j is s_k
	$-p(n) \leq j \leq p(n) +$	
	1, 0 $\leq k \leq \Gamma $	

Proof of Cook-Levin

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

G_5 : by time p(n), M has entered state q_y

Q[p(n),1]

Variable	Range	Intended meaning
Q [i, k]	$0 \leq i \leq p(n), 0 \leq$	at time <i>i</i> , <i>M</i> is in state <i>k</i>
	$k \leq Q $	
H[i, j]	$0 \leq i \leq p(n),$	at time <i>i</i> , the read-write head of <i>M</i> scans
	$-p(n) \leq j \leq p(n)+$	tape square <i>j</i>
	1	
S[i, j, k]	$0 \leq i \leq p(n),$	at time i , the entry on tape square j is s_k
	$-p(n) \leq j \leq p(n) +$	
	1, 0 $\leq k \leq \Gamma $	

Proof of Cook-Levin

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

G_6 : Changes according to transition function

Variable	Range	Intended meaning
Q[i, k]	$0 \leq i \leq p(n), 0 \leq$	at time <i>i</i> , <i>M</i> is in state <i>k</i>
	$k \leq Q $	
H[i, j]	$0 \leq i \leq p(n),$	at time i , the read-write head of M scans
	$-p(n) \leq j \leq p(n) +$	tape square <i>j</i>
	1	
S[i, j, k]	$0 \leq i \leq p(n),$	at time i , the entry on tape square j is s_k
	$-p(n) \leq j \leq p(n) +$	
	1, 0 $\leq k \leq \Gamma $	

Proof of Cook-Levin

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

G_6 : Changes according to transition function

$$\begin{array}{l} \neg H[i,j] \lor \neg Q[i,k] \lor \neg S[i,j,l] \lor H[i+1,j+\Delta] \\ \neg H[i,j] \lor \neg Q[i,k] \lor \neg S[i,j,l] \lor Q[i+1,k'] \\ \neg H[i,j] \lor \neg Q[i,k] \lor \neg S[i,j,l] \lor S[i+1,j,l'] \\ \text{with for } q \in Q \setminus \{q_Y,q_N\} \colon \delta(q_k,s_l) = (q_{k'},s_{l'},\delta) \text{ and} \\ \text{for } q \in \{q_Y,q_N\} \colon \delta = 0, \ k' = k, \ l' = l \end{array}$$

Variable	Range	Intended meaning
Q[i, k]	$0 \leq i \leq p(n), 0 \leq$	at time <i>i</i> , <i>M</i> is in state <i>k</i>
	$k \leq Q $	
H[i, j]	$0 \leq i \leq p(n),$	at time i , the read-write head of M scans
	$-p(n) \leq j \leq p(n) +$	tape square <i>j</i>
	1	
S[i, j, k]	$0 \leq i \leq p(n),$	at time <i>i</i> , the entry on tape square <i>j</i> is s_k
	$-p(n) \leq j \leq p(n) +$	
	1, $0 \leq k \leq \Gamma $	

NP-hardness: 3-SAT

3-SAT

Instance: a set of logical variables $X := \{x_1, \ldots, x_n\}$ and a set of clauses C of three literals over X

P and NP

Reductions

How to prove that something is hard?

NP-hardness and NP-completeness

Question: does there exist a truth assignment for X that simultaneously satisfies all clauses in C?

Theorem

```
3-SAT is NP-hard (and NP-complete).
```
NP-hardness: 3-SAT

3-SAT

Instance: a set of logical variables $X := \{x_1, \ldots, x_n\}$ and a set of clauses C of three literals over X

P and NP

Reductions

How to prove that something is hard?

NP-hardness and NP-completeness

Question: does there exist a truth assignment for X that simultaneously satisfies all clauses in C?

Theorem

3-SAT is NP-hard (and NP-complete).

Proof: By reduction from SAT. Let I = (X, C) an instance of SAT. We construct the following instance (X', C') of 3-SAT:

- $X_0 := X$
- For each clause c_j we construct a set of variables X_j and additional clauses C_j (with 3 literals each)

•
$$X' := \bigcup_{j=0}^{|C|} X_j, \ C' := \bigcup_{j=1}^{|C|} C_j$$

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b Question: does there exist an integer vector y with $Ay \le b$?

Theorem

ILP is NP-hard (and NP-complete).

Proof:

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b Question: does there exist an integer vector y with $Ay \le b$?

Theorem

ILP is NP-hard (and NP-complete).

Proof by reduction from SAT

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b Question: does there exist an integer vector y with $Ay \le b$?

Theorem

ILP is NP-hard (and NP-complete).

Proof: by reduction from SAT. Let (X, C) with $X = x_1, \ldots, x_n$ and $C = \{c_1, c_2, \ldots, c_m\}$ be an instance of SAT.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b Question: does there exist an integer vector y with $Ay \le b$?

Theorem

ILP is NP-hard (and NP-complete).

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b Question: does there exist an integer vector y with $Ay \le b$?

Theorem

ILP is NP-hard (and NP-complete).

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b Question: does there exist an integer vector y with $Ay \le b$?

Theorem

ILP is NP-hard (and NP-complete).

$$\mathsf{a}_{ij} = \begin{cases} -1 & \text{if } \mathsf{x}_j \text{ is in } \mathsf{c}_i \\ \\ \\ \end{cases}$$

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b Question: does there exist an integer vector y with $Ay \le b$?

Theorem

ILP is NP-hard (and NP-complete).

$$a_{ij} = \begin{cases} -1 & \text{if } x_j \text{ is in } c_i \\ 1 & \text{if } \neg x_j \text{ is in } c_i \end{cases}$$

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b Question: does there exist an integer vector y with $Ay \le b$?

Theorem

ILP is NP-hard (and NP-complete).

$$a_{ij} = \begin{cases} -1 & \text{if } x_j \text{ is in } c_i \\ 1 & \text{if } \neg x_j \text{ is in } c_i \\ 0 & x_j \text{ is not in } c_i, \end{cases}$$

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b Question: does there exist an integer vector y with $Ay \le b$?

Theorem

ILP is NP-hard (and NP-complete).

Proof: by reduction from SAT. Let (X, C) with $X = x_1, \ldots, x_n$ and $C = \{c_1, c_2, \ldots, c_m\}$ be an instance of SAT. Define A and b, use decision vars $y_j \in \{0, 1\}$ to indicate if $t(x_j) = true$. We define matrix A as

$$\mathsf{a}_{ij} = \begin{cases} -1 & \text{if } x_j \text{ is in } c_i \\ 1 & \text{if } \neg x_j \text{ is in } c_i \\ 0 & x_j \text{ is not in } c_i, \end{cases}$$

and $b_i = \#$ negated literals in c_i -1.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b Question: does there exist an integer vector y with $Ay \le b$?

Theorem

ILP is NP-hard (and NP-complete).

Proof: by reduction from SAT. Let (X, C) with $X = x_1, \ldots, x_n$ and $C = \{c_1, c_2, \ldots, c_m\}$ be an instance of SAT. Define A and b, use decision vars $y_j \in \{0, 1\}$ to indicate if $t(x_j) = true$. We define matrix A as

ć

$$a_{ij} = egin{cases} -1 & ext{if } x_j ext{ is in } c_i \ 1 & ext{if } \neg x_j ext{ is in } c_i \ 0 & x_j ext{ is not in } c_i, \end{cases}$$

and $b_i = \#$ negated literals in c_i -1. encode $y_j \in \{0, 1\}$ as $0 \le y_j \le 1$.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b Question: does there exist an integer vector y with $Ay \le b$?

Theorem

ILP is NP-hard (and NP-complete).

Proof: by reduction from SAT. Let (X, C) with $X = x_1, \ldots, x_n$ and $C = \{c_1, c_2, \ldots, c_m\}$ be an instance of SAT. Define A and b, use decision vars $y_j \in \{0, 1\}$ to indicate if $t(x_j) = true$. We define matrix A as

$$\mathsf{a}_{ij} = \begin{cases} -1 & \text{if } \mathsf{x}_j \text{ is in } c_i \\ 1 & \text{if } \neg \mathsf{x}_j \text{ is in } c_i \\ 0 & \mathsf{x}_j \text{ is not in } c_i, \end{cases}$$

and $b_i = \#$ negated literals in c_i -1. encode $y_j \in \{0,1\}$ as $0 \le y_j \le 1$. To show: There is a satisfying truth assignment for $(X, C) \Leftrightarrow$ there is a vector y fulfilling $Ay \le b$

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b Question: does there exist an integer vector y with $Ay \le b$?

Theorem

SAT \leq_{p} ILP, and therefore ILP is NP-hard (and NP-complete).

Consequence: Every problem in NP can be modelled as an ILP.

NP-hardness: Clique

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Clique

Instance: a graph G = (V, E); an integer k Question: does G contain a clique of size (at least) k?

Theorem

CLIQUE is NP-hard (and NP-complete).

Proof: SAT is NP-hard and SAT \leq_p CLIQUE.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Independent set

Independent set (IS)

Instance: a graph G = (V, E); an integer k Question: does G contain an independent set of size (at least) k? (a set of vertices that does not span any edge)

Theorem

IS is NP-hard (and NP-complete).

Proof:

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Independent set

Independent set (IS)

Instance: a graph G = (V, E); an integer k Question: does G contain an independent set of size (at least) k? (a set of vertices that does not span any edge)

Theorem

IS is NP-hard (and NP-complete).

Proof: By reduction from CLIQUE:

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Independent set

Independent set (IS)

Instance: a graph G = (V, E); an integer k Question: does G contain an independent set of size (at least) k? (a set of vertices that does not span any edge)

Theorem

IS is NP-hard (and NP-complete).

Proof: By reduction from CLIQUE: Given an instance (G = (V, E), k) of clique, construct the following instance of IS: $V' := V, E' := \{\{i, j\} : i \neq j \in V, \{i, j\} \notin E\}, k' := k.$

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Independent set

Independent set (IS)

Instance: a graph G = (V, E); an integer k Question: does G contain an independent set of size (at least) k? (a set of vertices that does not span any edge)

Theorem

IS is NP-hard (and NP-complete).

Proof: By reduction from CLIQUE: Given an instance (G = (V, E), k) of clique, construct the following instance of IS: $V' := V, E' := \{\{i, j\} : i \neq j \in V, \{i, j\} \notin E\}, k' := k.$ Show: $X \subset V$ is a clique in $G \Leftrightarrow X$ is an independent set in G'

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Exact cover

Exact cover (Ex-Cov)

Instance: a ground set X; subsets S_1, \ldots, S_m of X

Question: do there exist some subsets S_i that form a partition of X?

Theorem

(Ex-Cov) is NP-hard (and NP-complete).

Proof:

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Exact cover

Exact cover (Ex-Cov)

Instance: a ground set X; subsets S_1, \ldots, S_m of X

Question: do there exist some subsets S_i that form a partition of X?

Theorem

(Ex-Cov) is NP-hard (and NP-complete).

Proof: by reduction from IS.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Exact cover

Exact cover (Ex-Cov)

```
Instance: a ground set X; subsets S_1, \ldots, S_m of X
```

Question: do there exist some subsets S_i that form a partition of X?

Theorem

(Ex-Cov) is NP-hard (and NP-complete).

Proof: by reduction from IS. Let (G, k) with G = (V, E) be an instance of IS.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Exact cover

Exact cover (Ex-Cov)

```
Instance: a ground set X; subsets S_1, \ldots, S_m of X
```

Question: do there exist some subsets S_i that form a partition of X?

Theorem

(Ex-Cov) is NP-hard (and NP-complete).

Proof: by reduction from IS. Let (G, k) with G = (V, E) be an instance of IS. Define an instance of (Ex-Cov) as follows: $X := E \cup \{1, \ldots, k\}$ and subsets $S_{ih} := \{\{i, j\} : \{i, j\} \in E\} \cup \{h\}$ for $i \in V$, $h = 1, \ldots, k$ $S_{\{i, j\}} := \{\{i, j\}\}$ for $\{i, j\} \in E$

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Exact cover

Exact cover (Ex-Cov)

```
Instance: a ground set X; subsets S_1, \ldots, S_m of X
```

Question: do there exist some subsets S_i that form a partition of X?

Theorem

(Ex-Cov) is NP-hard (and NP-complete).

Proof: by reduction from IS. Let (G, k) with G = (V, E) be an instance of IS. Define an instance of (Ex-Cov) as follows: $X := E \cup \{1, \ldots, k\}$ and subsets $S_{ih} := \{\{i, j\} : \{i, j\} \in E\} \cup \{h\}$ for $i \in V$, $h = 1, \ldots, k$ $S_{\{i, j\}} := \{\{i, j\}\}$ for $\{i, j\} \in E$ Show: If S is a solution to (Ex-Cov), $i : S_{ih} \in S$ is an independent set of size k. If $X = \{x_1, x_2, \ldots, x_k\} \subset V$ is an independent set, $\bigcup_{j=1}^k S_{x_j j} \cup \{\{i, j\} : i, j \notin X\}$ is a solution to (Ex-Cov).

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Subset Sum

Subset Sum (SS)

Instance: positive integers a_1, \ldots, a_n ; a bound b

Question: does there exist an index set $J \subseteq \{1, ..., n\}$ with $\sum_{i \in J} a_i = b$?

Theorem

SS is NP-hard (and NP-complete).

Proof:

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Subset Sum

Subset Sum (SS)

Instance: positive integers a_1, \ldots, a_n ; a bound b

Question: does there exist an index set $J \subseteq \{1, ..., n\}$ with $\sum_{i \in J} a_i = b$?

Theorem

SS is NP-hard (and NP-complete).

Proof: by reduction from Ex-Cov.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Subset Sum

Subset Sum (SS)

Instance: positive integers a_1, \ldots, a_n ; a bound b

Question: does there exist an index set $J \subseteq \{1, ..., n\}$ with $\sum_{i \in J} a_i = b$?

Theorem

SS is NP-hard (and NP-complete).

Proof: by reduction from Ex-Cov. Let $(X = \{x_1, \ldots, x_m\}, \{S_1, \ldots, S_n\})$ be an instance of Ex-Cov. Define numbers a_j as $a_j := \sum_{i=1}^m c_{ij} \cdot d_i$ with $c_{ij} = 1$ if $x_i \in S_j$ and $d_i = (n+1)^{i-1}$. Set $b := \sum_{i=1}^m (n+1)^{i-1}$.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Subset Sum

Subset Sum (SS)

Instance: positive integers a_1, \ldots, a_n ; a bound b

Question: does there exist an index set $J \subseteq \{1, \ldots, n\}$ with $\sum_{i \in J} a_i = b$?

Theorem

SS is NP-hard (and NP-complete).

Proof: by reduction from Ex-Cov. Let $(X = \{x_1, \ldots, x_m\}, \{S_1, \ldots, S_n\})$ be an instance of Ex-Cov. Define numbers a_j as $a_j := \sum_{i=1}^m c_{ij} \cdot d_i$ with $c_{ij} = 1$ if $x_i \in S_j$ and $d_i = (n+1)^{i-1}$. Set $b := \sum_{i=1}^m (n+1)^{i-1}$. Show: J is the index set of a solution to Ex-Cov \Leftrightarrow J is the index set of a solution to SS.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Subset Sum

Subset Sum (SS)

Instance: positive integers a_1, \ldots, a_n ; a bound b

Question: does there exist an index set $J \subseteq \{1, \ldots, n\}$ with $\sum_{i \in J} a_i = b$?

Theorem

SS is NP-hard (and NP-complete).

Proof: by reduction from Ex-Cov. Let $(X = \{x_1, \ldots, x_m\}, \{S_1, \ldots, S_n\})$ be an instance of Ex-Cov. Define numbers a_j as $a_j := \sum_{i=1}^m c_{ij} \cdot d_i$ with $c_{ij} = 1$ if $x_i \in S_j$ and $d_i = (n+1)^{i-1}$. Set $b := \sum_{i=1}^m (n+1)^{i-1}$. Show: J is the index set of a solution to Ex-Cov \Leftrightarrow J is the index set of a solution to SS. Also: argue why this is a polynomial-time transformation.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: 2-Partition

2-PARTITION

Instance: positive integers a_1, \ldots, a_n with $\sum_{i=1}^n a_i = 2A$.

Question: does there exist an index set $I \subseteq \{1, \ldots, n\}$ with $\sum_{i \in I} a_i = A$?

Theorem

2-PARTITION is NP-hard (and thus NP-complete).

Proof:

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: 2-Partition

2-PARTITION

Instance: positive integers a_1, \ldots, a_n with $\sum_{i=1}^n a_i = 2A$.

Question: does there exist an index set $I \subseteq \{1, \ldots, n\}$ with $\sum_{i \in I} a_i = A$?

Theorem

2-PARTITION is NP-hard (and thus NP-complete).

Proof: by reduction from SS.

What is this course about?	P and NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Vertex cover (VC)

Instance: a graph G = (V, E); an integer k Question: does G contain a vertex cover of size (at most) k? (a set of vertices that touches every edge)

Theorem

VC is NP-hard (and thus NP-complete).

Proof:

What is this course about?	P and NP
Basic concepts	How to prove that something is hard?
Computational models and worst-case time complexity of algorithm	Reductions
Worst-case complexity of problems	NP-hardness and NP-completeness

Vertex cover (VC)

Instance: a graph G = (V, E); an integer k Question: does G contain a vertex cover of size (at most) k? (a set of vertices that touches every edge)

Theorem

VC is NP-hard (and thus NP-complete).

Proof: by reduction from IS.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Hamiltonian cycle / TSP

Directed Hamiltonian cycle (dir-HC)

Instance: a directed graph (V, E)Question: does this graph contain a directed Hamiltonian cycle?

Theorem

Dir-HC is NP-complete.

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Hamiltonian cycle / TSP

Directed Hamiltonian cycle (dir-HC)

```
Instance: a directed graph (V, E)
Question: does this graph contain a directed Hamiltonian cycle?
```

Theorem

Dir-HC is NP-complete.

Proof: Easy to see: in NP. To show NP-hard: reduction from VC. Given instance G = (V, E), k of VC. Define G' = (V', E'):

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Hamiltonian cycle / TSP

Directed Hamiltonian cycle (dir-HC)

```
Instance: a directed graph (V, E)
Question: does this graph contain a directed Hamiltonian cycle?
```

Theorem

Dir-HC is NP-complete.

Proof: Easy to see: in NP. To show NP-hard: reduction from VC. Given instance G = (V, E), k of VC. Define G' = (V', E'):

$$V' = \{(i,j), \{i,j\}, (j,i) | \{i,j\} \in E\} \cup \{1, \dots, k\}$$

$$E' = \{((i,j), \{i,j\}), (\{i,j\}, (i,j)), ((j,i), \{i,j\}), (\{i,j\}, (j,i)) | \{i,j\} \in E\}$$

$$\cup \{((i,j), q), (q, (i,j)), ((j,i), q), (q, (j,i)) | \{i,j\} \in E, q = 1, \dots, k\}$$

$$\cup \{((h,i), (i,j)) | \{h,i\} \in E, \{i,j\} \in E, h \neq j\}$$

$$\cup \{(i,j), (j,i) | 1 \le i < j \le k\}$$

P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

NP-hardness: Hamiltonian cycle / TSP

Theorem

HC is NP-hard (and thus NP-complete).

Proof: Reduction from dir-HC.

Theorem

TSP is NP-complete.

Proof: already seen: in NP and $TSP \leq_p HC$.
What is this course about? Basic concepts Computational models and worst-case time complexity of algorithm Worst-case complexity of problems P and NP How to prove that something is hard? Reductions NP-hardness and NP-completeness

Recommended reading

Garey and Johnson. 'Algorithms and Complexity'

Lenstra and Rinnooy Kan. Computational complexity of discrete optimization problems.

Annals of Discrete Mathematics 4 (pp 121-140), 1979.

Electronic copy available on website

Cormen, Leiserson, Rivest and Stein 'Introduction to Algorithms':

- Chapter 1-3 (basics)
- Chapter 23 (minimum spanning trees)
- Chapter 34 (P, NP, NP-completeness, Cook-Levin theorem, reductions)