Algorithms and Complexity (AC), week 3

Marie Schmidt
(Based on slides by Gerhard Woeginger and Jesper Nederlof)
\title{ Landelijk Netwerk Mathematische Besliskunde }

LNMB, Sep-Nov 2017

Our program for rest of week 3

- pseudo-polynomial time, strong NP-hardness \& weak NP-hardness
- co-NP, co-NP versus NP
- An unsolvable problem

Subset Sum (SS)

Instance: positive integers a_{1}, \ldots, a_{n}; a bound b
Question: does there exist an index set $J \subseteq\{1, \ldots, n\}$ with $\sum_{j \in J} a_{j}=b$?

Example: $\left(a_{1}, \ldots, a_{12}\right)=(1, \ldots, 12), b=50$. Yes or no instance?
Yes: $1+2+3+4+6+7+8+9+10=50$.

Subset Sum (SS)

Instance: positive integers a_{1}, \ldots, a_{n}; a bound b
Question: does there exist an index set $J \subseteq\{1, \ldots, n\}$ with $\sum_{j \in J} a_{j}=b$?

Example: $\left(a_{1}, \ldots, a_{12}\right)=(1, \ldots, 12), b=50$. Yes or no instance?
Yes: $1+2+3+4+6+7+8+9+10=50$.

Theorem

SS is NP-hard (and NP-complete).
Proof:

Subset Sum (SS)

Instance: positive integers a_{1}, \ldots, a_{n}; a bound b
Question: does there exist an index set $J \subseteq\{1, \ldots, n\}$ with $\sum_{j \in J} a_{j}=b$?

Example: $\left(a_{1}, \ldots, a_{12}\right)=(1, \ldots, 12), b=50$. Yes or no instance?
Yes: $1+2+3+4+6+7+8+9+10=50$.

Theorem

SS is NP-hard (and NP-complete).
Proof: by reduction from Ex-Cov.

Subset Sum (SS)

Instance: positive integers a_{1}, \ldots, a_{n}; a bound b
Question: does there exist an index set $J \subseteq\{1, \ldots, n\}$ with $\sum_{j \in J} a_{j}=b$?

Example: $\left(a_{1}, \ldots, a_{12}\right)=(1, \ldots, 12), b=50$. Yes or no instance?
Yes: $1+2+3+4+6+7+8+9+10=50$.

Theorem

SS is NP-hard (and NP-complete).

Proof: by reduction from Ex-Cov.
Let ($\left.X=\left\{x_{1}, \ldots, x_{m}\right\},\left\{S_{1}, \ldots, S_{n}\right\}\right)$ be an instance of Ex-Cov. Define numbers a_{j} as $a_{j}:=\sum_{i=1}^{m} c_{i j} \cdot d_{i}$ with $c_{i j}=1$ if $x_{i} \in S_{j}$ and $d_{i}=(n+1)^{i-1}$. Set $b:=\sum_{i=1}^{m}(n+1)^{i-1}$.

Subset Sum (SS)

Instance: positive integers a_{1}, \ldots, a_{n}; a bound b
Question: does there exist an index set $J \subseteq\{1, \ldots, n\}$ with $\sum_{j \in J} a_{j}=b$?

Example: $\left(a_{1}, \ldots, a_{12}\right)=(1, \ldots, 12), b=50$. Yes or no instance?
Yes: $1+2+3+4+6+7+8+9+10=50$.

Theorem

SS is NP-hard (and NP-complete).

Proof: by reduction from Ex-Cov.
Let ($X=\left\{x_{1}, \ldots, x_{m}\right\},\left\{S_{1}, \ldots, S_{n}\right\}$) be an instance of Ex-Cov.
Define numbers a_{j} as $a_{j}:=\sum_{i=1}^{m} c_{i j} \cdot d_{i}$ with $c_{i j}=1$ if $x_{i} \in S_{j}$ and $d_{i}=(n+1)^{i-1}$. Set $b:=\sum_{i=1}^{m}(n+1)^{i-1}$.
Show:
J index set of a solution to $E x-\operatorname{Cov} \Leftrightarrow J$ index set of a solution to SS .

Subset Sum (SS)

Instance: positive integers a_{1}, \ldots, a_{n}; a bound b
Question: does there exist an index set $J \subseteq\{1, \ldots, n\}$ with $\sum_{j \in J} a_{j}=b$?

Example: $\left(a_{1}, \ldots, a_{12}\right)=(1, \ldots, 12), b=50$. Yes or no instance?
Yes: $1+2+3+4+6+7+8+9+10=50$.

Theorem

SS is NP-hard (and NP-complete).

Proof: by reduction from Ex-Cov.
Let $\left(X=\left\{x_{1}, \ldots, x_{m}\right\},\left\{S_{1}, \ldots, S_{n}\right\}\right)$ be an instance of Ex-Cov.
Define numbers a_{j} as $a_{j}:=\sum_{i=1}^{m} c_{i j} \cdot d_{i}$ with $c_{i j}=1$ if $x_{i} \in S_{j}$ and $d_{i}=(n+1)^{i-1}$. Set $b:=\sum_{i=1}^{m}(n+1)^{i-1}$.
Show:
J index set of a solution to $\mathrm{Ex}-\mathrm{Cov} \Leftrightarrow J$ index set of a solution to SS . Also: argue why this is a polynomial-time transformation.
size $(\mathrm{I})=$ instance size
$=$ length (number of symbols) of reasonable encoding of instance I
number(I)
$=$ value of the largest number occuring in instance I
size $(1)=$ instance size
$=$ length (number of symbols) of reasonable encoding of instance I
number(I)
$=$ value of the largest number occuring in instance I

Example

In an SS instance $I=(A, b)$

- number $(I)=\max \left\{b, \max _{i=1}^{n} a_{i}\right\}$
- $\operatorname{size}(\mathrm{I})=\Theta\left(\log b+\sum_{i=1}^{n} \log a_{i}\right)$.

An algorithm for SUBSET SUM

Define function $F[k, c]$:
$F[k, c]=$ TRUE if and only if $\exists S \subseteq\{1, \ldots, k\}: \sum_{i \in S} a_{i}=c$

An algorithm for SUBSET SUM

Define function $F[k, c]$:
$F[k, c]=$ TRUE if and only if $\exists S \subseteq\{1, \ldots, k\}: \sum_{i \in S} a_{i}=c$ We are interested in $F[n, b]$!

An algorithm for SUBSET SUM

Define function $F[k, c]$:
$F[k, c]=$ TRUE if and only if $\exists S \subseteq\{1, \ldots, k\}: \sum_{i \in S} a_{i}=c$
We are interested in $F[n, b]$!
Dynamic programming algorithm to compute $F[n, b]$
Input: a set of positive integers a_{1}, \ldots, a_{n}; a bound b
Output: 'YES' if there is a subset I^{\prime} ' of index set I with $\sum_{i \in I^{\prime}} a_{i}=b$, 'NO' otherwise

An algorithm for SUBSET SUM

Define function $F[k, c]$:
$F[k, c]=T R U E$ if and only if $\exists S \subseteq\{1, \ldots, k\}: \sum_{i \in S} a_{i}=c$
We are interested in $F[n, b]$!

Dynamic programming algorithm to compute $F[n, b]$

Input: a set of positive integers a_{1}, \ldots, a_{n}; a bound b
Output: 'YES' if there is a subset I ' of index set I with $\sum_{i \in I^{\prime}} a_{i}=b$, 'NO' otherwise
$F[0,0]:=$ TRUE, $F[0, c]:=N O$ for all $c=1, \ldots, b$

An algorithm for SUBSET SUM

Define function $F[k, c]$:
$F[k, c]=T R U E$ if and only if $\exists S \subseteq\{1, \ldots, k\}: \sum_{i \in S} a_{i}=c$
We are interested in $F[n, b]$!

Dynamic programming algorithm to compute $F[n, b]$

Input: a set of positive integers a_{1}, \ldots, a_{n}; a bound b
Output: 'YES' if there is a subset I ' of index set I with $\sum_{i \in I} a_{i}=b$, 'NO' otherwise
$F[0,0]:=$ TRUE, $F[0, c]:=N O$ for all $c=1, \ldots, b$
for $k=1, \ldots, n$ do
for $c=1, \ldots, b$ do
$F[i, c]=F[i-1, c] \vee F\left[i-1, c-a_{i}\right]$
end for
end for

An algorithm for SUBSET SUM

Define function $F[k, c]$:
$F[k, c]=T R U E$ if and only if $\exists S \subseteq\{1, \ldots, k\}: \sum_{i \in S} a_{i}=c$
We are interested in $F[n, b]$!

Dynamic programming algorithm to compute $F[n, b]$

Input: a set of positive integers a_{1}, \ldots, a_{n}; a bound b
Output: 'YES' if there is a subset I ' of index set I with $\sum_{i \in I} a_{i}=b$, 'NO' otherwise
$F[0,0]:=$ TRUE, $F[0, c]:=N O$ for all $c=1, \ldots, b$
for $k=1, \ldots, n$ do
for $c=1, \ldots, b$ do
$F[i, c]=F[i-1, c] \vee F\left[i-1, c-a_{i}\right]$
end for
end for
return $F[n, b]$

An algorithm for SUBSET SUM

Define function $F[k, c]$:
$F[k, c]=$ TRUE if and only if $\exists S \subseteq\{1, \ldots, k\}: \sum_{i \in S} a_{i}=c$
We are interested in $F[n, b]$!

Dynamic programming algorithm to compute $F[n, b]$

Input: a set of positive integers a_{1}, \ldots, a_{n}; a bound b
Output: 'YES' if there is a subset I^{\prime} of index set I with $\sum_{i \in I^{\prime}} a_{i}=b$, 'NO' otherwise
$F[0,0]:=$ TRUE, $F[0, c]:=N O$ for all $c=1, \ldots, b$
for $k=1, \ldots, n$ do for $c=1, \ldots, b$ do $F[i, c]=F[i-1, c] \vee F\left[i-1, c-a_{i}\right]$ end for
end for
return $F[n, b]$
Running time of this algorithm?

Pseudo-polynomial time

Definition

A decision problem X is solvable in pseudo-polynomial time, if there exists an algorithm that solves instances I of X in time polynomially bounded in size(I) and number(I).

Pseudo-polynomial time

Definition

A decision problem X is solvable in pseudo-polynomial time, if there exists an algorithm that solves instances I of X in time polynomially bounded in size(I) and number(I).

Which of the decision problems we studied so far is solvable in pseudo-polynomial time?

- SAT?
- IS?
- 3-SAT?
- VC?
- CLIQUE?
- Ex-Cov?
- SUBSET SUM
- HC?
- PARTITION?
- TSP?

Pseudo-polynomial time

Definition

A decision problem X is solvable in pseudo-polynomial time, if there exists an algorithm that solves instances I of X in time polynomially bounded in size(I) and number(I).

Observation: number (I) is only relevant for problems that involve numbers (distances, costs, weights, lengths, penalties, profits, time intervals, etc)

Which of the decision problems we studied so far is solvable in pseudo-polynomial time?

- SAT?
- IS?
- 3-SAT?
- VC?
- CLIQUE?
- Ex-Cov?
- SUBSET SUM
- PARTITION?
- HC?
- TSP?

Pseudo-polynomial time

Definition

A decision problem X is solvable in pseudo-polynomial time, if there exists an algorithm that solves instances I of X in time polynomially bounded in size(I) and number(I).

Observation: number(I) is only relevant for problems that involve numbers (distances, costs, weights, lengths, penalties, profits, time intervals, etc)

Which of the decision problems we studied so far is solvable in pseudo-polynomial time?

- SAT
- IS
- 3-SAT
- VC
- CLIQUE
- Ex-Cov
- SUBSET SUM
- HC
- PARTITION?
- TSP?

Pseudo-polynomial time

Definition

A decision problem X is solvable in pseudo-polynomial time, if there exists an algorithm that solves instances I of X in time polynomially bounded in size(I) and number(I).

Observation: number(I) is only relevant for problems that involve numbers (distances, costs, weights, lengths, penalties, profits, time intervals, etc)

Which of the decision problems we studied so far is solvable in pseudo-polynomial time?

- SAT
- IS
- 3-SAT
- VC
- CLIQUE
- Ex-Cov
- SUBSET SUM
- HC
- PARTITION?
- TSP

Pseudo-polynomial time

Definition

A decision problem X is solvable in pseudo-polynomial time, if there exists an algorithm that solves instances I of X in time polynomially bounded in size(I) and number(I).

Observation: number(I) is only relevant for problems that involve numbers (distances, costs, weights, lengths, penalties, profits, time intervals, etc)

Which of the decision problems we studied so far is solvable in pseudo-polynomial time?

- SAT
- IS
- SUBSET SUM
- 3-SAT
- VC
- PARTITION (exercise)
- HC
- CLIQUE
- Ex-Cov
- TSP

Strong NP-hardness

Definition

A decision problem X is strongly NP-hard, if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ such that restriction of X to instances I with number $(I) \leq p(\operatorname{size}(I))$ is NP-hard.

Strong NP-hardness

Definition

A decision problem X is strongly NP-hard, if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$
such that restriction of X to instances I with number $(\mathrm{I}) \leq p(\operatorname{size}(\mathrm{I}))$ is NP-hard.

- SAT, CLIQUE, IS, VC, HC, TSP are strongly NP-hard
- unary NP-hard = strongly NP-hard
- weak NP-hard = NP-hard, but may be solvable in pseudo-polynomial time

Strong NP-hardness

Definition

A decision problem X is strongly NP-hard,
if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$
such that
restriction of X to instances I with number $(\mathrm{I}) \leq p(\operatorname{size}(\mathrm{I}))$ is NP-hard.

- SAT, CLIQUE, IS, VC, HC, TSP are strongly NP-hard
- unary NP-hard = strongly NP-hard
- weak NP-hard = NP-hard, but may be solvable in pseudo-polynomial time

Theorem

If decision problem X
is strongly NP-hard and solvable in pseudo-polynomial time then $\mathrm{P}=\mathrm{NP}$.

Strong NP-hardness

THREE PARTITION

Instance: positive integers $a_{1}, \ldots, a_{3 n}$ with $\sum_{i=1}^{3 n} a_{i}=n A$
Question: does there exists a partition of the index set $\{1, \ldots, 3 n\}$ into n three-element subsets T_{1}, \ldots, T_{n} such that every three-element set T satisfies $\sum_{i \in T} a_{i}=A$

Strong NP-hardness

THREE PARTITION

Instance: positive integers $a_{1}, \ldots, a_{3 n}$ with $\sum_{i=1}^{3 n} a_{i}=n A$
Question: does there exists a partition of the index set $\{1, \ldots, 3 n\}$ into n three-element subsets T_{1}, \ldots, T_{n} such that every three-element set T satisfies $\sum_{i \in T} a_{i}=A$

Theorem

THREE PARTITION is strongly NP-complete.

Strong NP-hardness

THREE PARTITION

Instance: positive integers $a_{1}, \ldots, a_{3 n}$ with $\sum_{i=1}^{3 n} a_{i}=n A$
Question: does there exists a partition of the index set $\{1, \ldots, 3 n\}$
into n three-element subsets T_{1}, \ldots, T_{n} such that
every three-element set T satisfies $\sum_{i \in T} a_{i}=A$

Theorem

THREE PARTITION is strongly NP-complete.
Proof: proof in Garey-Johnson shows that SAT $\leq_{p} \leq 3 D M \leq_{p} 4-$ PARTITION $\leq_{p} 3-$ PARTITION Where the instance I constructed in the proof of $3 D M \leq_{p} 4-$ PARTITION has number $(I) \leq 2^{16}|A|^{4}$.

Recall:

Definition

A decision problem X lies in the complexity class NP, if the YES-instances of X possess certificates of polynomial length that can be verified in polynomial time

Recall:

Definition

A decision problem X lies in the complexity class NP, if the YES-instances of X possess certificates of polynomial length that can be verified in polynomial time

A decision problem X is NP-complete, if $X \in N P$ and all problems $Y \in N P$ can be reduced to it.

Recall:

Definition

A decision problem X lies in the complexity class NP, if the YES-instances of X possess certificates of polynomial length that can be verified in polynomial time

A decision problem X is NP-complete, if $X \in N P$ and all problems $Y \in N P$ can be reduced to it.

Now we define:

Definition

A decision problem X lies in the complexity class coNP, if the NO-instances of X possess certificates of polynomial length that can be verified in polynomial time

Recall:

Definition

A decision problem X lies in the complexity class NP, if the YES-instances of X possess certificates of polynomial length that can be verified in polynomial time

A decision problem X is $N P$-complete, if $X \in N P$ and all problems $Y \in N P$ can be reduced to it.

Now we define:

Definition

A decision problem X lies in the complexity class coNP, if the NO-instances of X possess certificates of polynomial length that can be verified in polynomial time

A decision problem X is coNP-complete, if $X \in \operatorname{coNP}$ and all problems $Y \in \operatorname{coNP}$ can be reduced to it.

Non-HAMILTONICITY

Instance: an undirected graph $G=(V, E)$
Question: is G not Hamiltonian?

Un-Satisfiability (UNSAT)

Instance:
a set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ and a set of clauses C over X
Question: Is there no truth assignment for X that simultaneously satisfies all clauses in C?

TAUTOLOGY

Instance: a set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ and a formula Φ in CNF over X
Question: are all truth settings for X satisfying for Φ ?

Non-HAMILTONICITY

Instance: an undirected graph $G=(V, E)$
Question: is G not Hamiltonian?

Un-Satisfiability (UNSAT)

Instance:
a set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ and a set of clauses C over X
Question: Is there no truth assignment for X that simultaneously satisfies all clauses in C?

TAUTOLOGY

Instance: a set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ and a formula Φ in CNF over X
Question: are all truth settings for X satisfying for Φ ?

Theorem

Non-HAMILTONICITY, UNSAT and TAUTOLOGY are coNP-complete.

Non-HAMILTONICITY

Instance: an undirected graph $G=(V, E)$
Question: is G not Hamiltonian?

Un-Satisfiability (UNSAT)

Instance:
a set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ and a set of clauses C over X
Question: Is there no truth assignment for X that simultaneously satisfies all clauses in C?

TAUTOLOGY

Instance: a set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ and a formula Φ in CNF over X
Question: are all truth settings for X satisfying for Φ ?

Lemma

If X is NP-complete, \bar{X} is coNP-complete.
\Rightarrow NP-completeness of Non-HAMILTONICITY \& UNSAT

Excursion: Logical formulas

Let X be a set of logical variables.

- Truth assignment: $t: X \rightarrow\{$ true, false $\}$
- Literals: We call x and $\neg x$ literals corresponding to variable $x \in X, t(\neg x)=$ true $\Leftrightarrow t(x)=$ false
- (disjunctive) clause over X : disjunction of literals, e.g., $\left(x_{1} \vee \neg x_{2} \vee \ldots \vee x_{k}\right)$.

Excursion: Logical formulas

Let X be a set of logical variables.

- Truth assignment: $t: X \rightarrow\{$ true, false $\}$
- Literals: We call x and $\neg x$ literals corresponding to variable $x \in X, t(\neg x)=$ true $\Leftrightarrow t(x)=$ false
- (disjunctive) clause over X : disjunction of literals, e.g., $\left(x_{1} \vee \neg x_{2} \vee \ldots \vee x_{k}\right)$.
- conjunctive clause over X : conjunction of literals, e.g., $\left(\neg x_{1} \wedge x_{2} \wedge \ldots \wedge x_{j}\right)$.

Excursion: Logical formulas

Let X be a set of logical variables.

- Truth assignment: $t: X \rightarrow\{$ true, false $\}$
- Literals: We call x and $\neg x$ literals corresponding to variable $x \in X, t(\neg x)=$ true $\Leftrightarrow t(x)=$ false
- (disjunctive) clause over X : disjunction of literals, e.g., $\left(x_{1} \vee \neg x_{2} \vee \ldots \vee x_{k}\right)$.
- conjunctive clause over X : conjunction of literals, e.g., $\left(\neg x_{1} \wedge x_{2} \wedge \ldots \wedge x_{j}\right)$.
- logical formula in X :
(general) logical expression in variables from X, e.g., $\left[\left(x 1 \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{3}\right)\right] \vee \neg\left(x_{1} \vee x_{2}\right)$

Excursion: Logical formulas

Let X be a set of logical variables.

- Truth assignment: $t: X \rightarrow\{$ true, false $\}$
- Literals: We call x and $\neg x$ literals corresponding to variable $x \in X . t(\neg x)=$ true $\Leftrightarrow t(x)=$ false
- (disjunctive) clause over X : disjunction of literals, e.g., $\left(x_{1} \vee \neg x_{2} \vee \ldots \vee x_{k}\right)$.
- conjunctive clause over X : conjunction of literals, e.g., $\left(\neg x_{1} \wedge x_{2} \wedge \ldots \wedge x_{j}\right)$.
- logical formula in X :
(general) logical expression in variables from X, e.g., $\left[\left(x 1 \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{3}\right)\right] \vee \neg\left(x_{1} \vee x_{2}\right)$
- logical formula in conjunctive normal form (CNF):
conjunction of disjunctive clauses, e.g. $\left(x 1 \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{3}\right)$
- logical formula in disjunctive normal form (DNF):
disjunction of conjunctive clauses, e.g. $\left(x 1 \wedge \neg x_{2}\right) \vee\left(x_{1} \wedge x_{3}\right)$

Excursion: Logical formulas

Let X be a set of logical variables.

- Truth assignment: $t: X \rightarrow\{$ true, false $\}$
- Literals: We call x and $\neg x$ literals corresponding to variable $x \in X, t(\neg x)=$ true $\Leftrightarrow t(x)=$ false
- (disjunctive) clause over X : disjunction of literals, e.g., $\left(x_{1} \vee \neg x_{2} \vee \ldots \vee x_{k}\right)$.
- conjunctive clause over X : conjunction of literals, e.g., $\left(\neg x_{1} \wedge x_{2} \wedge \ldots \wedge x_{j}\right)$.
- logical formula in X :
(general) logical expression in variables from X, e.g., $\left[\left(x 1 \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{3}\right)\right] \vee \neg\left(x_{1} \vee x_{2}\right)$
- logical formula in conjunctive normal form (CNF):
conjunction of disjunctive clauses, e.g. $\left(x 1 \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{3}\right)$
- logical formula in disjunctive normal form (DNF): disjunction of conjunctive clauses, e.g. $\left(x 1 \wedge \neg x_{2}\right) \vee\left(x_{1} \wedge x_{3}\right)$

Satisfiability (SAT) - as we use it / CNF-SAT

Instance: set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$, logical formula Φ in CNF Question: does there exist a truth assignment for X that satisfies Φ ?

NP-complete (Cook-Levin)

Excursion: Logical formulas

Let X be a set of logical variables.

- Truth assignment: $t: X \rightarrow\{$ true, false $\}$
- Literals: We call x and $\neg x$ literals corresponding to variable $x \in X, t(\neg x)=$ true $\Leftrightarrow t(x)=$ false
- (disjunctive) clause over X : disjunction of literals, e.g., $\left(x_{1} \vee \neg x_{2} \vee \ldots \vee x_{k}\right)$.
- conjunctive clause over X : conjunction of literals, e.g., $\left(\neg x_{1} \wedge x_{2} \wedge \ldots \wedge x_{j}\right)$.
- logical formula in X :
(general) logical expression in variables from X, e.g., $\left[\left(x 1 \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{3}\right)\right] \vee \neg\left(x_{1} \vee x_{2}\right)$
- logical formula in conjunctive normal form (CNF):
conjunction of disjunctive clauses, e.g. $\left(x 1 \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{3}\right)$
- logical formula in disjunctive normal form (DNF): disjunction of conjunctive clauses, e.g. $\left(x 1 \wedge \neg x_{2}\right) \vee\left(x_{1} \wedge x_{3}\right)$

Satisfiability (SAT) - more general

Instance: set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$, (any) logical formula Φ Question: does there exist a truth assignment for X that satisfies Φ ?

NP-complete (in NP \& generalization of CNF-SAT)

Excursion: Logical formulas

Let X be a set of logical variables.

- Truth assignment: $t: X \rightarrow\{$ true, false $\}$
- Literals: We call x and $\neg x$ literals corresponding to variable $x \in X, t(\neg x)=$ true $\Leftrightarrow t(x)=$ false
- (disjunctive) clause over X : disjunction of literals, e.g., $\left(x_{1} \vee \neg x_{2} \vee \ldots \vee x_{k}\right)$.
- conjunctive clause over X : conjunction of literals, e.g., $\left(\neg x_{1} \wedge x_{2} \wedge \ldots \wedge x_{j}\right)$.
- logical formula in X :
(general) logical expression in variables from X, e.g., $\left[\left(x 1 \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{3}\right)\right] \vee \neg\left(x_{1} \vee x_{2}\right)$
- logical formula in conjunctive normal form (CNF):
conjunction of disjunctive clauses, e.g. $\left(x 1 \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{3}\right)$
- logical formula in disjunctive normal form (DNF): disjunction of conjunctive clauses, e.g. $\left(x 1 \wedge \neg x_{2}\right) \vee\left(x_{1} \wedge x_{3}\right)$

DNF-SAT

Instance: set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$, logical formula Φ in DNF Question: does there exist a truth assignment for X that satisfies Φ ?

In P .

Excursion: Logical formulas

Can we transform any logical formula into CNF?

- commutative, associative, distributive: $\left(x_{1} \wedge x_{2}\right) \vee x_{3}=\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)$
- $\neg \neg l=1$
- $\neg\left(l_{1} \wedge l_{1}\right)=\neg l_{1} \vee \neg l_{2}$ (De Morgan's law)
- $\neg(x \vee y)=\neg x \wedge \neg y$ (De Morgan's law)

Excursion: Logical formulas

Can we transform any logical formula into CNF?

- commutative, associative, distributive: $\left(x_{1} \wedge x_{2}\right) \vee x_{3}=\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)$
- $\neg \neg l=1$
- $\neg\left(l_{1} \wedge l_{1}\right)=\neg l_{1} \vee \neg l_{2}$ (De Morgan's law)
- $\neg(x \vee y)=\neg x \wedge \neg y$ (De Morgan's law)

Excursion: Logical formulas

Can we transform any logical formula into CNF?

- commutative, associative, distributive: $\left(x_{1} \wedge x_{2}\right) \vee x_{3}=\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)$
- $\neg \neg /=1$
- $\neg\left(l_{1} \wedge l_{1}\right)=\neg l_{1} \vee \neg l_{2}$ (De Morgan's law)
- $\neg(x \vee y)=\neg x \wedge \neg y$ (De Morgan's law)

Example:

$$
\begin{array}{r}
{\left[\left(x 1 \wedge \neg x_{2}\right) \vee\left(x_{1} \wedge x_{3}\right)\right] \wedge \neg\left(x_{1} \vee x_{2}\right)} \\
=\left[\left(x 1 \wedge \neg x_{2}\right) \vee x_{1}\right] \wedge\left[\left(x 1 \wedge \neg x_{2}\right) \vee x_{3}\right] \wedge\left(\neg x_{1} \wedge \neg x_{2}\right) \\
=x_{1} \wedge\left(x 1 \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{1} \wedge \neg x_{2}
\end{array}
$$

Excursion: Logical formulas

Can we transform any logical formula into CNF?

- commutative, associative, distributive: $\left(x_{1} \wedge x_{2}\right) \vee x_{3}=\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)$
- $\neg \neg /=1$
- $\neg\left(l_{1} \wedge l_{1}\right)=\neg l_{1} \vee \neg l_{2}$ (De Morgan's law)
- $\neg(x \vee y)=\neg x \wedge \neg y$ (De Morgan's law)

Example 2:

$$
\begin{array}{r}
\Phi=\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge y_{2}\right) \vee \ldots \vee\left(x_{n} \wedge y_{n}\right) \\
=\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) \wedge\left(y_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) \\
\wedge\left(x_{1} \vee y_{2} \vee \ldots \vee x_{n}\right) \wedge\left(y_{1} \vee y_{2} \vee \ldots \vee x_{n}\right) \\
\\
\wedge \ldots \wedge\left(y_{1} \vee y_{2} \vee \ldots \vee y_{n}\right)
\end{array}
$$

Excursion: Logical formulas

Can we transform any logical formula into CNF?

- commutative, associative, distributive: $\left(x_{1} \wedge x_{2}\right) \vee x_{3}=\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)$
- $\neg \neg l=1$
- $\neg\left(l_{1} \wedge l_{1}\right)=\neg l_{1} \vee \neg l_{2}$ (De Morgan's law)
- $\neg(x \vee y)=\neg x \wedge \neg y$ (De Morgan's law)

Example 2:

$$
\left.\begin{array}{r}
\Phi=\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge y_{2}\right) \vee \ldots \vee\left(x_{n} \wedge y_{n}\right) \\
=\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) \wedge\left(y_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) \\
\wedge\left(x_{1} \vee y_{2} \vee \ldots \vee x_{n}\right) \wedge\left(y_{1} \vee y_{2} \vee \ldots \vee x_{n}\right) \\
\end{array}\right) \ldots \wedge\left(y_{1} \vee y_{2} \vee \ldots \vee y_{n}\right) .
$$

Naive approach leads to formula of exponential length here!

Excursion: Logical formulas

Can we transform any logical formula into CNF?

- commutative, associative, distributive: $\left(x_{1} \wedge x_{2}\right) \vee x_{3}=\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)$
- $\neg \neg l=1$
- $\neg\left(l_{1} \wedge l_{1}\right)=\neg l_{1} \vee \neg l_{2}$ (De Morgan's law)
- $\neg(x \vee y)=\neg x \wedge \neg y$ (De Morgan's law)

Example 2:

$$
\begin{array}{r}
\Phi=\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge y_{2}\right) \vee \ldots \vee\left(x_{n} \wedge y_{n}\right) \\
=\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) \wedge\left(y_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) \\
\wedge\left(x_{1} \vee y_{2} \vee \ldots \vee x_{n}\right) \wedge\left(y_{1} \vee y_{2} \vee \ldots \vee x_{n}\right) \\
\\
\wedge \ldots \wedge\left(y_{1} \vee y_{2} \vee \ldots \vee y_{n}\right)
\end{array}
$$

But: 'more general SAT' is in NP, and CNF-SAT is NP-complete:

Excursion: Logical formulas

Can we transform any logical formula into CNF?

- commutative, associative, distributive: $\left(x_{1} \wedge x_{2}\right) \vee x_{3}=\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)$
- $\neg \neg l=1$
- $\neg\left(l_{1} \wedge l_{1}\right)=\neg l_{1} \vee \neg l_{2}$ (De Morgan's law)
- $\neg(x \vee y)=\neg x \wedge \neg y$ (De Morgan's law)

Example 2:

$$
\begin{aligned}
& \Phi=\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge y_{2}\right) \vee \ldots \vee\left(x_{n} \wedge y_{n}\right) \\
& =\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) \wedge\left(y_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) \\
& \wedge\left(x_{1} \vee y_{2} \vee \ldots \vee x_{n}\right) \wedge\left(y_{1} \vee y_{2} \vee \ldots \vee x_{n}\right) \\
& \wedge \ldots \wedge\left(y_{1} \vee y_{2} \vee \ldots \vee y_{n}\right)
\end{aligned}
$$

But: 'more general SAT' is in NP, and CNF-SAT is NP-complete: there must be a way of writing Φ as a CNF formula!

Excursion: Logical formulas

Can we transform any logical formula into CNF?

- commutative, associative, distributive: $\left(x_{1} \wedge x_{2}\right) \vee x_{3}=\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)$
- $\neg \neg l=1$
- $\neg\left(l_{1} \wedge l_{1}\right)=\neg l_{1} \vee \neg l_{2}$ (De Morgan's law)
- $\neg(x \vee y)=\neg x \wedge \neg y$ (De Morgan's law)

Example 2:

$$
\begin{array}{r}
\Phi=\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge y_{2}\right) \vee \ldots \vee\left(x_{n} \wedge y_{n}\right) \\
=\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) \wedge\left(y_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) \\
\wedge\left(x_{1} \vee y_{2} \vee \ldots \vee x_{n}\right) \wedge\left(y_{1} \vee y_{2} \vee \ldots \vee x_{n}\right) \\
\\
\wedge \ldots \wedge\left(y_{1} \vee y_{2} \vee \ldots \vee y_{n}\right)
\end{array}
$$

But: 'more general SAT' is in NP, and CNF-SAT is NP-complete:
there must be a way of writing Φ as a CNF formula!
Idea: Write $\left(x_{i} \wedge y_{i}\right)=\left(\neg x_{i} \vee \neg y_{i} \vee z_{i}\right) \wedge\left(x_{i} \vee \neg z_{i}\right) \wedge\left(y_{i} \vee \neg z_{i}\right)$
We then obtain a clause Φ^{\prime} in $X^{\prime}=X \cup\left\{z_{1}, \ldots, z_{n}\right\}$ of polynomial length.

Excursion: Logical formulas

Can we transform any logical formula into CNF?

- commutative, associative, distributive: $\left(x_{1} \wedge x_{2}\right) \vee x_{3}=\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)$
- $\neg \neg l=1$
- $\neg\left(l_{1} \wedge l_{1}\right)=\neg l_{1} \vee \neg l_{2}$ (De Morgan's law)
- $\neg(x \vee y)=\neg x \wedge \neg y$ (De Morgan's law)

Example 2:

$$
\begin{array}{r}
\Phi=\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge y_{2}\right) \vee \ldots \vee\left(x_{n} \wedge y_{n}\right) \\
=\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) \wedge\left(y_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) \\
\wedge\left(x_{1} \vee y_{2} \vee \ldots \vee x_{n}\right) \wedge\left(y_{1} \vee y_{2} \vee \ldots \vee x_{n}\right) \\
\\
\wedge \ldots \wedge\left(y_{1} \vee y_{2} \vee \ldots \vee y_{n}\right)
\end{array}
$$

But: 'more general SAT' is in NP, and CNF-SAT is NP-complete: there must be a way of writing Φ as a CNF formula! Idea: Write $\left(x_{i} \wedge y_{i}\right)=\left(\neg x_{i} \vee \neg y_{i} \vee z_{i}\right) \wedge\left(x_{i} \vee \neg z_{i}\right) \wedge\left(y_{i} \vee \neg z_{i}\right)$ We then obtain a clause Φ^{\prime} in $X^{\prime}=X \cup\left\{z_{1}, \ldots, z_{n}\right\}$ of polynomial length. For general approach to transform logical formulas to CNF, see, e.g., wikipedia: Tseytin transformation

Back to TAUTOLOGY

TAUTOLOGY

Instance: a set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ and DNF-formula Φ over X Question: are all truth settings for X satisfying assignments for C ?

Theorem

TAUTOLOGY is coNP-complete.
Proof:

Back to TAUTOLOGY

TAUTOLOGY

Instance: a set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ and DNF-formula Φ over X Question: are all truth settings for X satisfying assignments for C ?

Theorem

TAUTOLOGY is coNP-complete.
Proof: We show: CNF-SAT $\leq_{p} \overline{\text { TAUTOLOGY }}$.

Back to TAUTOLOGY

TAUTOLOGY

Instance: a set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ and DNF-formula Φ over X Question: are all truth settings for X satisfying assignments for C ?

Theorem

TAUTOLOGY is coNP-complete.
Proof: We show: CNF-SAT $\leq_{p} \overline{\text { TAUTOLOGY }}$.

TAUTOLOGY

Instance: a set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ and a DNF-formula Φ over X Question: is there a truth setting for X satisfying for $\neg \Phi$?

Back to TAUTOLOGY

TAUTOLOGY

Instance: a set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ and DNF-formula Φ over X Question: are all truth settings for X satisfying assignments for C ?

Theorem

TAUTOLOGY is coNP-complete.
Proof: We show: CNF-SAT $\leq_{p} \overline{\text { TAUTOLOGY }}$.

TAUTOLOGY

Instance: a set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ and a DNF-formula Φ over X Question: is there a truth setting for X satisfying for $\neg \Phi$?

Let X^{\prime} be a set of logical variables and Φ^{\prime} a CNF-formula on X.

Back to TAUTOLOGY

TAUTOLOGY

Instance: a set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ and DNF-formula Φ over X Question: are all truth settings for X satisfying assignments for C ?

Theorem

TAUTOLOGY is coNP-complete.
Proof: We show: CNF-SAT $\leq_{p} \overline{\text { TAUTOLOGY }}$.

TAUTOLOGY

Instance: a set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ and a DNF-formula Φ over X Question: is there a truth setting for X satisfying for $\neg \Phi$?

Let X^{\prime} be a set of logical variables and Φ^{\prime} a CNF-formula on X. Then $\Phi:=\neg \Phi^{\prime}$ is a DNF-formula on X (De-Morgan's law).

Back to TAUTOLOGY

TAUTOLOGY

Instance: a set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ and DNF-formula Φ over X Question: are all truth settings for X satisfying assignments for C ?

Theorem

TAUTOLOGY is coNP-complete.
Proof: We show: CNF-SAT $\leq_{p} \overline{\text { TAUTOLOGY }}$.

TAUTOLOGY

Instance: a set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ and a DNF-formula Φ over X Question: is there a truth setting for X satisfying for $\neg \Phi$?

Let X^{\prime} be a set of logical variables and Φ^{\prime} a CNF-formula on X.
Then $\Phi:=\neg \Phi^{\prime}$ is a DNF-formula on X (De-Morgan's law).
Thus (X, Φ) is an instance of TAUTOLOGY

Back to TAUTOLOGY

TAUTOLOGY

Instance: a set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ and DNF-formula Φ over X Question: are all truth settings for X satisfying assignments for C ?

Theorem

TAUTOLOGY is coNP-complete.
Proof: We show: CNF-SAT $\leq_{p} \overline{\text { TAUTOLOGY }}$.

TAUTOLOGY

Instance: a set of logical variables $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ and a DNF-formula Φ over X
Question: is there a truth setting for X satisfying for $\neg \Phi$?
Let X^{\prime} be a set of logical variables and Φ^{\prime} a CNF-formula on X.
Then $\Phi:=\neg \Phi^{\prime}$ is a DNF-formula on X (De-Morgan's law).
Thus (X, Φ) is an instance of TAUTOLOGY which is satisfiable if and only in ($X^{\prime}, \Phi^{\prime}$) is satisfiable.

NP versus coNP (3)

Problems in $N P \cap$ coNP have

- good certificates for YES-instances
- good certificates for NO-instances

NP versus coNP (3)

Problems in $N P \cap$ coNP have

- good certificates for YES-instances
- good certificates for NO-instances

Example

Linear Programming (LP):
Instance: a matrix A; vectors c and b; a bound t
Question: does there exist a real vector x with $A x \leq b$ and $c x \leq t$?

- LP lies in NP
- LP lies in coNP (LP-duality)
- MaxFlow in NP
- MaxFlow in coNP

The Soviet railway system problem

Fig. 2. From Harris and Ross [11]: Schematic diagram of the railway network of the Western Soviet Union and Eastern European countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as "The bottleneck"

NP versus coNP (4)

- FACT: If $P=\operatorname{coNP}$ then $P=N P$ (P closed under complementation)

NP versus coNP (4)

- FACT: If $P=\operatorname{coNP}$ then $P=N P$ (P closed under complementation)
- FACT: $P \subseteq N P \cap \operatorname{coNP}$

NP versus coNP (4)

- FACT: If $P=\operatorname{coNP}$ then $P=N P$ (P closed under complementation)
- FACT: $P \subseteq N P \cap \operatorname{coNP}$
- Some people think that $P \neq N P \cap \operatorname{coNP}$
- Some people think that $P=N P \cap \operatorname{coNP}$
- Most people think that $N P \neq c o N P$

NP versus coNP (4)

- FACT: If $P=\operatorname{coNP}$ then $P=N P$ (P closed under complementation)
- FACT: $P \subseteq N P \cap \operatorname{coNP}$
- Some people think that $P \neq N P \cap \operatorname{coNP}$
- Some people think that $P=N P \cap \operatorname{coNP}$
- Most people think that $N P \neq c o N P$

Theorem

If coNP contains some NP-complete problem X, then NP=coNP.

NP versus coNP (4)

- FACT: If $P=\operatorname{coNP}$ then $P=N P$ (P closed under complementation)
- FACT: $P \subseteq N P \cap \operatorname{coNP}$
- Some people think that $P \neq N P \cap \operatorname{coNP}$
- Some people think that $P=N P \cap \operatorname{coNP}$
- Most people think that $N P \neq c o N P$

Theorem

If coNP contains some NP-complete problem X, then NP=coNP.
Hence:

- X being NP-complete is indication for $X \notin$ coNP

NP versus coNP (4)

- FACT: If $P=\operatorname{coNP}$ then $P=N P$ (P closed under complementation)
- FACT: $P \subseteq N P \cap \operatorname{coNP}$
- Some people think that $P \neq N P \cap \operatorname{coNP}$
- Some people think that $P=N P \cap \operatorname{coNP}$
- Most people think that $N P \neq c o N P$

Theorem

If coNP contains some NP-complete problem X, then NP=coNP.

Hence:

- X being NP-complete is indication for $X \notin$ coNP
- X being coNP-complete is indication for $X \notin N P$

NP versus coNP (4)

- FACT: If $P=\operatorname{coNP}$ then $P=N P$ (P closed under complementation)
- FACT: $P \subseteq N P \cap \operatorname{coNP}$
- Some people think that $P \neq N P \cap \operatorname{coNP}$
- Some people think that $P=N P \cap \operatorname{coNP}$
- Most people think that $N P \neq c o N P$

Theorem

If coNP contains some NP-complete problem X, then NP=coNP.

Hence:

- X being NP-complete is indication for $X \notin c o N P$
- X being coNP-complete is indication for $X \notin N P$
- $X \in N P \cap \operatorname{coNP}$ is indication for X not being (co)NP-complete

NP versus coNP (5)

Example

Factoring (LP):
Instance: integers y, l, u (given in binary).
Question: Is there an integer x that divides y and satisfies $I \leq x \leq u$?
in P? strongly NP-complete? weakly NP-complete? in NP? in co-NP?
Note: basic arithmetic (division, multiplication) is in polynomial time. Primality testing is in P .

NP versus coNP (5)

Example

Factoring (LP):
Instance: integers y, l, u (given in binary).
Question: Is there an integer x that divides y and satisfies $I \leq x \leq u$?
in P? strongly NP-complete? weakly NP-complete? in NP? in co-NP?
Note: basic arithmetic (division, multiplication) is in polynomial time. Primality testing is in P .

Many cryptographic protocols are based on the difficulty of factoring large composite integers - an algorithm that efficiently factors an arbitrary integer would render these insecure.

An unsolvable decision problem (not discussed)

Problem: CheckTermination (also called 'Halting Problem')

Input: two text pieces text1 and text2

An unsolvable decision problem (not discussed)

Problem: CheckTermination (also called 'Halting Problem')

Input: two text pieces text1 and text2
Question: does the $C++$ program listed in text1 terminate on the input in text2?

An unsolvable decision problem (not discussed)

Problem: CheckTermination (also called 'Halting Problem')

Input: two text pieces text1 and text2
Question: does the $C++$ program listed in text1 terminate on the input in text2?

- Suppose there exists an algorithm for CheckTermination

An unsolvable decision problem (not discussed)

Problem: CheckTermination (also called 'Halting Problem')

Input: two text pieces text1 and text2
Question: does the $C++$ program listed in text1 terminate on the input in text2?

- Suppose there exists an algorithm for CheckTermination
- Then there is a $\mathrm{C}++$ program $\mathrm{CT}($ text1, text2) implementing this

An unsolvable decision problem (not discussed)

Problem: CheckTermination (also called 'Halting Problem')

Input: two text pieces text1 and text2
Question: does the $C++$ program listed in text1 terminate on the input in text2?

- Suppose there exists an algorithm for CheckTermination
- Then there is a $\mathrm{C}++$ program $\mathrm{CT}($ text1, text2) implementing this
- We construct a new $C++$ program wrong that takes input text3

An unsolvable decision problem (not discussed)

Problem: CheckTermination (also called 'Halting Problem')

Input: two text pieces text1 and text2
Question: does the $C++$ program listed in text1 terminate on the input in text2?

- Suppose there exists an algorithm for CheckTermination
- Then there is a $\mathrm{C}++$ program $\mathrm{CT}($ text1, text2) implementing this
- We construct a new $C++$ program wrong that takes input text3
- First, wrong checks whether the C++ program listed in text3

An unsolvable decision problem (not discussed)

Problem: CheckTermination (also called 'Halting Problem')

Input: two text pieces text1 and text2
Question: does the $C++$ program listed in text1 terminate on the input in text2?

- Suppose there exists an algorithm for CheckTermination
- Then there is a $\mathrm{C}++$ program $\mathrm{CT}($ text1, text2) implementing this
- We construct a new $C++$ program wrong that takes input text3
- First, wrong checks whether the C++ program listed in text3 terminates on the input in text3 using CT (text3, text3)

An unsolvable decision problem (not discussed)

Problem: CheckTermination (also called 'Halting Problem')

Input: two text pieces text1 and text2
Question: does the $C++$ program listed in text1 terminate on the input in text2?

- Suppose there exists an algorithm for CheckTermination
- Then there is a $\mathrm{C}++$ program $\mathrm{CT}($ text1, text2) implementing this
- We construct a new $C++$ program wrong that takes input text3
- First, wrong checks whether the C++ program listed in text3 terminates on the input in text3 using CT (text3, text3)
- If text3 does terminate, then wrong(text3) goes into an infinite loop

An unsolvable decision problem (not discussed)

Problem: CheckTermination (also called 'Halting Problem')

Input: two text pieces text1 and text2
Question: does the $C++$ program listed in text1 terminate on the input in text2?

- Suppose there exists an algorithm for CheckTermination
- Then there is a $\mathrm{C}++$ program $\mathrm{CT}($ text1, text2) implementing this
- We construct a new $C++$ program wrong that takes input text3
- First, wrong checks whether the C++ program listed in text3 terminates on the input in text3 using CT (text3, text3)
- If text3 does terminate, then wrong(text3) goes into an infinite loop
- If text3 does not terminate, then wrong(text3) stops

An unsolvable decision problem (not discussed)

Problem: CheckTermination (also called 'Halting Problem')

Input: two text pieces text1 and text2
Question: does the $C++$ program listed in text1 terminate on the input in text2?

- Suppose there exists an algorithm for CheckTermination
- Then there is a $\mathrm{C}++$ program $\mathrm{CT}($ text1, text2) implementing this
- We construct a new $C++$ program wrong that takes input text3
- First, wrong checks whether the C++ program listed in text3 terminates on the input in text3 using CT (text3, text3)
- If text3 does terminate, then wrong(text3) goes into an infinite loop
- If text3 does not terminate, then wrong(text3) stops
- What does CT(text4,text4) do if text4 is the $\mathrm{C}++$ code of wrong???

An unsolvable decision problem (not discussed)

Problem: CheckTermination (also called 'Halting Problem')

Input: two text pieces text1 and text2
Question: does the $C++$ program listed in text1 terminate on the input in text2?

- Suppose there exists an algorithm for CheckTermination
- Then there is a $\mathrm{C}++$ program $\mathrm{CT}($ text1, text2) implementing this
- We construct a new $C++$ program wrong that takes input text3
- First, wrong checks whether the C++ program listed in text3 terminates on the input in text3 using CT (text3, text3)
- If text3 does terminate, then wrong(text3) goes into an infinite loop
- If text3 does not terminate, then wrong(text3) stops
- What does CT(text4,text4) do if text 4 is the $C++$ code of wrong???
- Conclusion: There is no algorithm for CheckTermination
- Technique is called diagonalization. Also used to show there are decision problems that can be solved in $O\left(n^{c}\right)$, but not in $O\left(n^{c-1}\right)$ time

Recommended Reading

Cormen, Leiserson, Rivest and Stein 'Introduction to Algorithms':

- Chapter 26 (Maximum flow)
- Chapter 29 (Linear Programming, duality)

