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Pseudo-polynomial time
NP versus coNP

An unsolvable decision problem

Our program for rest of week 3

• pseudo-polynomial time, strong NP-hardness & weak NP-hardness
• co-NP, co-NP versus NP

• An unsolvable problem
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Pseudo-polynomial time
NP versus coNP

An unsolvable decision problem

Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

Subset Sum (SS)

Instance: positive integers a1, . . . , an; a bound b

Question: does there exist an index set J ⊆ {1, . . . , n} with
∑

j∈J aj = b?

Example: (a1, . . . , a12) = (1, . . . , 12), b = 50. Yes or no instance?
Yes: 1 + 2 + 3 + 4 + 6 + 7 + 8 + 9 + 10 = 50.

Theorem

SS is NP-hard (and NP-complete).

Proof: by reduction from Ex-Cov.
Let (X = {x1, . . . , xm}, {S1, . . . ,Sn}) be an instance of Ex-Cov.
De�ne numbers aj as aj :=

∑m
i=1

cij · di with cij = 1 if xi ∈ Sj and di = (n + 1)i−1.

Set b :=
∑m

i=1
(n + 1)i−1.

Show:
J index set of a solution to Ex-Cov ⇔ J index set of a solution to SS.
Also: argue why this is a polynomial-time transformation.
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size(I) = instance size
= length (number of symbols) of reasonable encoding of instance I

number(I)
= value of the largest number occuring in instance I

Example

In an SS instance I = (A, b)

number(I)= max{b,maxni=1 ai}
size(I)= Θ(log b +

∑n
i=1

log ai ).
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Subset Sum
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An algorithm for SUBSET SUM

De�ne function F [k, c]:
F [k, c]=TRUE if and only if ∃S ⊆ {1, . . . , k} :

∑
i∈S ai = c

We are interested in F [n, b]!

Dynamic programming algorithm to compute F [n, b]

Input: a set of positive integers a1, . . . , an; a bound b
Output: 'YES' if there is a subset I ′ of index set I with

∑
i∈I ′ ai = b, 'NO'

otherwise
F [0, 0] := TRUE , F [0, c] := NO for all c = 1, . . . , b
for k = 1, . . . , n do

for c = 1, . . . , b do

F [i , c] = F [i − 1, c] ∨ F [i − 1, c − ai ]
end for

end for

return F [n, b]

Running time of this algorithm?
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NP versus coNP

An unsolvable decision problem

Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

Pseudo-polynomial time

De�nition

A decision problem X is solvable in pseudo-polynomial time,
if there exists an algorithm that solves instances I of X
in time polynomially bounded in size(I) and number(I).

Observation: number(I) is only relevant for problems that involve numbers (distances,
costs, weights, lengths, penalties, pro�ts, time intervals, etc)

Which of the decision problems we studied so far is solvable in pseudo-polynomial
time?
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Pseudo-polynomial time
NP versus coNP
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Subset Sum
Pseudopolynomial time
Strong / weak NP-hard

Strong NP-hardness

De�nition

A decision problem X is strongly NP-hard,
if there exists a polynomial p : N→ N
such that
restriction of X to instances I with number(I) ≤ p(size(I)) is NP-hard.

• SAT, CLIQUE, IS, VC, HC, TSP are strongly NP-hard
• unary NP-hard = strongly NP-hard
• weak NP-hard = NP-hard, but may be solvable in pseudo-polynomial time

Theorem

If decision problem X
is strongly NP-hard and solvable in pseudo-polynomial time

then P=NP.
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Strong NP-hardness

THREE PARTITION

Instance: positive integers a1, . . . , a3n with
∑

3n
i=1

ai = nA
Question: does there exists a partition of the index set {1, . . . , 3n}

into n three-element subsets T1, . . . ,Tn such that
every three-element set T satis�es

∑
i∈T ai = A

Theorem

THREE PARTITION is strongly NP-complete.

Proof: proof in Garey-Johnson shows that
SAT ≤p≤ 3DM ≤p 4− PARTITION ≤p 3− PARTITION
Where the instance I constructed in the proof of 3DM ≤p 4− PARTITION has
number(I ) ≤ 216|A|4.
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Pseudo-polynomial time
NP versus coNP

An unsolvable decision problem

coNP
Excursion: Logical formulas
TAUTOLOGY is coNP-complete
NP versus coNP

Recall:

De�nition

A decision problem X lies in the complexity class NP,
if the YES-instances of X possess certi�cates of polynomial length
that can be veri�ed in polynomial time

A decision problem X is NP-complete,
if X ∈ NP and all problems Y ∈ NP can be reduced to it.

Now we de�ne:

De�nition

A decision problem X lies in the complexity class coNP,
if the NO-instances of X possess certi�cates of polynomial length
that can be veri�ed in polynomial time

A decision problem X is coNP-complete,
if X ∈ coNP and all problems Y ∈ coNP can be reduced to it.
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Non-HAMILTONICITY

Instance: an undirected graph G = (V ,E)
Question: is G not Hamiltonian?

Un-Satis�ability (UNSAT)

Instance:
a set of logical variables X := {x1, . . . , xn} and a set of clauses C over X

Question: Is there no truth assignment for X that simultaneously satis�es all clauses in
C?

TAUTOLOGY

Instance: a set of logical variables X := {x1, . . . , xn} and a formula Φ in CNF over X

Question: are all truth settings for X satisfying for Φ?
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Non-HAMILTONICITY, UNSAT and TAUTOLOGY are coNP-complete.
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Question: is G not Hamiltonian?

Un-Satis�ability (UNSAT)

Instance:
a set of logical variables X := {x1, . . . , xn} and a set of clauses C over X

Question: Is there no truth assignment for X that simultaneously satis�es all clauses in
C?

TAUTOLOGY

Instance: a set of logical variables X := {x1, . . . , xn} and a formula Φ in CNF over X

Question: are all truth settings for X satisfying for Φ?

Lemma

If X is NP-complete, X̄ is coNP-complete.

⇒ NP-completeness of Non-HAMILTONICITY & UNSAT
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Excursion: Logical formulas

Let X be a set of logical variables.

Truth assignment: t : X → {true, false}
Literals: We call x and ¬x literals corresponding to variable x ∈ X . t(¬x) = true
⇔ t(x) = false

(disjunctive) clause over X : disjunction of literals, e.g., (x1 ∨ ¬x2 ∨ . . . ∨ xk ).

conjunctive clause over X : conjunction of literals, e.g., (¬x1 ∧ x2 ∧ . . . ∧ xj ).

logical formula in X :
(general) logical expression in variables from X , e.g.,
[(x1 ∨ ¬x2) ∧ (x1 ∨ x3)] ∨ ¬(x1 ∨ x2)

logical formula in conjunctive normal form (CNF):
conjunction of disjunctive clauses, e.g. (x1 ∨ ¬x2) ∧ (x1 ∨ x3)

logical formula in disjunctive normal form (DNF):
disjunction of conjunctive clauses, e.g. (x1 ∧ ¬x2) ∨ (x1 ∧ x3)
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Excursion: Logical formulas

Let X be a set of logical variables.

Truth assignment: t : X → {true, false}
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Satis�ability (SAT) - as we use it / CNF-SAT

Instance: set of logical variables X := {x1, . . . , xn}, logical formula Φ in CNF
Question: does there exist a truth assignment for X that satis�es Φ?

NP-complete (Cook-Levin)

Marie Schmidt Algorithms and Complexity (AC), week 3 11/19



Pseudo-polynomial time
NP versus coNP

An unsolvable decision problem

coNP
Excursion: Logical formulas
TAUTOLOGY is coNP-complete
NP versus coNP

Excursion: Logical formulas

Let X be a set of logical variables.

Truth assignment: t : X → {true, false}
Literals: We call x and ¬x literals corresponding to variable x ∈ X . t(¬x) = true
⇔ t(x) = false

(disjunctive) clause over X : disjunction of literals, e.g., (x1 ∨ ¬x2 ∨ . . . ∨ xk ).

conjunctive clause over X : conjunction of literals, e.g., (¬x1 ∧ x2 ∧ . . . ∧ xj ).

logical formula in X :
(general) logical expression in variables from X , e.g.,
[(x1 ∨ ¬x2) ∧ (x1 ∨ x3)] ∨ ¬(x1 ∨ x2)

logical formula in conjunctive normal form (CNF):
conjunction of disjunctive clauses, e.g. (x1 ∨ ¬x2) ∧ (x1 ∨ x3)

logical formula in disjunctive normal form (DNF):
disjunction of conjunctive clauses, e.g. (x1 ∧ ¬x2) ∨ (x1 ∧ x3)
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Question: does there exist a truth assignment for X that satis�es Φ?

NP-complete (in NP & generalization of CNF-SAT)
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Question: does there exist a truth assignment for X that satis�es Φ?

In P.
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Excursion: Logical formulas

Can we transform any logical formula into CNF?

commutative, associative, distributive: (x1 ∧ x2)∨ x3 = (x1 ∨ x3)∧ (x2 ∨ x3)
¬¬l = l
¬(l1 ∧ l1) = ¬l1 ∨ ¬l2 (De Morgan's law)
¬(x ∨ y) = ¬x ∧ ¬y (De Morgan's law)

But: 'more general SAT' is in NP, and CNF-SAT is NP-complete:

there must be a way of writing Φ as a CNF formula!
Idea: Write (xi ∧ yi ) = (¬xi ∨ ¬yi ∨ zi ) ∧ (xi ∨ ¬zi ) ∧ (yi ∨ ¬zi )
We then obtain a clause Φ′ in X ′ = X ∪ {z1, . . . , zn} of polynomial length.
For general approach to transform logical formulas to CNF, see, e.g., wikipedia:
Tseytin transformation
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Back to TAUTOLOGY

TAUTOLOGY

Instance: a set of logical variables X := {x1, . . . , xn} and DNF-formula Φ over X
Question: are all truth settings for X satisfying assignments for C?

Theorem

TAUTOLOGY is coNP-complete.

Proof:

We show: CNF-SAT ≤p TAUTOLOGY .

TAUTOLOGY

Instance: a set of logical variables X := {x1, . . . , xn} and a DNF-formula Φ over X
Question: is there a truth setting for X satisfying for ¬Φ?

Let X ′ be a set of logical variables and Φ′ a CNF-formula on X .
Then Φ := ¬Φ′ is a DNF-formula on X (De-Morgan's law).

Thus (X ,Φ) is an instance of TAUTOLOGY which is satis�able if and only in (X ′,Φ′)
is satis�able.
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Pseudo-polynomial time
NP versus coNP

An unsolvable decision problem

coNP
Excursion: Logical formulas
TAUTOLOGY is coNP-complete
NP versus coNP

NP versus coNP (3)

Problems in NP ∩ coNP have
• good certi�cates for YES-instances
• good certi�cates for NO-instances

Example

Linear Programming (LP):
Instance: a matrix A; vectors c and b; a bound t
Question: does there exist a real vector x with Ax ≤ b and cx ≤ t?

• LP lies in NP
• LP lies in coNP (LP-duality)

• MaxFlow in NP
• MaxFlow in coNP
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NP versus coNP

The Soviet railway system problem

Fig. 2. From Harris and Ross [11]: Schematic diagram of the railway network of the Western Soviet Union
and Eastern European countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe,
and a cut of capacity 163,000 tons indicated as “The bottleneck”
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coNP
Excursion: Logical formulas
TAUTOLOGY is coNP-complete
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NP versus coNP (4)

• FACT: If P = coNP then P = NP (P closed under complementation)

• FACT: P ⊆ NP ∩ coNP
• Some people think that P 6= NP ∩ coNP
• Some people think that P = NP ∩ coNP

• Most people think that NP 6= coNP

Theorem

If coNP contains some NP-complete problem X , then NP=coNP.

Hence:
• X being NP-complete is indication for X /∈ coNP
• X being coNP-complete is indication for X /∈ NP
• X ∈ NP ∩ coNP is indication for X not being (co)NP-complete
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NP versus coNP
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coNP
Excursion: Logical formulas
TAUTOLOGY is coNP-complete
NP versus coNP

NP versus coNP (5)

Example

Factoring (LP):
Instance: integers y , l , u (given in binary).
Question: Is there an integer x that divides y and satis�es l ≤ x ≤ u?

in P? strongly NP-complete? weakly NP-complete? in NP? in co-NP?

Note: basic arithmetic (division, multiplication) is in polynomial time. Primality
testing is in P.

Many cryptographic protocols are based on the di�culty of factoring large
composite integers - an algorithm that e�ciently factors an arbitrary integer
would render these insecure.

Marie Schmidt Algorithms and Complexity (AC), week 3 17/19



Pseudo-polynomial time
NP versus coNP

An unsolvable decision problem

coNP
Excursion: Logical formulas
TAUTOLOGY is coNP-complete
NP versus coNP

NP versus coNP (5)

Example

Factoring (LP):
Instance: integers y , l , u (given in binary).
Question: Is there an integer x that divides y and satis�es l ≤ x ≤ u?

in P? strongly NP-complete? weakly NP-complete? in NP? in co-NP?

Note: basic arithmetic (division, multiplication) is in polynomial time. Primality
testing is in P.

Many cryptographic protocols are based on the di�culty of factoring large
composite integers - an algorithm that e�ciently factors an arbitrary integer
would render these insecure.

Marie Schmidt Algorithms and Complexity (AC), week 3 17/19



Pseudo-polynomial time
NP versus coNP

An unsolvable decision problem

An unsolvable decision problem (not discussed)

Problem: CheckTermination (also called `Halting Problem')

Input: two text pieces text1 and text2

Question: does the C++ program listed in text1

terminate on the input in text2?

• Suppose there exists an algorithm for CheckTermination
• Then there is a C++ program CT(text1,text2) implementing this

• We construct a new C++ program wrong that takes input text3
• First, wrong checks whether the C++ program listed in text3

terminates on the input in text3 using CT(text3,text3)

• If text3 does terminate, then wrong(text3) goes into an in�nite loop
• If text3 does not terminate, then wrong(text3) stops

• What does CT(text4,text4) do if text4 is the C++ code of wrong???
• Conclusion: There is no algorithm for CheckTermination
• Technique is called diagonalization. Also used to show there are decision
problems that can be solved in O(nc), but not in O(nc−1) time
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An unsolvable decision problem

Recommended Reading

Cormen, Leiserson, Rivest and Stein `Introduction to Algorithms':

Chapter 26 (Maximum �ow)

Chapter 29 (Linear Programming, duality)
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