Algorithms and Complexity (AC), week 4

Marie Schmidt

based on slides by Jesper Nederlof

LNMB, Sep-Nov 2019

Algorithms and Complexity (AC), week 4

Program for this week and the next

Dealing with NP-hard problems: Approximation

Basic definitions Ad-hoc approaches LP-based approaches Approximation Schemes In-approximability

Basic definitions

We leave decision problems, and return to optimization problems

We leave decision problems, and return to optimization problems

Definition

Let X be a minimization problem.

The optimal objective value of instance I is denoted opt(I).

The objective value returned by algorithm A is denoted A(I).

The (worst-case) approximation ratio of algorithm A is $\sup_{I} A(I) / \operatorname{opt}(I)$.

We leave decision problems, and return to optimization problems

Definition

Let X be a minimization problem.

The optimal objective value of instance I is denoted opt(I).

The objective value returned by algorithm A is denoted A(I).

The (worst-case) approximation ratio of algorithm A is $\sup_{I} A(I) / \operatorname{opt}(I)$.

• approximation ratio always ≥ 1 small approximation ratio = good

We leave decision problems, and return to optimization problems

Definition

Let X be a minimization problem.

The optimal objective value of instance I is denoted opt(I).

The objective value returned by algorithm A is denoted A(I).

The (worst-case) approximation ratio of algorithm A is $\sup_{I} A(I) / opt(I)$.

• approximation ratio always ≥ 1 small approximation ratio = good

For maximization problems

We leave decision problems, and return to optimization problems

Definition

Let X be a minimization problem.

The optimal objective value of instance I is denoted opt(I).

The objective value returned by algorithm A is denoted A(I).

The (worst-case) approximation ratio of algorithm A is $\sup_{I} A(I) / \operatorname{opt}(I)$.

• approximation ratio always ≥ 1 small approximation ratio = good

For maximization problems approximation ratio is $\inf_{I} A(I) / \operatorname{opt}(I)$ always ≤ 1 ; large guarantee = good

We leave decision problems, and return to optimization problems

Definition

Let X be a minimization problem.

The optimal objective value of instance I is denoted opt(I).

The objective value returned by algorithm A is denoted A(I).

The (worst-case) approximation ratio of algorithm A is $\sup_{I} A(I) / \operatorname{opt}(I)$.

• approximation ratio always ≥ 1 small approximation ratio = good

For maximization problems approximation ratio is $\inf_{I} A(I)/opt(I)$ always ≤ 1 ; large guarantee = good

We aim for polynomial time algorithms with good approximation ratios

We leave decision problems, and return to optimization problems

Definition

Let X be a minimization problem.

The optimal objective value of instance I is denoted opt(I).

The objective value returned by algorithm A is denoted A(I).

The (worst-case) approximation ratio of algorithm A is $\sup_{I} A(I) / \operatorname{opt}(I)$.

• approximation ratio always ≥ 1 small approximation ratio = good

For maximization problems approximation ratio is $\inf_{I} A(I)/opt(I)$ always ≤ 1 ; large guarantee = good

We aim for polynomial time algorithms with good approximation ratios still possible for problems whose decision versions are NP-complete!

Marie Schmidt

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Ad-hoc approaches

Iviarie Schmidt

Algorithms and Complexity (AC), week 4

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Vertex cover (VC)

Instance: undirected graph G = (V, E)Goal: find a vertex cover of smallest possible size (vertex cover = subset of vertices that touches every edge)

How can we find a 'good' vertex cover?

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Vertex cover (VC)

Instance: undirected graph G = (V, E)Goal: find a vertex cover of smallest possible size (vertex cover = subset of vertices that touches every edge)

How can we find a 'good' vertex cover?

Matching

Subset $M \subseteq E$ of disjoint edges (e.g. $e \cap e' = \emptyset$, for distinct $e, e' \in M$)

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Vertex cover (VC)

Instance: undirected graph G = (V, E)Goal: find a vertex cover of smallest possible size (vertex cover = subset of vertices that touches every edge)

How can we find a 'good' vertex cover?

Matching

Subset $M \subseteq E$ of disjoint edges (e.g. $e \cap e' = \emptyset$, for distinct $e, e' \in M$) Say M is maximal if there is no matching M' such that $M \subset M'$.

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Vertex cover (VC)

Instance: undirected graph G = (V, E)Goal: find a vertex cover of smallest possible size (vertex cover = subset of vertices that touches every edge)

How can we find a 'good' vertex cover?

Matching

Subset $M \subseteq E$ of disjoint edges (e.g. $e \cap e' = \emptyset$, for distinct $e, e' \in M$) Say M is maximal if there is no matching M' such that $M \subset M'$.

Approximation algorithm for Vertex Cover

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Vertex cover (VC)

Instance: undirected graph G = (V, E)Goal: find a vertex cover of smallest possible size (vertex cover = subset of vertices that touches every edge)

How can we find a 'good' vertex cover?

Matching

Subset $M \subseteq E$ of disjoint edges (e.g. $e \cap e' = \emptyset$, for distinct $e, e' \in M$) Say M is maximal if there is no matching M' such that $M \subset M'$.

Approximation algorithm for Vertex Cover

1. Find a maximal matching M (iteratively pick edges not yet touched)

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Vertex cover (VC)

Instance: undirected graph G = (V, E)Goal: find a vertex cover of smallest possible size (vertex cover = subset of vertices that touches every edge)

How can we find a 'good' vertex cover?

Matching

Subset $M \subseteq E$ of disjoint edges (e.g. $e \cap e' = \emptyset$, for distinct $e, e' \in M$) Say M is maximal if there is no matching M' such that $M \subset M'$.

Approximation algorithm for Vertex Cover

1. Find a maximal matching M (iteratively pick edges not yet touched) 2. Output $S = \bigcup_{\{u,v\} \in M} \{u, v\}$ (e.g. all endpoint of M)

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Vertex cover (VC)

Instance: undirected graph G = (V, E)Goal: find a vertex cover of smallest possible size (vertex cover = subset of vertices that touches every edge)

How can we find a 'good' vertex cover?

Matching

Subset $M \subseteq E$ of disjoint edges (e.g. $e \cap e' = \emptyset$, for distinct $e, e' \in M$) Say M is maximal if there is no matching M' such that $M \subset M'$.

Approximation algorithm for Vertex Cover

1. Find a maximal matching M (iteratively pick edges not yet touched) 2. Output $S = \bigcup_{\{u,v\} \in M} \{u, v\}$ (e.g. all endpoint of M)

Theorem

This poly-time approximation algorithm has approximation ratio 2.

Iviarie Schmidt

Basic definitions Ad-hoc approaches LP-based approaches	Vertex cover Makespan minimization
	Intermezzo: Euler tours Travelling Salesman

Makespan minimization

Instance: m machines; n jobs with processing times p_1, \ldots, p_n Goal: assign jobs to machines so that the maximum workload (= makespan) is minimized

Decision variant in NP, NP-hard (thus NP-complete) already for m = 2:

Basic definitions Ad-hoc approaches LP-based approaches	Vertex cover Makespan minimization
	Intermezzo: Euler tours Travelling Salesman

Makespan minimization

Instance: m machines; n jobs with processing times p_1, \ldots, p_n Goal: assign jobs to machines so that the maximum workload (= makespan) is minimized

Decision variant in NP, NP-hard (thus NP-complete) already for m = 2: use a reduction from 2-PARTITION

Makespan minimization

Instance: m machines; n jobs with processing times p_1, \ldots, p_n Goal: assign jobs to machines so that the maximum workload (= makespan) is minimized

Decision variant in NP, NP-hard (thus NP-complete) already for m = 2: use a reduction from 2-PARTITION

List scheduling algorithm

Work through the job list one by one; in each step assign current job to machine with currently smallest workload

Makespan minimization

Instance: m machines; n jobs with processing times p_1, \ldots, p_n Goal: assign jobs to machines so that the maximum workload (= makespan) is minimized

Decision variant in NP, NP-hard (thus NP-complete) already for m = 2: use a reduction from 2-PARTITION

List scheduling algorithm

Work through the job list one by one; in each step assign current job to machine with currently smallest workload

Theorem

Makespan minimization

Instance: m machines; n jobs with processing times p_1, \ldots, p_n Goal: assign jobs to machines so that the maximum workload (= makespan) is minimized

Decision variant in NP, NP-hard (thus NP-complete) already for m = 2: use a reduction from 2-PARTITION

List scheduling algorithm

Work through the job list one by one; in each step assign current job to machine with currently smallest workload

Theorem

List scheduling has approximation ratio 2.

Theorem

List scheduling has approximation ratio 2.

Proof:

Theorem

List scheduling has approximation ratio 2.

Proof: 1.) Lower bounds:

Theorem

List scheduling has approximation ratio 2.

Proof: 1.) Lower bounds: $opt(I) \ge \max p_i$ $opt(I) \ge \frac{1}{m} \sum_{i=1}^n p_i$

Theorem

List scheduling has approximation ratio 2.

Proof: 1.) Lower bounds: $opt(I) \ge \max p_i$ $opt(I) \ge \frac{1}{m} \sum_{i=1}^n p_i$

2.) Consider machine j that determines the makespan

Theorem

List scheduling has approximation ratio 2.

Proof: 1.) Lower bounds: $opt(I) \ge \max p_i$ $opt(I) \ge \frac{1}{m} \sum_{i=1}^{n} p_i$

2.) Consider machine *j* that determines the makespan Consider last job *i* assigned to machine *j*

Theorem

List scheduling has approximation ratio 2.

Proof: 1.) Lower bounds: $opt(I) \ge \max p_i$ $opt(I) \ge \frac{1}{m} \sum_{i=1}^n p_i$ 2.) Consider machine *i* that determines the makespa

2.) Consider machine *j* that determines the makespan Consider last job *i* assigned to machine *j* Consider the moment when *i* was assigned to *j*

Theorem

List scheduling has approximation ratio 2.

Proof: 1.) Lower bounds: $opt(I) \ge \max p_i$ $opt(I) \ge \frac{1}{m} \sum_{i=1}^{n} p_i$ 2.) Consider machine *i* that determines the make

2.) Consider machine j that determines the makespan Consider last job i assigned to machine jConsider the moment when i was assigned to jAt this moment j has workload at most $\frac{1}{m}\sum_{i'=1}^{n} p_{i'} \leq \operatorname{opt}(I)$

Theorem

List scheduling has approximation ratio 2.

Proof:

1.) Lower bounds:

 $opt(I) \ge max p_i$ $opt(I) \ge \frac{1}{m} \sum_{i=1}^n p_i$

2.) Consider machine j that determines the makespan Consider last job i assigned to machine jConsider the moment when i was assigned to jAt this moment j has workload at most $\frac{1}{m}\sum_{i'=1}^{n} p_{i'} \leq \operatorname{opt}(I)$ job i adds $p_i \leq \max_{i'} p_{i'} \leq \operatorname{opt}(I)$ to workload of j

Theorem

List scheduling has approximation ratio 2.

Proof:

1.) Lower bounds:

opt(I) $\geq \max p_i$ opt(I) $\geq \frac{1}{m} \sum_{i=1}^n p_i$

2.) Consider machine j that determines the makespan Consider last job i assigned to machine j Consider the moment when i was assigned to j At this moment j has workload at most $\frac{1}{m}\sum_{i'=1}^{n} p_{i'} \leq opt(I)$ job i adds $p_i \leq \max_{i'} p_{i'} \leq opt(I)$ to workload of j Thus $A(I) \leq \frac{1}{m}\sum_{i'=1}^{n} p_{i'} + p_i \leq 2OPT(I)$

Theorem

List scheduling has approximation ratio 2.

Proof:

1.) Lower bounds:

opt(I) $\geq \max p_i$ opt(I) $\geq \frac{1}{m} \sum_{i=1}^n p_i$

2.) Consider machine j that determines the makespan Consider last job i assigned to machine j Consider the moment when i was assigned to j At this moment j has workload at most $\frac{1}{m}\sum_{i'=1}^{n} p_{i'} \leq opt(I)$ job i adds $p_i \leq \max_{i'} p_{i'} \leq opt(I)$ to workload of j Thus $A(I) \leq \frac{1}{m}\sum_{i'=1}^{n} p_{i'} + p_i \leq 2OPT(I)$

Is this bound tight?

Theorem

List scheduling has approximation ratio 2.

Proof:

1.) Lower bounds:

opt(I) $\geq \max p_i$ opt(I) $\geq \frac{1}{m} \sum_{i=1}^n p_i$

2.) Consider machine j that determines the makespan Consider last job i assigned to machine j Consider the moment when i was assigned to j At this moment j has workload at most $\frac{1}{m}\sum_{i'=1}^{n} p_{i'} \leq opt(I)$ job i adds $p_i \leq \max_{i'} p_{i'} \leq opt(I)$ to workload of j Thus $A(I) \leq \frac{1}{m}\sum_{i'=1}^{n} p_{i'} + p_i \leq 2OPT(I)$

Is this bound tight?

Can sharpen above analysis to guarantee 2 - 1/m (exercise).

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Intermezzo: Euler tours

Iviarie Schmidt

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

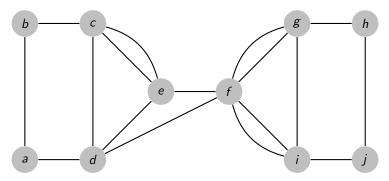
Intermezzo: Euler tours

• 7 bridges of Köningsberg (Kalingrad): can a tour cross all bridges once?

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

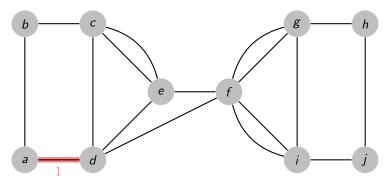
Intermezzo: Euler tours

- Multi-graph: G = (V, E) but now E may be a multi-set
 e.g. some edge {u, v} may occur multiple times
- A Eulerian tour of a graph is a tour visiting all edges exactly once.



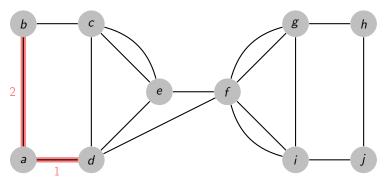
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Multi-graph: G = (V, E) but now E may be a multi-set
 e.g. some edge {u, v} may occur multiple times
- A Eulerian tour of a graph is a tour visiting all edges exactly once.



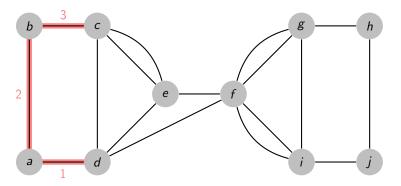
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Multi-graph: G = (V, E) but now E may be a multi-set
 e.g. some edge {u, v} may occur multiple times
- A Eulerian tour of a graph is a tour visiting all edges exactly once.



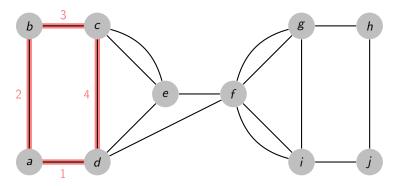
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Multi-graph: G = (V, E) but now E may be a multi-set
 e.g. some edge {u, v} may occur multiple times
- A Eulerian tour of a graph is a tour visiting all edges exactly once.



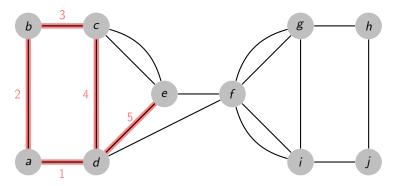
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Multi-graph: G = (V, E) but now E may be a multi-set
 e.g. some edge {u, v} may occur multiple times
- A Eulerian tour of a graph is a tour visiting all edges exactly once.



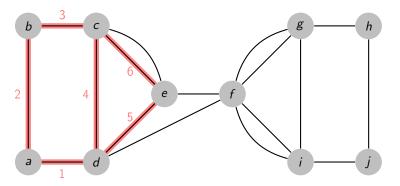
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Multi-graph: G = (V, E) but now E may be a multi-set
 e.g. some edge {u, v} may occur multiple times
- A Eulerian tour of a graph is a tour visiting all edges exactly once.



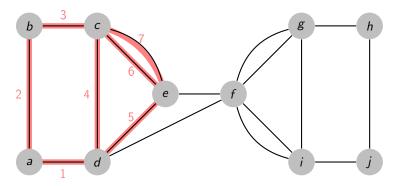
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Multi-graph: G = (V, E) but now E may be a multi-set
 e.g. some edge {u, v} may occur multiple times
- A Eulerian tour of a graph is a tour visiting all edges exactly once.



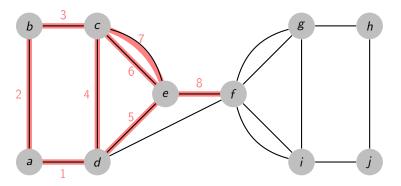
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Multi-graph: G = (V, E) but now E may be a multi-set
 e.g. some edge {u, v} may occur multiple times
- A Eulerian tour of a graph is a tour visiting all edges exactly once.



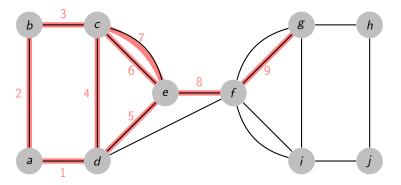
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Multi-graph: G = (V, E) but now E may be a multi-set
 e.g. some edge {u, v} may occur multiple times
- A Eulerian tour of a graph is a tour visiting all edges exactly once.



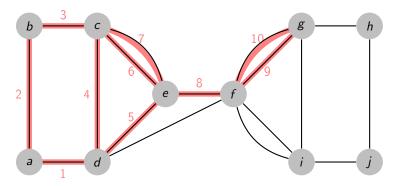
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Multi-graph: G = (V, E) but now E may be a multi-set
 e.g. some edge {u, v} may occur multiple times
- A Eulerian tour of a graph is a tour visiting all edges exactly once.



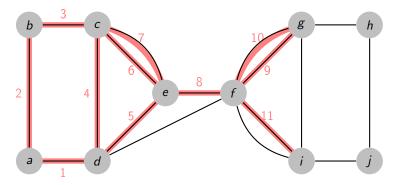
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Multi-graph: G = (V, E) but now E may be a multi-set
 e.g. some edge {u, v} may occur multiple times
- A Eulerian tour of a graph is a tour visiting all edges exactly once.



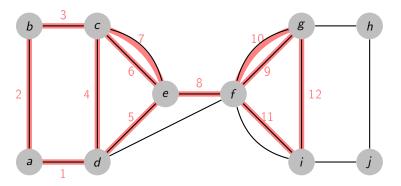
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Multi-graph: G = (V, E) but now E may be a multi-set
 e.g. some edge {u, v} may occur multiple times
- A Eulerian tour of a graph is a tour visiting all edges exactly once.



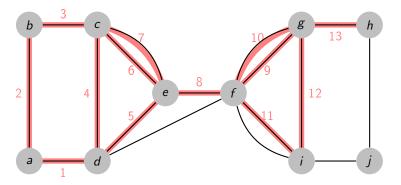
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Multi-graph: G = (V, E) but now E may be a multi-set
 e.g. some edge {u, v} may occur multiple times
- A Eulerian tour of a graph is a tour visiting all edges exactly once.



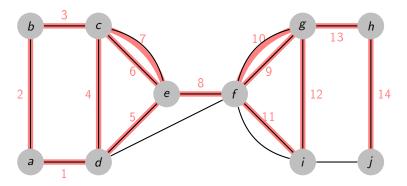
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Multi-graph: G = (V, E) but now E may be a multi-set
 e.g. some edge {u, v} may occur multiple times
- A Eulerian tour of a graph is a tour visiting all edges exactly once.



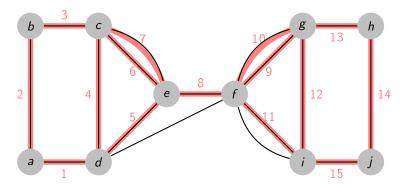
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Multi-graph: G = (V, E) but now E may be a multi-set
 e.g. some edge {u, v} may occur multiple times
- A Eulerian tour of a graph is a tour visiting all edges exactly once.



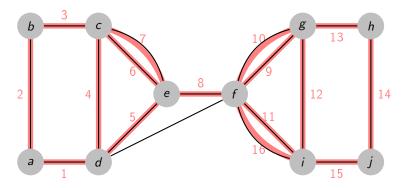
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Multi-graph: G = (V, E) but now E may be a multi-set
 e.g. some edge {u, v} may occur multiple times
- A Eulerian tour of a graph is a tour visiting all edges exactly once.



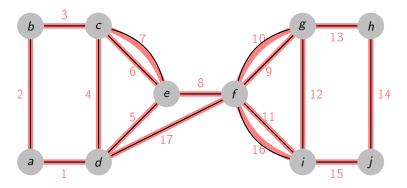
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Multi-graph: G = (V, E) but now E may be a multi-set
 e.g. some edge {u, v} may occur multiple times
- A Eulerian tour of a graph is a tour visiting all edges exactly once.



Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Multi-graph: G = (V, E) but now E may be a multi-set
 e.g. some edge {u, v} may occur multiple times
- A Eulerian tour of a graph is a tour visiting all edges exactly once.



Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Intermezzo: Euler tours

Euler tour

Instance: A graph G = (V, E). Question: Is there an Euler tour?

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Intermezzo: Euler tours

Euler tour

Instance: A graph G = (V, E). Question: Is there an Euler tour?

Theorem (Euler in 1736, first theorem in graph theory!!)

Iviane Schmidt

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Intermezzo: Euler tours

Euler tour

Instance: A graph G = (V, E). Question: Is there an Euler tour?

Theorem (Euler in 1736, first theorem in graph theory!!)

A connected graph has a Euler tour iff all vertices have even degree.

(In a multi-graph G = (V, E) the degree of vertex $v \in V$ is the number of edges $\{u, v\} \in E$.)

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Intermezzo: Euler tours

Euler tour

Instance: A graph G = (V, E). Question: Is there an Euler tour?

Theorem (Euler in 1736, first theorem in graph theory!!)

A connected graph has a Euler tour iff all vertices have even degree.

(In a multi-graph G = (V, E) the degree of vertex $v \in V$ is the number of edges $\{u, v\} \in E$.) Proof sketch:

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Intermezzo: Euler tours

Euler tour

Instance: A graph G = (V, E). Question: Is there an Euler tour?

Theorem (Euler in 1736, first theorem in graph theory!!)

A connected graph has a Euler tour iff all vertices have even degree.

(In a multi-graph G = (V, E) the degree of vertex $v \in V$ is the number of edges $\{u, v\} \in E$.) Proof sketch:

 (\rightarrow) the tour enters and leaves vertices consecutively; ends at start.

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Intermezzo: Euler tours

Euler tour

Instance: A graph G = (V, E). Question: Is there an Euler tour?

Theorem (Euler in 1736, first theorem in graph theory!!)

A connected graph has a Euler tour iff all vertices have even degree.

(In a multi-graph G = (V, E) the degree of vertex $v \in V$ is the number of edges $\{u, v\} \in E$.)

Proof sketch:

 (\rightarrow) the tour enters and leaves vertices consecutively; ends at start. (\leftarrow) start at any vertex v walk along unused edges as long as possible If we end at v and edges are left incident to a visited vertex u,

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Intermezzo: Euler tours

Euler tour

Instance: A graph G = (V, E). Question: Is there an Euler tour?

Theorem (Euler in 1736, first theorem in graph theory!!)

A connected graph has a Euler tour iff all vertices have even degree.

(In a multi-graph G = (V, E) the degree of vertex $v \in V$ is the number of edges $\{u, v\} \in E$.)

Proof sketch:

 (\rightarrow) the tour enters and leaves vertices consecutively; ends at start. (\leftarrow) start at any vertex v walk along unused edges as long as possible If we end at v and edges are left incident to a visited vertex u, walk from u and insert obtained tour in previous tour.

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Intermezzo: Euler tours

Euler tour

Instance: A graph G = (V, E). Question: Is there an Euler tour?

Theorem (Euler in 1736, first theorem in graph theory!!)

A connected graph has a Euler tour iff all vertices have even degree.

(In a multi-graph G = (V, E) the degree of vertex $v \in V$ is the number of edges $\{u, v\} \in E$.)

Proof sketch:

(
ightarrow) the tour enters and leaves vertices consecutively; ends at start.

(\leftarrow) start at any vertex v walk along unused edges as long as possible If we end at v and edges are left incident to a visited vertex u,

walk from u and insert obtained tour in previous tour.

(This is a constructive polynomial-time algorithm)

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Travelling Salesman Problem

TSP (Optimization version)

Instance: cities $1, \ldots, n$; distances d(i, j)Goal: find roundtrip of smallest possible length

NP-complete (reduction from Hamiltonian cycle)

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Travelling Salesman Problem

TSP (Optimization version)

Instance: cities $1, \ldots, n$; distances d(i, j)Goal: find roundtrip of smallest possible length

NP-complete (reduction from Hamiltonian cycle)

Assumption: *metric* TSP

We now assume that the distances satisfy the triangle inequality $d(x, y) + d(y, z) \ge d(x, z)$ for all cities x, y, z

Important example: Points in the plane (triangle ineq. by Pythagoras). Even here, still NP-complete (harder reduction, beyond scope for us)

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Travelling Salesman Problem

TSP (Optimization version)

Instance: cities $1, \ldots, n$; distances d(i, j)Goal: find roundtrip of smallest possible length

NP-complete (reduction from Hamiltonian cycle)

Assumption: *metric* TSP

We now assume that the distances satisfy the triangle inequality $d(x, y) + d(y, z) \ge d(x, z)$ for all cities x, y, z

Important example: Points in the plane (triangle ineq. by Pythagoras). Even here, still NP-complete (harder reduction, beyond scope for us)

Can we approximate the metric TSP?

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Travelling Salesman Problem

TSP (Optimization version)

Instance: cities $1, \ldots, n$; distances d(i, j)Goal: find roundtrip of smallest possible length

NP-complete (reduction from Hamiltonian cycle)

Assumption: *metric* TSP

We now assume that the distances satisfy the triangle inequality $d(x, y) + d(y, z) \ge d(x, z)$ for all cities x, y, z

Important example: Points in the plane (triangle ineq. by Pythagoras). Even here, still NP-complete (harder reduction, beyond scope for us)

Can we approximate the metric TSP?

Lower bounds:

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Travelling Salesman Problem

TSP (Optimization version)

Instance: cities $1, \ldots, n$; distances d(i, j)Goal: find roundtrip of smallest possible length

NP-complete (reduction from Hamiltonian cycle)

Assumption: *metric* TSP

We now assume that the distances satisfy the triangle inequality $d(x, y) + d(y, z) \ge d(x, z)$ for all cities x, y, z

Important example: Points in the plane (triangle ineq. by Pythagoras). Even here, still NP-complete (harder reduction, beyond scope for us)

Can we approximate the metric TSP?

Lower bounds:

• $opt(I) \ge length of minimum spanning tree MST$

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Travelling Salesman Problem

TSP (Optimization version)

Instance: cities $1, \ldots, n$; distances d(i, j)Goal: find roundtrip of smallest possible length

NP-complete (reduction from Hamiltonian cycle)

Assumption: *metric* TSP

We now assume that the distances satisfy the triangle inequality $d(x, y) + d(y, z) \ge d(x, z)$ for all cities x, y, z

Important example: Points in the plane (triangle ineq. by Pythagoras). Even here, still NP-complete (harder reduction, beyond scope for us)

Can we approximate the metric TSP?

Lower bounds:

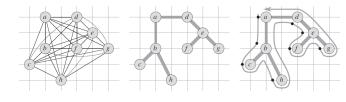
- $opt(I) \ge length of minimum spanning tree MST$
- $opt(I) \ge twice the length of min. weight perfect matching, if n even$

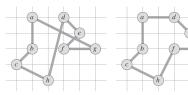
Marie Schmidt

Algorithms and Complexity (AC), week 4

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Double-tree algorithm





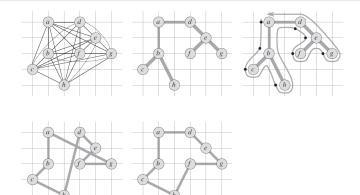
Iviarie Schmidt

Algorithms and Complexity (AC), week 4

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Double-tree algorithm

Ocompute a minimum spanning tree MST

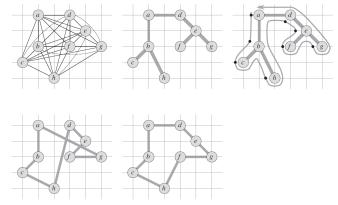


Iviarie Schmidt

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Double-tree algorithm

- Ocompute a minimum spanning tree MST
- Ouble every edge in MST to get a Eulerian graph

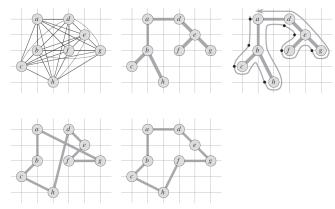


Marie Schmidt

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Double-tree algorithm

- Ocompute a minimum spanning tree MST
- Ouble every edge in MST to get a Eulerian graph
- Ompute a Euler tour in the doubled MST

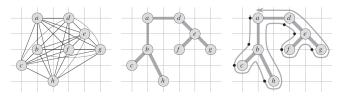


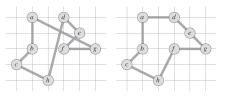
Marie Schmidt

Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

Double-tree algorithm

- Ocompute a minimum spanning tree MST
- Ouble every edge in MST to get a Eulerian graph
- Ompute a Euler tour in the doubled MST
- Shortcut the Euler tour to a TSP tour





Basic definitions	Vertex cover
Ad-hoc approaches LP-based approaches	Makespan minimization
	Intermezzo: Euler tours
	Travelling Salesman

Double-tree algorithm

- Compute a minimum spanning tree MST
- Ouble every edge in MST to get a Eulerian graph
- Ompute a Euler tour in the doubled MST
- Shortcut the Euler tour to a TSP tour

Basic definitions	Vertex cover
Ad-hoc approaches LP-based approaches	Makespan minimization
	Intermezzo: Euler tours
	Travelling Salesman

Double-tree algorithm

- Compute a minimum spanning tree MST
- Ouble every edge in MST to get a Eulerian graph
- Ompute a Euler tour in the doubled MST
- Shortcut the Euler tour to a TSP tour

Theorem

The Double-tree algorithm has approximation ratio 2.

Basic definitions	Vertex cover
Ad-hoc approaches LP-based approaches	Makespan minimization
	Intermezzo: Euler tours
	Travelling Salesman

Double-tree algorithm

- Compute a minimum spanning tree MST
- Ouble every edge in MST to get a Eulerian graph
- Ompute a Euler tour in the doubled MST
- Shortcut the Euler tour to a TSP tour

Theorem

The Double-tree algorithm has approximation ratio 2.

 $A(I) \leq \text{twice length of MST} \leq 2 \cdot \text{opt}(I)$

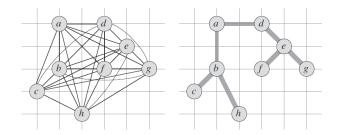
Christofides-Serdyukov algorithm

Iviarie Schmidt

Makespan minimization Intermezzo: Euler tours Travelling Salesman

Christofides-Serdyukov algorithm

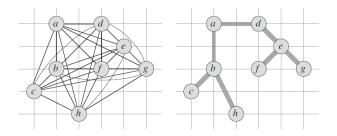
Compute a minimum spanning tree MST



Marie Schmidt

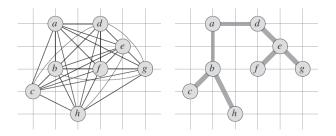
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Compute a minimum spanning tree MST
- Compute a minimum perfect matching M for odd-degree cities in MST



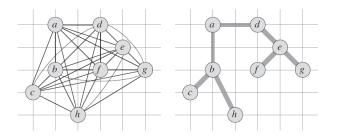
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Compute a minimum spanning tree MST
- Compute a minimum perfect matching *M* for odd-degree cities in MST number of odd-degree cities always even! (sum of degrees even)
- Or an find min perfect matching in poly time (non-trivial)



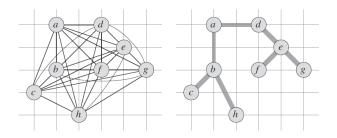
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Compute a minimum spanning tree MST
- Compute a minimum perfect matching *M* for odd-degree cities in MST number of odd-degree cities always even! (sum of degrees even)
- **③** Can find min perfect matching in poly time (non-trivial)
- \bigcirc Construct the union of MST and M to get a Eulerian graph



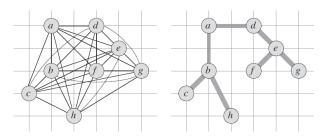
Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Compute a minimum spanning tree MST
- Compute a minimum perfect matching *M* for odd-degree cities in MST number of odd-degree cities always even! (sum of degrees even)
- Output in the second second
- \bigcirc Construct the union of MST and M to get a Eulerian graph
- Construct a Euler tour in MST union M



Vertex cover Makespan minimization Intermezzo: Euler tours Travelling Salesman

- Ompute a minimum spanning tree MST
- Compute a minimum perfect matching *M* for odd-degree cities in MST number of odd-degree cities always even! (sum of degrees even)
- **③** Can find min perfect matching in poly time (non-trivial)
- \bigcirc Construct the union of MST and M to get a Eulerian graph
- Construct a Euler tour in MST union M
- Shortcut the Euler tour to a TSP tour



- Compute a minimum spanning tree MST
- Compute a minimum perfect matching *M* for odd-degree cities in MST number of odd-degree cities always even! (sum of degrees even)
- **O** Can find min perfect matching in poly time (non-trivial)
- Construct the union of MST and *M* to get a Eulerian graph
- Onstruct a Euler tour in MST union M
- Shortcut the Euler tour to a TSP tour

Christofides-Serdyukov algorithm

- Compute a minimum spanning tree MST
- Compute a minimum perfect matching *M* for odd-degree cities in MST number of odd-degree cities always even! (sum of degrees even)
- **O** Can find min perfect matching in poly time (non-trivial)
- Construct the union of MST and M to get a Eulerian graph
- Construct a Euler tour in MST union M
- Shortcut the Euler tour to a TSP tour

Theorem

The Christofides-Serdyukov algorithm has approximation ratio 1.5.

Proof: $A(I) \leq \text{length of MST plus weight of matching}$

Christofides-Serdyukov algorithm

- Compute a minimum spanning tree MST
- Compute a minimum perfect matching *M* for odd-degree cities in MST number of odd-degree cities always even! (sum of degrees even)
- **O** Can find min perfect matching in poly time (non-trivial)
- Construct the union of MST and M to get a Eulerian graph
- Construct a Euler tour in MST union M
- Shortcut the Euler tour to a TSP tour

Theorem

The Christofides-Serdyukov algorithm has approximation ratio 1.5.

Proof: $A(I) \leq \text{length of MST plus weight of matching}$ weight of matching $\leq 1/2$ length of a tour visiting all odd degree vertices

Christofides-Serdyukov algorithm

- Compute a minimum spanning tree MST
- Compute a minimum perfect matching *M* for odd-degree cities in MST number of odd-degree cities always even! (sum of degrees even)
- **O** Can find min perfect matching in poly time (non-trivial)
- Construct the union of MST and M to get a Eulerian graph
- Construct a Euler tour in MST union M
- Shortcut the Euler tour to a TSP tour

Theorem

The Christofides-Serdyukov algorithm has approximation ratio 1.5.

Proof: $A(I) \leq \text{length of MST plus weight of matching}$ weight of matching $\leq 1/2$ length of a tour visiting all odd degree vertices $\leq 1/2$ length of a tour visiting all vertices

Christofides-Serdyukov algorithm

- Compute a minimum spanning tree MST
- Compute a minimum perfect matching *M* for odd-degree cities in MST number of odd-degree cities always even! (sum of degrees even)
- **O** Can find min perfect matching in poly time (non-trivial)
- Construct the union of MST and M to get a Eulerian graph
- Onstruct a Euler tour in MST union M
- Shortcut the Euler tour to a TSP tour

Theorem

The Christofides-Serdyukov algorithm has approximation ratio 1.5.

Proof: $A(I) \leq \text{length of MST plus weight of matching}$ weight of matching $\leq 1/2$ length of a tour visiting all odd degree vertices $\leq 1/2$ length of a tour visiting all vertices $A(I) \leq \text{length of MST plus weight of matching} \leq \text{opt}(I) + \text{opt}(I)/2$

Christofides-Serdyukov algorithm

- Compute a minimum spanning tree MST
- Compute a minimum perfect matching *M* for odd-degree cities in MST number of odd-degree cities always even! (sum of degrees even)
- **③** Can find min perfect matching in poly time (non-trivial)
- Construct the union of MST and M to get a Eulerian graph
- Onstruct a Euler tour in MST union M
- Shortcut the Euler tour to a TSP tour

Theorem

The Christofides-Serdyukov algorithm has approximation ratio 1.5.

Proof: $A(I) \leq \text{length of MST plus weight of matching}$ weight of matching $\leq 1/2$ length of a tour visiting all odd degree vertices $\leq 1/2$ length of a tour visiting all vertices $A(I) \leq \text{length of MST plus weight of matching} \leq \text{opt}(I) + \text{opt}(I)/2$ Where did we use the triangle inequality?

Marie Schmidt

Weighted vertex cover

LP-based approaches

Iviarie Schmidt

Weighted vertex cover

LP-based approaches

1. Find an exact ILP formulation

Iviarie Schmidt

Algorithms and Complexity (AC), week 4

LP-based approaches

- 1. Find an exact ILP formulation
- 2. Relax integrality constraints (ILP \rightarrow LP)

LP-based approaches

- 1. Find an exact ILP formulation
- 2. Relax integrality constraints (ILP \rightarrow LP)
- 3. Solve the LP relaxation in polynomial time

LP-based approaches

- 1. Find an exact ILP formulation
- 2. Relax integrality constraints (ILP \rightarrow LP)
- 3. Solve the LP relaxation in polynomial time
- 4. Round the optimal LP solution to approximate ILP solution (preserving feasibility!)

Weighted vertex cover

Weighted vertex cover (VC)

Instance: a graph G = (V, E); weights $w : V \to \mathbb{R}^+$ Goal: find a vertex cover of smallest possible weight (e.g. find a vertex cover $X \subseteq V$ minimizing $\sum_{v \in V} w(v)$)

Weighted vertex cover

Weighted vertex cover (VC)

Instance: a graph G = (V, E); weights $w : V \to \mathbb{R}^+$ Goal: find a vertex cover of smallest possible weight (e.g. find a vertex cover $X \subseteq V$ minimizing $\sum_{v \in V} w(v)$)

ILP formulation

 $\begin{array}{ll} \text{minimize} & \sum_{v \in V} w(v) \cdot x_v \\ \text{subject to} & x_u + x_v \geq 1 & \text{for every edge } \{u, v\} \in E \\ & x_v \in \{0, 1\} & \text{for every vertex } v \in V \end{array}$

Weighted vertex cover

Weighted vertex cover (VC)

Instance: a graph G = (V, E); weights $w : V \to \mathbb{R}^+$ Goal: find a vertex cover of smallest possible weight (e.g. find a vertex cover $X \subseteq V$ minimizing $\sum_{v \in V} w(v)$)

ILP formulation

$$\begin{array}{ll} \text{minimize} & \sum_{v \in V} w(v) \cdot x_v \\ \text{subject to} & x_u + x_v \geq 1 & \text{for every edge } \{u, v\} \in E \\ & x_v \in \{0, 1\} & \text{for every vertex } v \in V \end{array}$$

LP relaxation

$$\begin{array}{ll} \text{minimize} & \sum_{v \in V} w(v) \cdot x_v \\ \text{subject to} & x_u + x_v \geq 1 \quad \text{for every edge } \{u, v\} \in E \\ & 0 \leq x_v \leq 1 \quad (\text{or simply } 0 \leq x_v) \quad \text{for } v \in V \\ \end{array}$$

Iviarie Schmidt

Algorithms and Complexity (AC), week 4

1. Compute the optimal LP solution x_v^*

- 1. Compute the optimal LP solution x_v^*
- 2. Round the LP solution x_v^* to a feasible ILP-solution \tilde{x}_v :

- 1. Compute the optimal LP solution x_v^*
- 2. Round the LP solution x_v^* to a feasible ILP-solution \tilde{x}_v :
 - If $x_v^* < 1/2$ then $\tilde{x}_v = 0$

- 1. Compute the optimal LP solution x_v^*
- 2. Round the LP solution x_v^* to a feasible ILP-solution \tilde{x}_v :
 - If $x_v^* < 1/2$ then $\tilde{x}_v = 0$
 - If $x_v^* \ge 1/2$ then $\tilde{x}_v = 1$

- 1. Compute the optimal LP solution x_v^*
- 2. Round the LP solution x_v^* to a feasible ILP-solution \tilde{x}_v :
 - If $x_v^* < 1/2$ then $\tilde{x}_v = 0$
 - If $x_v^* \geq 1/2$ then $\tilde{x}_v = 1$

Theorem

Marie Schmidt

- 1. Compute the optimal LP solution x_v^*
- 2. Round the LP solution x_v^* to a feasible ILP-solution \tilde{x}_v :
 - If $x_v^* < 1/2$ then $\tilde{x}_v = 0$
 - If $x_v^* \ge 1/2$ then $\tilde{x}_v = 1$

Theorem

This poly-time approximation algorithm has approximation ratio 2.

Proof:

General approach is centered around three values: opt_{ILP} , opt_{LP} , app (result of the rounding)

Observation

 $\mathsf{opt}_{\mathit{LP}} \leq \mathsf{opt}_{\mathit{ILP}} \leq \mathsf{app} \leq \mathsf{2opt}_{\mathit{LP}}$

General approach is centered around three values: opt_{ILP} , opt_{LP} , app (result of the rounding)

Observation

 $\mathsf{opt}_{\mathit{LP}} \leq \mathsf{opt}_{\mathit{ILP}} \leq \mathsf{app} \leq \mathsf{2opt}_{\mathit{LP}}$

For minimization, want opt_{LP} to be a good lower bound of opt_{ILP} .

Weighted vertex cover

General approach is centered around three values: opt_{ILP} , opt_{LP} , app (result of the rounding)

Observation

 $opt_{LP} \leq opt_{ILP} \leq app \leq 2opt_{LP}$

For minimization, want opt_{LP} to be a good lower bound of opt_{ILP} .

Integrality gap

Define the *integrality gap* of an LP-relaxation to be the supremum (over all instances) of opt_{ILP}/opt_{LP}. (for maximization, use infimum)

Two examples (with unit weights)

Marie Schmidt

Weighted vertex cover

General approach is centered around three values: opt_{ILP} , opt_{LP} , app (result of the rounding)

Observation

 $opt_{LP} \leq opt_{ILP} \leq app \leq 2opt_{LP}$

For minimization, want opt_{LP} to be a good lower bound of opt_{ILP} .

Integrality gap

Define the *integrality gap* of an LP-relaxation to be the supremum (over all instances) of opt_{ILP}/opt_{LP}. (for maximization, use infimum)

Two examples (with unit weights)

• Odd cycle on 2k + 1 vertices yields

Weighted vertex cover

General approach is centered around three values: opt_{ILP} , opt_{LP} , app (result of the rounding)

Observation

 $opt_{LP} \leq opt_{ILP} \leq app \leq 2opt_{LP}$

For minimization, want opt_{LP} to be a good lower bound of opt_{ILP} .

Integrality gap

Define the *integrality gap* of an LP-relaxation to be the supremum (over all instances) of opt_{ILP}/opt_{LP} . (for maximization, use infimum)

Two examples (with unit weights)

• Odd cycle on 2k + 1 vertices yields $opt_{LP} = k + \frac{1}{2}$, $opt_{ILP} = k + 1$, app = 2k + 1.

Marie Schmidt

Weighted vertex cover

General approach is centered around three values: opt_{ILP} , opt_{LP} , app (result of the rounding)

Observation

 $opt_{LP} \leq opt_{ILP} \leq app \leq 2opt_{LP}$

For minimization, want opt_{LP} to be a good lower bound of opt_{ILP} .

Integrality gap

Define the *integrality gap* of an LP-relaxation to be the supremum (over all instances) of opt_{ILP}/opt_{LP}. (for maximization, use infimum)

Two examples (with unit weights)

- Odd cycle on 2k + 1 vertices yields opt_{*IP*} = $k + \frac{1}{2}$, opt_{*IP*} = k + 1, app = 2k + 1.
- Complete graph on 2k vertices yields

Marie Schmidt

Weighted vertex cover

General approach is centered around three values: opt_{ILP} , opt_{LP} , app (result of the rounding)

Observation

 $opt_{LP} \leq opt_{ILP} \leq app \leq 2opt_{LP}$

For minimization, want opt_{LP} to be a good lower bound of opt_{ILP} .

Integrality gap

Define the *integrality gap* of an LP-relaxation to be the supremum (over all instances) of opt_{ILP}/opt_{LP} . (for maximization, use infimum)

Two examples (with unit weights)

- Odd cycle on 2k + 1 vertices yields opt_{IP} = k + ¹/₂, opt_{IP} = k + 1, app = 2k + 1.
- Complete graph on 2k vertices yields opt_{*IP*} = k, opt_{*IP*} = 2k - 1, app = 2k.

General approach is centered around three values: opt_{ILP} , opt_{LP} , app (result of the rounding)

Observation

 $\mathsf{opt}_{LP} \leq \mathsf{opt}_{ILP} \leq \mathsf{app} \leq \mathsf{2opt}_{LP}$

For minimization, want opt_{LP} to be a good lower bound of opt_{ILP} .

Integrality gap

Define the *integrality gap* of an LP-relaxation to be the supremum (over all instances) of opt_{ILP}/opt_{LP} . (for maximization, use infimum)

Two examples (with unit weights)

- Odd cycle on 2k + 1 vertices yields opt_{*IP*} = $k + \frac{1}{2}$, opt_{*IP*} = k + 1, app = 2k + 1.
- Complete graph on 2k vertices yields opt_{IP} = k, opt_{IP} = 2k - 1, app = 2k.

Therefore the integrality gap of the LP relaxation is $opt_{ILP}/opt_{LP} = 2$

Iviarie Schmidt