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Basic de�nitions

We leave decision problems, and return to optimization problems

De�nition

Let X be a minimization problem.
The optimal objective value of instance I is denoted opt(I ).
The objective value returned by algorithm A is denoted A(I ).

The (worst-case) approximation ratio of algorithm A is supI A(I )/opt(I ).

• approximation ratio always ≥ 1
small approximation ratio = good

For maximization problems approximation ratio is inf I A(I )/opt(I )
always ≤ 1; large guarantee = good

We aim for polynomial time algorithms with good approximation ratios
still possible for problems whose decision versions are NP-complete!
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Makespan minimization
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Vertex cover (VC)

Instance: undirected graph G = (V ,E )
Goal: �nd a vertex cover of smallest possible size

(vertex cover = subset of vertices that touches every edge)

How can we �nd a 'good' vertex cover?

Matching

Subset M ⊆ E of disjoint edges (e.g. e ∩ e′ = ∅, for distinct e, e′ ∈ M)
Say M is maximal if there is no matching M ′ such that M ⊂ M ′.

Approximation algorithm for Vertex Cover

1. Find a maximal matching M (iteratively pick edges not yet touched)
2. Output S =

⋃
{u,v}∈M{u, v} (e.g. all endpoint of M)

Theorem

This poly-time approximation algorithm has approximation ratio 2.
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Makespan minimization

Instance: m machines; n jobs with processing times p1, . . . , pn
Goal: assign jobs to machines so that the maximum workload (=
makespan) is minimized

Decision variant in NP, NP-hard (thus NP-complete) already for m = 2:

use a reduction from 2-PARTITION

List scheduling algorithm

Work through the job list one by one; in each step
assign current job to machine with currently smallest workload

Theorem

List scheduling has approximation ratio 2.
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Theorem

List scheduling has approximation ratio 2.

Proof:

1.) Lower bounds:
opt(I ) ≥ max pi
opt(I ) ≥ 1

m

∑n
i=1 pi

2.) Consider machine j that determines the makespan
Consider last job i assigned to machine j
Consider the moment when i was assigned to j
At this moment j has workload at most 1

m

∑n
i ′=1 pi ′ ≤ opt(I )

job i adds pi ≤ maxi ′ pi ′ ≤ opt(I ) to workload of j
Thus A(I ) ≤ 1

m

∑n
i ′=1 pi ′ + pi ≤ 2OPT (I )

Is this bound tight?

Can sharpen above analysis to guarantee 2− 1/m (exercise).
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Intermezzo: Euler tours

• 7 bridges of Köningsberg (Kalingrad): can a tour cross all bridges once?
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• Multi-graph: G = (V ,E ) but now E may be a multi-set
e.g. some edge {u, v} may occur multiple times

• A Eulerian tour of a graph is a tour visiting all edges exactly once.
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Intermezzo: Euler tours

Euler tour

Instance: A graph G = (V ,E ).
Question: Is there an Euler tour?

Theorem (Euler in 1736, �rst theorem in graph theory!!)

A connected graph has a Euler tour i� all vertices have even degree.

(In a multi-graph G = (V ,E ) the degree of vertex v ∈ V is the number
of edges {u, v} ∈ E .)
Proof sketch:

(→) the tour enters and leaves vertices consecutively; ends at start.
(←) start at any vertex v walk along unused edges as long as possible
If we end at v and edges are left incident to a visited vertex u,
walk from u and insert obtained tour in previous tour.

(This is a constructive polynomial-time algorithm)
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Travelling Salesman Problem

TSP (Optimization version)

Instance: cities 1, . . . , n; distances d(i , j)
Goal: �nd roundtrip of smallest possible length

NP-complete (reduction from Hamiltonian cycle)

Assumption: metric TSP

We now assume that the distances satisfy the triangle inequality
d(x , y) + d(y , z) ≥ d(x , z) for all cities x , y , z

Important example: Points in the plane (triangle ineq. by Pythagoras).
Even here, still NP-complete (harder reduction, beyond scope for us)

Can we approximate the metric TSP?

Lower bounds:
• opt(I ) ≥ length of minimum spanning tree MST
• opt(I ) ≥ twice the length of min. weight perfect matching, if n even
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Double-tree algorithm

1 Compute a minimum spanning tree MST

2 Double every edge in MST to get a Eulerian graph

3 Compute a Euler tour in the doubled MST

4 Shortcut the Euler tour to a TSP tour
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Double-tree algorithm

1 Compute a minimum spanning tree MST

2 Double every edge in MST to get a Eulerian graph

3 Compute a Euler tour in the doubled MST

4 Shortcut the Euler tour to a TSP tour

Theorem

The Double-tree algorithm has approximation ratio 2.

A(I ) ≤ twice length of MST ≤ 2 · opt(I )
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LP-based approaches

Vertex cover
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Travelling Salesman

Christo�des-Serdyukov algorithm

1 Compute a minimum spanning tree MST

2 Compute a minimum perfect matching M for odd-degree cities in MST

number of odd-degree cities always even! (sum of degrees even)

3 Can �nd min perfect matching in poly time (non-trivial)

4 Construct the union of MST and M to get a Eulerian graph

5 Construct a Euler tour in MST union M

6 Shortcut the Euler tour to a TSP tour
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Basic de�nitions
Ad-hoc approaches

LP-based approaches
Weighted vertex cover

LP-based approaches

1. Find an exact ILP formulation
2. Relax integrality constraints (ILP → LP)
3. Solve the LP relaxation in polynomial time
4. Round the optimal LP solution to approximate ILP solution (preserving
feasibility!)
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Basic de�nitions
Ad-hoc approaches

LP-based approaches
Weighted vertex cover

Weighted vertex cover (VC)

Instance: a graph G = (V ,E ); weights w : V → R+

Goal: �nd a vertex cover of smallest possible weight
(e.g. �nd a vertex cover X ⊆ V minimizing

∑
v∈V w(v))

ILP formulation

minimize
∑

v∈V w(v) · xv
subject to xu + xv ≥ 1 for every edge {u, v} ∈ E

xv ∈ {0, 1} for every vertex v ∈ V

LP relaxation

minimize
∑

v∈V w(v) · xv
subject to xu + xv ≥ 1 for every edge {u, v} ∈ E

0 ≤ xv ≤ 1 (or simply 0 ≤ xv ) for v ∈ V
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Basic de�nitions
Ad-hoc approaches

LP-based approaches
Weighted vertex cover

Approximation algorithm

1. Compute the optimal LP solution x∗v

2. Round the LP solution x∗v to a feasible ILP-solution x̃v :
If x∗v < 1/2 then x̃v = 0
If x∗v ≥ 1/2 then x̃v = 1

Theorem

This poly-time approximation algorithm has approximation ratio 2.

Proof:
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Basic de�nitions
Ad-hoc approaches

LP-based approaches
Weighted vertex cover

General approach is centered around three values: optILP , optLP , app (result of
the rounding)

Observation

optLP ≤ optILP ≤ app ≤ 2optLP

For minimization, want optLP to be a good lower bound of optILP .

Integrality gap

De�ne the integrality gap of an LP-relaxation to be
the supremum (over all instances) of optILP/optLP .
(for maximization, use in�mum)

Two examples (with unit weights)

• Odd cycle on 2k + 1 vertices yields
optLP = k + 1

2
, optILP = k + 1, app = 2k + 1.

• Complete graph on 2k vertices yields
optLP = k, optILP = 2k − 1, app = 2k.

Therefore the integrality gap of the LP relaxation is optILP/optLP = 2
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