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Communication delay scheduling

LP-based approaches

1. Find an exact ILP formulation
2. Relax integrality constraints (ILP → LP)
3. Solve the LP relaxation in polynomial time
4. Round the optimal LP solution to approximate ILP solution (preserving
feasibility!)
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Communication delay scheduling

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs J1, . . . , Jn; precedence constraints between some
jobs
Goal: �nd a feasible schedule on n machines that obeys unit
communication delays and minimizes makespan

• unit time jobs: job Ja runs from S(Ja) to C (Ja) := S(Ja) + 1

• precedence constraints = partial order ”→ ” on the jobs
• if Ja → Jb then C (Ja) ≤ S(Jb)
⇐⇒ Ja must be completed before Jb is started

• unit communication delay for Ja → Jb
if Ja and Jb run on same machine then C (Ja) ≤ S(Jb)
if Ja and Jb run on di�erent machines then C (Ja) + 1 ≤ S(Jb)

• number n of machines is not a bottleneck

Marie Schmidt Algorithms and Complexity (AC), week 5 4/33



LP-based approaches
Approximation Schemes

In-approximability
Other examples of approximation schemes

Communication delay scheduling

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs J1, . . . , Jn; precedence constraints between some
jobs
Goal: �nd a feasible schedule on n machines that obeys unit
communication delays and minimizes makespan

• unit time jobs: job Ja runs from S(Ja) to C (Ja) := S(Ja) + 1

• precedence constraints = partial order ”→ ” on the jobs
• if Ja → Jb then C (Ja) ≤ S(Jb)
⇐⇒ Ja must be completed before Jb is started

• unit communication delay for Ja → Jb
if Ja and Jb run on same machine then C (Ja) ≤ S(Jb)
if Ja and Jb run on di�erent machines then C (Ja) + 1 ≤ S(Jb)

• number n of machines is not a bottleneck

Marie Schmidt Algorithms and Complexity (AC), week 5 4/33



LP-based approaches
Approximation Schemes

In-approximability
Other examples of approximation schemes

Communication delay scheduling

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs J1, . . . , Jn; precedence constraints between some
jobs
Goal: �nd a feasible schedule on n machines that obeys unit
communication delays and minimizes makespan

• unit time jobs: job Ja runs from S(Ja) to C (Ja) := S(Ja) + 1

• precedence constraints = partial order ”→ ” on the jobs

• if Ja → Jb then C (Ja) ≤ S(Jb)
⇐⇒ Ja must be completed before Jb is started

• unit communication delay for Ja → Jb
if Ja and Jb run on same machine then C (Ja) ≤ S(Jb)
if Ja and Jb run on di�erent machines then C (Ja) + 1 ≤ S(Jb)

• number n of machines is not a bottleneck

Marie Schmidt Algorithms and Complexity (AC), week 5 4/33



LP-based approaches
Approximation Schemes

In-approximability
Other examples of approximation schemes

Communication delay scheduling

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs J1, . . . , Jn; precedence constraints between some
jobs
Goal: �nd a feasible schedule on n machines that obeys unit
communication delays and minimizes makespan

• unit time jobs: job Ja runs from S(Ja) to C (Ja) := S(Ja) + 1

• precedence constraints = partial order ”→ ” on the jobs
• if Ja → Jb then C (Ja) ≤ S(Jb)

⇐⇒ Ja must be completed before Jb is started

• unit communication delay for Ja → Jb
if Ja and Jb run on same machine then C (Ja) ≤ S(Jb)
if Ja and Jb run on di�erent machines then C (Ja) + 1 ≤ S(Jb)

• number n of machines is not a bottleneck

Marie Schmidt Algorithms and Complexity (AC), week 5 4/33



LP-based approaches
Approximation Schemes

In-approximability
Other examples of approximation schemes

Communication delay scheduling

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs J1, . . . , Jn; precedence constraints between some
jobs
Goal: �nd a feasible schedule on n machines that obeys unit
communication delays and minimizes makespan

• unit time jobs: job Ja runs from S(Ja) to C (Ja) := S(Ja) + 1

• precedence constraints = partial order ”→ ” on the jobs
• if Ja → Jb then C (Ja) ≤ S(Jb)
⇐⇒ Ja must be completed before Jb is started

• unit communication delay for Ja → Jb
if Ja and Jb run on same machine then C (Ja) ≤ S(Jb)
if Ja and Jb run on di�erent machines then C (Ja) + 1 ≤ S(Jb)

• number n of machines is not a bottleneck

Marie Schmidt Algorithms and Complexity (AC), week 5 4/33



LP-based approaches
Approximation Schemes

In-approximability
Other examples of approximation schemes

Communication delay scheduling

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs J1, . . . , Jn; precedence constraints between some
jobs
Goal: �nd a feasible schedule on n machines that obeys unit
communication delays and minimizes makespan

• unit time jobs: job Ja runs from S(Ja) to C (Ja) := S(Ja) + 1

• precedence constraints = partial order ”→ ” on the jobs
• if Ja → Jb then C (Ja) ≤ S(Jb)
⇐⇒ Ja must be completed before Jb is started

• unit communication delay for Ja → Jb

if Ja and Jb run on same machine then C (Ja) ≤ S(Jb)
if Ja and Jb run on di�erent machines then C (Ja) + 1 ≤ S(Jb)

• number n of machines is not a bottleneck

Marie Schmidt Algorithms and Complexity (AC), week 5 4/33



LP-based approaches
Approximation Schemes

In-approximability
Other examples of approximation schemes

Communication delay scheduling

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs J1, . . . , Jn; precedence constraints between some
jobs
Goal: �nd a feasible schedule on n machines that obeys unit
communication delays and minimizes makespan

• unit time jobs: job Ja runs from S(Ja) to C (Ja) := S(Ja) + 1

• precedence constraints = partial order ”→ ” on the jobs
• if Ja → Jb then C (Ja) ≤ S(Jb)
⇐⇒ Ja must be completed before Jb is started

• unit communication delay for Ja → Jb
if Ja and Jb run on same machine then C (Ja) ≤ S(Jb)

if Ja and Jb run on di�erent machines then C (Ja) + 1 ≤ S(Jb)

• number n of machines is not a bottleneck

Marie Schmidt Algorithms and Complexity (AC), week 5 4/33



LP-based approaches
Approximation Schemes

In-approximability
Other examples of approximation schemes

Communication delay scheduling

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs J1, . . . , Jn; precedence constraints between some
jobs
Goal: �nd a feasible schedule on n machines that obeys unit
communication delays and minimizes makespan

• unit time jobs: job Ja runs from S(Ja) to C (Ja) := S(Ja) + 1

• precedence constraints = partial order ”→ ” on the jobs
• if Ja → Jb then C (Ja) ≤ S(Jb)
⇐⇒ Ja must be completed before Jb is started

• unit communication delay for Ja → Jb
if Ja and Jb run on same machine then C (Ja) ≤ S(Jb)
if Ja and Jb run on di�erent machines then C (Ja) + 1 ≤ S(Jb)

• number n of machines is not a bottleneck

Marie Schmidt Algorithms and Complexity (AC), week 5 4/33



LP-based approaches
Approximation Schemes

In-approximability
Other examples of approximation schemes

Communication delay scheduling

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs J1, . . . , Jn; precedence constraints between some
jobs
Goal: �nd a feasible schedule on n machines that obeys unit
communication delays and minimizes makespan

• unit time jobs: job Ja runs from S(Ja) to C (Ja) := S(Ja) + 1

• precedence constraints = partial order ”→ ” on the jobs
• if Ja → Jb then C (Ja) ≤ S(Jb)
⇐⇒ Ja must be completed before Jb is started

• unit communication delay for Ja → Jb
if Ja and Jb run on same machine then C (Ja) ≤ S(Jb)
if Ja and Jb run on di�erent machines then C (Ja) + 1 ≤ S(Jb)

• number n of machines is not a bottleneck

Marie Schmidt Algorithms and Complexity (AC), week 5 4/33



LP-based approaches
Approximation Schemes

In-approximability
Other examples of approximation schemes

Communication delay scheduling

Communication delay scheduling (2)

Example

• Four jobs J1, J2, J3, J4
• Precedence constraints:

J1 → J2; J1 → J3; J2 → J4; J3 → J4;

Lower bound: makespan ≥ 3

• Simple schedule:
If all four jobs are run on di�erent machines: makespan=5

• Better schedule:
If all four jobs are run on same machine then makespan=4
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Communication delay scheduling

Communication delay scheduling (3a)

Notation:
• Pred(Ja) denotes the set of all predecessors Jb of Ja (with Jb → Ja)
• Succ(Ja) denotes the set of all successors Jb of Ja (with Ja → Jb)

Observation

At most one predecessor of Ja can complete at C (Ja)− 1.
At most one successor of Ja can start at C (Ja).

Modelling idea:
Introduce 0-1-variable xab that indicates the delay of Ja → Jb
• xab = 0 means that Jb starts directly after Ja on same machine
• xab = 1 means that Jb starts at time C (Ja) + 1 or later

Corresponding inequality: C (Jb) ≥ C (Ja) + 1+ xab

Observation

C (Jb) = max {C (Ja) + 1+ xab : Ja → Jb}
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Communication delay scheduling (3b)

ILP formulation

min C

s.t.
∑

i∈Pred(j) xij ≥ |Pred(j)| − 1 for j = 1, . . . , n∑
i∈Succ(j) xji ≥ |Succ(j)| − 1 for j = 1, . . . , n

Ci + 1+ xij ≤ Cj for Ji → Jj

1 ≤ Cj ≤ C for j = 1, . . . , n

xij ∈ {0, 1} for Ji → Jj

Variables:
• Cj : real variable encodes completion time of Ji
• xij : 0-1-variable encodes delay of Ji → Jj
• C : real variable encodes makespan of schedule
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Communication delay scheduling (3c)

LP relaxation

min C

s.t.
∑

i∈Pred(j) xij ≥ |Pred(j)| − 1 for j = 1, . . . , n∑
i∈Succ(j) xji ≥ |Succ(j)| − 1 for j = 1, . . . , n

Ci + 1+ xij ≤ Cj for Ji → Jj

1 ≤ Cj ≤ C for j = 1, . . . , n

0 ≤ xij ≤ 1 for Ji → Jj

Variables:
• Cj : real variable encodes completion time of Ji
• xij : real variable encodes relaxed delay of Ji → Jj
• C : real variable encodes makespan of schedule
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Communication delay scheduling

Communication delay scheduling (4)

Approximation algorithm

1. Compute the optimal LP solution x∗ij , C
∗
j , C

∗.

2. Round the LP solution to a feasible ILP-solution x̃ij , C̃j , C̃ .

How to round the LP solution

For every precedence constraint Ji → Jj do:
If x∗ij < 1/2 then x̃ij = 0
If x∗ij ≥ 1/2 then x̃ij = 1

For every job Jj do:

C̃j = max
{
C̃i + 1+ x̃ij : Ji → Jj

}
For the makespan do:

C̃ = max{C̃i}
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Communication delay scheduling

Communication delay scheduling (5)

Lemma (feasibility)

The rounded solution x̃ij , C̃j , C̃ is feasible for the ILP.

∑
i∈Pred(j)

x̃ij ≥ |Pred(j)| − 1 and
∑

i∈Succ(j)

x̃ji ≥ |Succ(j)| − 1,

since for at most one i ∈ Pred(j), we have x∗ij < 1/2

and for at most one i ∈ Succ(j), we have x∗ji < 1/2.

Constraint on Ci 's is satis�ed by construction.
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Communication delay scheduling

Lemma (guarantee, part 1)

For every constraint Ji → Jj , we have 1+ x̃ij ≤ 4
3
(1+ x∗ij ).

Proof:

trivial if x̃ij = 0; if x̃ij = 1, use x∗ij ≥ 1/2.

Lemma (guarantee, part 2)

For every job Jj , we have C̃j ≤ 4
3
C∗j .

Proof: Induction on precedence constraint graph.
If |Pred(j)| = 0, C̃j = C∗j = 1.

If |Pred(j)| > 1, we have that C̃j is by de�nition

max
{
C̃i + 1+ x̃ij : Ji → Jj

}
≤ max

{
4
3
C∗i + 4

3
(1+ x∗ij ) : Ji → Jj

}
.

We obtain:

Lemma (guarantee, part 3)

The makespan satis�es C̃ ≤ 4
3
C∗.
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Communication delay scheduling (7)

Theorem

This poly-time approximation algorithm has approximation ratio 4/3.
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Communication delay scheduling (8a): Gaps

Is this bound tight?

Example

• 3k + 1 jobs A1, . . . ,Ak+1; B1, . . . ,Bk ; C1, . . . ,Ck

• Precedence constraints:

Ai → Bi and Ai → Ci for i = 1, . . . , k
Bi → Ai+1 and Ci → Ai+1 for i = 1, . . . , k
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Communication delay scheduling (8b): Integrality Gap
Not discussed

Example

• Job are partitioned into k + 1 levels 0, 1, . . . , k , with 2i jobs at level i
• Every job at level i has two successors at level i + 1

Every job at level i has one predecessor at level i − 1

• optILP ≥ 2k + 1

• optLP ≤ 3
2
k + 1 (x∗ij = 1/2 for all constraints Ji → Jj)

Observation

For large numbers of jobs, optILP may come arbitrarily close to 4
3
optLP .

Therefore the integrality gap of our LP relaxation is 4/3.
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Makespan minimization revisited

Approximation Schemes

De�nition (for minimization problem)

A Polynomial Time Approximation Scheme (PTAS) is
a family of approximation algorithms Aε for ε > 0

with approximation guarantee 1+ ε, and
for every �xed ε running time polynomially bounded in instance size

Typical running times for PTAS:
n1/ε, n2/ε

3
, (1/ε)1/εn4, n2/ε5, 31/εn3, (4/ε)! n2/ε

For maximization problems
approximation guarantee of Aε is 1− ε
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Makespan minimization revisited

Makespan minimization (1)

Makespan minimization on m = 2 machines

Instance: n jobs with processing times p1, . . . , pn
Goal: assign jobs to two machines so that the makespan is minimized

• Let L := max
{
max pi ,

1
2

∑n
i=1 pi

}
, and recall L ≤ opt(I )

• Let ε > 0 be desired precision (for worst case ratio 1+ ε)

Approximation algorithm

1 Classify processing times into big (pj > εL) and small (pj ≤ εL)
2 Compute all assignments of big jobs to machines

3 For each such assignment,
add the small jobs greedily to the schedule for big jobs

4 Output the best schedule found
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Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

1 Classify processing times into big (pj > εL) and small (pj ≤ εL)
2 Compute all assignments of big jobs to machines

3 For each such assignment,
add the small jobs greedily to the schedule for big jobs

4 Output the best schedule found

Analysis of the algorithm:

running time?

approximation guarantee?
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Makespan minimization (2)

Approximation algorithm

1 Classify processing times into big (pj > εL) and small (pj ≤ εL)
2 Compute all assignments of big jobs to machines

3 For each such assignment,
add the small jobs greedily to the schedule for big jobs

4 Output the best schedule found

Running time:

Step 1 & 4: O(n)
Step 2 & 3:

number of big jobs: ≤ 2/ε

number of assignments of big jobs per machine: 22/ε

step 3 in O(22/ε · n)
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Makespan minimization revisited

Approximation algorithm

1 Classify processing times into big (pj > εL) and small (pj ≤ εL)
2 Compute all assignments of big jobs to machines

3 For each such assignment,
add the small jobs greedily to the schedule for big jobs

4 Output the best schedule found

Approximation ratio:

• One of the 22/ε assignments agrees with
the assignment of big jobs in optimal schedule

• Let B denote the makespan (of big jobs) in that assignment
• If Greedy does not increase B: optimal schedule found

If Greedy increases B: di�erence in workload between our schedule
and optimal schedule ≤ εL

Aε(I )
opt(I ) ≤

opt(I )+εL
opt(I ) ≤ opt(I )+εopt(I )

opt(I ) = 1+ ε
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Makespan minimization revisited

Makespan minimization (3)

Theorem

Makespan minimization on m = 2 machines has a PTAS.
More precisely, for any ε ≤ 1, a (1+ ε)-approximation can be found in
time O(22/ε · n).
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Makespan minimization revisited

Fully Polynomial Time Approximation Schemes

De�nition (for minimization problem)

A Fully Polynomial Time Approximation Scheme (FPTAS) is
a family of approximation algorithms Aε for ε > 0

with approximation guarantee 1+ ε, and
running time polynomially bounded in instance size and 1

ε

For maximization problems
approximation guarantee of Aε is 1− ε
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Chromatic number
Communication delay scheduling
The gap technique
Traveling Salesman Problem

Summary: approximation algorithms

2-approximation for (weighted) vertex cover
3
2
-approximation for metric TSP

4
3
-approximation for communication delay scheduling

(1+ ε)-approximation for makespan minimization

Are these the best polynomial-time approximation algorithms for these
problems that are possible?

How do we prove such a statement?

→ Inapproximability
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Chromatic number
Communication delay scheduling
The gap technique
Traveling Salesman Problem

In-approximability (1)

Chromatic number (COLORING)

Instance: an undirected graph G = (V ,E )
Goal: �nd proper coloring of V with smallest possible number of colors

(colors 1, 2, . . . , k ; adjacent vertices receive di�erent colors)

Chromatic number χ(G ) = minimum number of colors in proper coloring

Fact

There exists polynomial time transformation from 3-SAT to COLORING
such that

satis�able 3-SAT instances translate into graphs with χ(G ) ≤ 3
unsatis�able 3-SAT instances translate into graphs with χ(G ) ≥ 4

Theorem

If COLORING has poly-time approximation algorithm with ratio r < 4/3,
then P=NP.
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Chromatic number
Communication delay scheduling
The gap technique
Traveling Salesman Problem

In-approximability (2)

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs J1, . . . , Jn;
precedence constraints between some jobs

Goal: �nd a feasible schedule on n machines
that obeys unit communication delays and minimizes makespan

Fact (Hoogeveen, Lenstra & Veltman, 1994)

There exists poly-time transformation from 3-SAT to COMM-DELAY
such that

satis�able 3-SAT instances translate into I s with opt(I ) ≤ 6
unsatis�able 3-SAT instances translate into graphs with opt(I ) ≥ 7

Theorem

If COMM-DELAY has poly-time approximation algo with ratio r < 7/6,
then P=NP.
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Chromatic number
Communication delay scheduling
The gap technique
Traveling Salesman Problem

In-approximability (3)

The Gap Technique is a method for establishing in-approximability
of a minimization problem X with integral objective values:

1. Take an NP-hard problem Y

2. Construct a poly-time transformation from Y to X
such that
YES-instances of Y translate into X -instances with value ≤ A
NO-instances of Y translate into X -instances with value ≥ B

3. Conclude:
If X has poly-time approximation algorithm with ratio r < B/A
then P=NP
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In-approximability (4)

TSP (Optimization version)

Instance: cities 1, . . . , n; distances d(i , j)
Goal: �nd roundtrip of smallest possible length

Theorem

If TSP has poly-time approximation algo with ratio r <∞,
then P=NP.

Proof:

Assume there is a polynomial-time approximation algorithm A with

approximation ratio r <∞ for the TSP. Then the following polynomial-time

algorithm solves HC:

Transform an instance I de�ned by a graph G = (V ,E) of HC into an

instance I ′ of TSP by de�ning distances

d(i , j) :=

{
1 if {i , j} ∈ E

r · |V | otherwise

Solve TSP in that graph using A

If A(I ′) ≤ |V |, return 'YES', if A(I ′) ≥ |V |, return 'NO'.
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Other examples of approximation schemes: Euclidean TSP

Euclidean TSP

Instance: Points (x1, y1), . . . , (xn, yn) in the plane R2 in the plane
Goal: Find a Round-tour visiting the total (Euclidean distance)

Theorem (Arora, Mitchell)

There is an (1+ ε)-approximation algorithm for Euclidean TSP running

in time O(nO(ε)).

• The running time was later improved to O(n(log n)1/ε) by Arora.

• Result was found independently by Arora and Mitchell,
both received the Gödel prize for it.

• We'll skip a detailed exposition of this algorithm in this course.
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Other examples of approximation schemes: Knapsack

Knapsack

Instance: Items 1, . . . , n, each with a weight wi and value vi ; an integer v .
Goal: Find a subset X ⊆ {1, . . . , n} maximizing

∑
i∈X vi under the

constraint that
∑

i∈X wi ≤W .

Knapsack is weakly NP-Complete.

Theorem (Folklore)

There is an algorithm (1− ε)-approximation algorithm for Knapsack

running in time O(n3/ε).

• We'll see the algorithm in week 7.
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Other examples of approximation schemes: Planar
Independent Set

Planar graph: A graph that admit a drawing in R2 without crossing of
edges.

Planar Independent Set

Instance: A planar graph G .
Goal: Find a independent of G of maximum size.

Planar independent set is NP-complete.

Theorem (Baker)

There is an algorithm (1− ε)-approximation algorithm for Planar

Independent Set running in time O(2O(1/ε)n4).

• We'll see the algorithm in week 8.
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Thank you! Goodbye! Enjoy the rest of the course!
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Recommended reading

Cormen, Leiserson, Rivest and Stein `Introduction to Algorithms':

Chapter 35 (Approximation Algorithms)

Garey, Johnson 'Computers and Intractability'

Chapter 6 (Coping with NP-complete problems)
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