Algorithms and Complexity (AC), week 5

Marie Schmidt

based on slides by Jesper Nederlof

LNMB, Sep-Nov 2019

Program for this week and the next

Dealing with NP-hard problems: Approximation

Basic definitions ✓ Ad-hoc approaches ✓ LP-based approaches Approximation Schemes In-approximability

LP-based approaches

- 1. Find an exact ILP formulation
- 2. Relax integrality constraints (ILP \rightarrow LP)
- 3. Solve the LP relaxation in polynomial time
- 4. Round the optimal LP solution to approximate ILP solution (preserving feasibility!)

Instance: unit time jobs J_1, \ldots, J_n ; precedence constraints between some jobs

Instance: unit time jobs J_1, \ldots, J_n ; precedence constraints between some jobs

Goal: find a feasible schedule on n machines that obeys unit communication delays and minimizes makespan

• unit time jobs: job J_a runs from $S(J_a)$ to $C(J_a) := S(J_a) + 1$

Instance: unit time jobs J_1, \ldots, J_n ; precedence constraints between some jobs

- unit time jobs: job J_a runs from $S(J_a)$ to $C(J_a) := S(J_a) + 1$
- precedence constraints = partial order " \rightarrow " on the jobs

Instance: unit time jobs J_1, \ldots, J_n ; precedence constraints between some jobs

- unit time jobs: job J_a runs from $S(J_a)$ to $C(J_a) := S(J_a) + 1$
- precedence constraints = partial order " \rightarrow " on the jobs
- if $J_a \to J_b$ then $C(J_a) \leq S(J_b)$

Instance: unit time jobs J_1, \ldots, J_n ; precedence constraints between some jobs

Goal: find a feasible schedule on n machines that obeys unit communication delays and minimizes makespan

- unit time jobs: job J_a runs from $S(J_a)$ to $C(J_a) := S(J_a) + 1$
- precedence constraints = partial order " \rightarrow " on the jobs
- if $J_a \to J_b$ then $C(J_a) \leq S(J_b)$

 \iff J_a must be completed before J_b is started

Instance: unit time jobs J_1, \ldots, J_n ; precedence constraints between some jobs

- unit time jobs: job J_a runs from $S(J_a)$ to $C(J_a) := S(J_a) + 1$
- precedence constraints = partial order " \rightarrow " on the jobs
- if $J_a \to J_b$ then $C(J_a) \le S(J_b)$ $\iff J_a$ must be completed before J_b is started
- unit communication delay for $J_a \rightarrow J_b$

Instance: unit time jobs J_1, \ldots, J_n ; precedence constraints between some jobs

- unit time jobs: job J_a runs from $S(J_a)$ to $C(J_a) := S(J_a) + 1$
- precedence constraints = partial order " \rightarrow " on the jobs
- if $J_a \to J_b$ then $C(J_a) \le S(J_b)$ $\iff J_a$ must be completed before J_b is started
- unit communication delay for $J_a \rightarrow J_b$ if J_a and J_b run on same machine then $C(J_a) \leq S(J_b)$

Instance: unit time jobs J_1, \ldots, J_n ; precedence constraints between some jobs

- unit time jobs: job J_a runs from $S(J_a)$ to $C(J_a) := S(J_a) + 1$
- precedence constraints = partial order " \rightarrow " on the jobs
- if $J_a \to J_b$ then $C(J_a) \le S(J_b)$ $\iff J_a$ must be completed before J_b is started
- unit communication delay for $J_a \to J_b$ if J_a and J_b run on same machine then $C(J_a) \leq S(J_b)$ if J_a and J_b run on different machines then $C(J_a) + 1 \leq S(J_b)$

Instance: unit time jobs J_1, \ldots, J_n ; precedence constraints between some jobs

- unit time jobs: job J_a runs from $S(J_a)$ to $C(J_a) := S(J_a) + 1$
- precedence constraints = partial order " \rightarrow " on the jobs
- if $J_a \to J_b$ then $C(J_a) \le S(J_b)$ $\iff J_a$ must be completed before J_b is started
- unit communication delay for $J_a \to J_b$ if J_a and J_b run on same machine then $C(J_a) \leq S(J_b)$ if J_a and J_b run on different machines then $C(J_a) + 1 \leq S(J_b)$
- number *n* of machines is not a bottleneck

Communication delay scheduling

Communication delay scheduling (2)

Example

- Four jobs *J*₁, *J*₂, *J*₃, *J*₄
- Precedence constraints:

 $J_1 \rightarrow J_2; \ J_1 \rightarrow J_3; \ J_2 \rightarrow J_4; \ J_3 \rightarrow J_4;$

Communication delay scheduling

Communication delay scheduling (2)

Example

- Four jobs *J*₁, *J*₂, *J*₃, *J*₄
- Precedence constraints:
 - $J_1
 ightarrow J_2; \ J_1
 ightarrow J_3; \ J_2
 ightarrow J_4; \ J_3
 ightarrow J_4;$

Lower bound:

Communication delay scheduling

Communication delay scheduling (2)

Example

- Four jobs *J*₁, *J*₂, *J*₃, *J*₄
- Precedence constraints:

 $J_1
ightarrow J_2; \ J_1
ightarrow J_3; \ J_2
ightarrow J_4; \ J_3
ightarrow J_4;$

Lower bound: makespan \geq 3

Communication delay scheduling

Communication delay scheduling (2)

Example

- Four jobs *J*₁, *J*₂, *J*₃, *J*₄
- Precedence constraints:
 - $J_1
 ightarrow J_2; \ J_1
 ightarrow J_3; \ J_2
 ightarrow J_4; \ J_3
 ightarrow J_4;$

Lower bound: makespan \geq 3

• Simple schedule: If all four jobs are run on different machines:

Communication delay scheduling

Communication delay scheduling (2)

Example

- Four jobs *J*₁, *J*₂, *J*₃, *J*₄
- Precedence constraints:
 - $J_1
 ightarrow J_2; \ J_1
 ightarrow J_3; \ J_2
 ightarrow J_4; \ J_3
 ightarrow J_4;$

Lower bound: makespan \geq 3

• Simple schedule: If all four jobs are run on different machines: makespan=5

Communication delay scheduling

Communication delay scheduling (2)

Example

- Four jobs *J*₁, *J*₂, *J*₃, *J*₄
- Precedence constraints:
 - $J_1
 ightarrow J_2; \ J_1
 ightarrow J_3; \ J_2
 ightarrow J_4; \ J_3
 ightarrow J_4;$

Lower bound: makespan \geq 3

- Simple schedule: If all four jobs are run on different machines: makespan=5
- Better schedule:

Communication delay scheduling

Communication delay scheduling (2)

Example

- Four jobs *J*₁, *J*₂, *J*₃, *J*₄
- Precedence constraints:
 - $J_1
 ightarrow J_2; \ J_1
 ightarrow J_3; \ J_2
 ightarrow J_4; \ J_3
 ightarrow J_4;$

Lower bound: makespan \geq 3

- Simple schedule: If all four jobs are run on different machines: makespan=5
- Better schedule: If all four jobs are run on same machine then makespan=4

Communication delay scheduling

Communication delay scheduling (3a)

Notation:

- $\operatorname{Pred}(J_a)$ denotes the set of all predecessors J_b of J_a (with $J_b o J_a$)
- Succ (J_a) denotes the set of all successors J_b of J_a (with $J_a \rightarrow J_b$)

Communication delay scheduling

Communication delay scheduling (3a)

Notation:

- $\operatorname{Pred}(J_a)$ denotes the set of all predecessors J_b of J_a (with $J_b o J_a$)
- Succ (J_a) denotes the set of all successors J_b of J_a (with $J_a \rightarrow J_b$)

Observation

At most one predecessor of J_a can complete at $C(J_a) - 1$. At most one successor of J_a can start at $C(J_a)$.

Communication delay scheduling

Communication delay scheduling (3a)

Notation:

- $\operatorname{Pred}(J_a)$ denotes the set of all predecessors J_b of J_a (with $J_b o J_a$)
- Succ (J_a) denotes the set of all successors J_b of J_a (with $J_a \rightarrow J_b$)

Observation

At most one predecessor of J_a can complete at $C(J_a) - 1$. At most one successor of J_a can start at $C(J_a)$.

Modelling idea:

Introduce 0-1-variable x_{ab} that indicates the delay of $J_a
ightarrow J_b$

- $x_{ab} = 0$ means that J_b starts directly after J_a on same machine
- $x_{ab} = 1$ means that J_b starts at time $C(J_a) + 1$ or later

Communication delay scheduling

Communication delay scheduling (3a)

Notation:

- $\operatorname{Pred}(J_a)$ denotes the set of all predecessors J_b of J_a (with $J_b o J_a$)
- Succ (J_a) denotes the set of all successors J_b of J_a (with $J_a \rightarrow J_b$)

Observation

At most one predecessor of J_a can complete at $C(J_a) - 1$. At most one successor of J_a can start at $C(J_a)$.

Modelling idea:

Introduce 0-1-variable x_{ab} that indicates the delay of $J_a
ightarrow J_b$

- $x_{ab} = 0$ means that J_b starts directly after J_a on same machine
- $x_{ab} = 1$ means that J_b starts at time $C(J_a) + 1$ or later

Corresponding inequality: $C(J_b) \ge C(J_a) + 1 + x_{ab}$

Communication delay scheduling

Communication delay scheduling (3a)

Notation:

- $\operatorname{Pred}(J_a)$ denotes the set of all predecessors J_b of J_a (with $J_b o J_a$)
- Succ (J_a) denotes the set of all successors J_b of J_a (with $J_a \rightarrow J_b$)

Observation

At most one predecessor of J_a can complete at $C(J_a) - 1$. At most one successor of J_a can start at $C(J_a)$.

Modelling idea:

Introduce 0-1-variable x_{ab} that indicates the delay of $J_a
ightarrow J_b$

- $x_{ab} = 0$ means that J_b starts directly after J_a on same machine
- $x_{ab} = 1$ means that J_b starts at time $C(J_a) + 1$ or later

Corresponding inequality: $C(J_b) \ge C(J_a) + 1 + x_{ab}$

Observation

$$C(J_b) = \max \{C(J_a) + 1 + x_{ab} : J_a \rightarrow J_b\}$$

Communication delay scheduling

Communication delay scheduling (3b)

ILP formulation

min C

s.t.
$$\sum_{i \in \operatorname{Pred}(j)} x_{ij} \geq |\operatorname{Pred}(j)| - 1 \quad \text{for } j = 1, \dots, n$$
$$\sum_{i \in \operatorname{Succ}(j)} x_{ji} \geq |\operatorname{Succ}(j)| - 1 \quad \text{for } j = 1, \dots, n$$
$$C_i + 1 + x_{ij} \leq C_j \qquad \text{for } J_i \rightarrow J_j$$
$$1 \leq C_j \leq C \qquad \text{for } j = 1, \dots, n$$
$$x_{ij} \in \{0, 1\} \qquad \text{for } J_i \rightarrow J_j$$

Variables:

- C_j : real variable encodes completion time of J_i
- x_{ij} : 0-1-variable encodes delay of $J_i \rightarrow J_j$
- C: real variable encodes makespan of schedule

Communication delay scheduling

Communication delay scheduling (3c)

LP relaxation

min C

s.t.
$$\sum_{i \in \mathsf{Pred}(j)} x_{ij} \geq |\mathsf{Pred}(j)| - 1 \quad \text{for } j = 1, \dots, n$$
$$\sum_{i \in \mathsf{Succ}(j)} x_{ji} \geq |\mathsf{Succ}(j)| - 1 \quad \text{for } j = 1, \dots, n$$
$$C_i + 1 + x_{ij} \leq C_j \qquad \qquad \text{for } J_i \to J_j$$
$$1 \leq C_j \leq C \qquad \qquad \text{for } j = 1, \dots, n$$
$$0 \leq x_{ij} \leq 1 \qquad \qquad \text{for } J_i \to J_j$$

Variables:

- C_j : real variable encodes completion time of J_i
- x_{ij} : real variable encodes relaxed delay of $J_i
 ightarrow J_j$
- C: real variable encodes makespan of schedule

Communication delay scheduling

Communication delay scheduling (4)

Approximation algorithm

- 1. Compute the optimal LP solution x_{ii}^* , C_i^* , C^* .
- 2. Round the LP solution to a feasible ILP-solution \tilde{x}_{ij} , \tilde{C}_j , \tilde{C} .

How to round the LP solution

Communication delay scheduling

Communication delay scheduling (4)

Approximation algorithm

- 1. Compute the optimal LP solution x_{ii}^* , C_i^* , C^* .
- 2. Round the LP solution to a feasible ILP-solution \tilde{x}_{ij} , \tilde{C}_j , \tilde{C} .

How to round the LP solution

```
For every precedence constraint J_i \rightarrow J_j do:

If x_{ij}^* < 1/2 then \tilde{x}_{ij} = 0

If x_{ij}^* \ge 1/2 then \tilde{x}_{ij} = 1
```

Communication delay scheduling

Communication delay scheduling (4)

Approximation algorithm

- 1. Compute the optimal LP solution x_{ii}^* , C_i^* , C^* .
- 2. Round the LP solution to a feasible ILP-solution \tilde{x}_{ij} , \tilde{C}_j , \tilde{C} .

How to round the LP solution

For every precedence constraint
$$J_i \rightarrow J_j$$
 do:
If $x_{ij}^* < 1/2$ then $\tilde{x}_{ij} = 0$
If $x_{ij}^* \ge 1/2$ then $\tilde{x}_{ij} = 1$

$$\begin{array}{rcl} \mathsf{For \ every \ job \ } J_j \ \mathsf{do:} \\ \tilde{C}_j \ = \ \max \left\{ \tilde{C}_i + 1 + \tilde{x}_{ij} : \ J_i \to J_j \right\} \end{array}$$

Communication delay scheduling

Communication delay scheduling (4)

Approximation algorithm

- 1. Compute the optimal LP solution x_{ii}^* , C_i^* , C^* .
- 2. Round the LP solution to a feasible ILP-solution \tilde{x}_{ij} , \tilde{C}_j , \tilde{C} .

How to round the LP solution

For every precedence constraint
$$J_i \rightarrow J_j$$
 do:
If $x_{ij}^* < 1/2$ then $\tilde{x}_{ij} = 0$
If $x_{ij}^* \ge 1/2$ then $\tilde{x}_{ij} = 1$

$$egin{array}{rcl} {\sf For every job} \; J_j \; {\sf do:} \ & ilde C_j \; = \; \max \left\{ ilde C_i + 1 + ilde x_{ij} : \; J_i o J_j
ight\} \end{array}$$

For the makespan do: $\tilde{C} = \max{\{\tilde{C}_i\}}$

Communication delay scheduling

Communication delay scheduling (5)

Lemma (feasibility)

Communication delay scheduling

Communication delay scheduling (5)

Lemma (feasibility)

$$\sum_{i\in \operatorname{\mathsf{Pred}}(j)} \tilde{x}_{ij} \geq |\operatorname{\mathsf{Pred}}(j)| - 1 \quad \text{ and } \quad \sum_{i\in \operatorname{\mathsf{Succ}}(j)} \tilde{x}_{ji} \geq |\operatorname{\mathsf{Succ}}(j)| - 1,$$

Communication delay scheduling

Communication delay scheduling (5)

Lemma (feasibility)

$$\sum_{i \in \operatorname{Pred}(j)} \widetilde{x}_{ij} \geq |\operatorname{Pred}(j)| - 1$$
 and $\sum_{i \in \operatorname{Succ}(j)} \widetilde{x}_{ji} \geq |\operatorname{Succ}(j)| - 1$,
since for at most one $i \in \operatorname{Pred}(j)$, we have $x_{ij}^* < 1/2$

Communication delay scheduling

Communication delay scheduling (5)

Lemma (feasibility)

$$\sum_{i \in \operatorname{Pred}(j)} \tilde{x}_{ij} \geq |\operatorname{Pred}(j)| - 1 \quad \text{and} \quad \sum_{i \in \operatorname{Succ}(j)} \tilde{x}_{ji} \geq |\operatorname{Succ}(j)| - 1,$$

since for at most one $i \in \operatorname{Pred}(j)$, we have $x_{ij}^* < 1/2$
and for at most one $i \in \operatorname{Succ}(j)$, we have $x_{ji}^* < 1/2$.

Communication delay scheduling

Communication delay scheduling (5)

Lemma (feasibility)

$$\sum_{i \in \operatorname{Pred}(j)} \tilde{x}_{ij} \geq |\operatorname{Pred}(j)| - 1 \quad \text{and} \quad \sum_{i \in \operatorname{Succ}(j)} \tilde{x}_{ji} \geq |\operatorname{Succ}(j)| - 1,$$

since for at most one $i \in \operatorname{Pred}(j)$, we have $x_{ij}^* < 1/2$
and for at most one $i \in \operatorname{Succ}(j)$, we have $x_{ji}^* < 1/2$.
Constraint on C_i 's is satisfied by construction.

Communication delay scheduling

Lemma (guarantee, part 1)

For every constraint $J_i \to J_j$, we have $1 + \tilde{x}_{ij} \leq \frac{4}{3}(1 + x_{ij}^*)$.

Proof:
Lemma (guarantee, part 1)

For every constraint $J_i \to J_j$, we have $1 + \tilde{x}_{ij} \leq \frac{4}{3}(1 + x_{ij}^*)$.

Proof: trivial if $\tilde{x}_{ij} = 0$; if $\tilde{x}_{ij} = 1$, use $x_{ij}^* \ge 1/2$.

Lemma (guarantee, part 1)

For every constraint $J_i \to J_j$, we have $1 + \tilde{x}_{ij} \leq \frac{4}{3}(1 + x_{ij}^*)$.

Proof: trivial if $\tilde{x}_{ij} = 0$; if $\tilde{x}_{ij} = 1$, use $x_{ij}^* \ge 1/2$.

Lemma (guarantee, part 2)

For every job J_j , we have $\tilde{C}_j \leq \frac{4}{3}C_j^*$.

Proof:

Lemma (guarantee, part 1)

For every constraint $J_i \to J_j$, we have $1 + \tilde{x}_{ij} \leq \frac{4}{3}(1 + x_{ij}^*)$.

Proof: trivial if $\tilde{x}_{ij} = 0$; if $\tilde{x}_{ij} = 1$, use $x_{ij}^* \ge 1/2$.

Lemma (guarantee, part 2)

For every job J_j , we have $\tilde{C}_j \leq \frac{4}{3}C_j^*$.

Proof: Induction on precedence constraint graph.

Lemma (guarantee, part 1)

For every constraint $J_i \rightarrow J_j$, we have $1 + \tilde{x}_{ij} \leq \frac{4}{3}(1 + x_{ij}^*)$.

Proof: trivial if $\tilde{x}_{ij} = 0$; if $\tilde{x}_{ij} = 1$, use $x_{ij}^* \ge 1/2$.

Lemma (guarantee, part 2)

For every job J_j , we have $\tilde{C}_j \leq \frac{4}{3}C_j^*$.

Proof: Induction on precedence constraint graph. If $|\operatorname{Pred}(j)| = 0$, $\tilde{C}_j = C_j^* = 1$.

Lemma (guarantee, part 1)

For every constraint $J_i \rightarrow J_j$, we have $1 + \tilde{x}_{ij} \leq \frac{4}{3}(1 + x_{ij}^*)$.

Proof: trivial if $\tilde{x}_{ij} = 0$; if $\tilde{x}_{ij} = 1$, use $x_{ij}^* \ge 1/2$.

Lemma (guarantee, part 2)

For every job J_j , we have $\tilde{C}_j \leq \frac{4}{3}C_j^*$.

Proof: Induction on precedence constraint graph. If $|\operatorname{Pred}(j)| = 0$, $\tilde{C}_j = C_j^* = 1$. If $|\operatorname{Pred}(j)| > 1$, we have that \tilde{C}_j is by definition $\max \left\{ \tilde{C}_i + 1 + \tilde{x}_{ij} : J_i \to J_j \right\}$

Lemma (guarantee, part 1)

For every constraint $J_i \rightarrow J_j$, we have $1 + \tilde{x}_{ij} \leq \frac{4}{3}(1 + x_{ij}^*)$.

Proof: trivial if $\tilde{x}_{ij} = 0$; if $\tilde{x}_{ij} = 1$, use $x_{ij}^* \ge 1/2$.

Lemma (guarantee, part 2)

For every job J_j , we have $\tilde{C}_j \leq \frac{4}{3}C_j^*$.

Proof: Induction on precedence constraint graph. If $|\operatorname{Pred}(j)| = 0$, $\tilde{C}_j = C_j^* = 1$. If $|\operatorname{Pred}(j)| > 1$, we have that \tilde{C}_j is by definition $\max\left\{\tilde{C}_i + 1 + \tilde{x}_{ij}: J_i \to J_j\right\} \le \max\left\{\frac{4}{3}C_i^* + \frac{4}{3}(1 + x_{ij}^*): J_i \to J_j\right\}$.

Communication delay scheduling

Lemma (guarantee, part 1)

For every constraint $J_i \rightarrow J_j$, we have $1 + \tilde{x}_{ij} \leq \frac{4}{3}(1 + x_{ij}^*)$.

Proof: trivial if $\tilde{x}_{ij} = 0$; if $\tilde{x}_{ij} = 1$, use $x_{ij}^* \ge 1/2$.

Lemma (guarantee, part 2)

For every job J_j , we have $\tilde{C}_j \leq \frac{4}{3}C_j^*$.

Proof: Induction on precedence constraint graph. If $|\operatorname{Pred}(j)| = 0$, $\tilde{C}_j = C_j^* = 1$. If $|\operatorname{Pred}(j)| > 1$, we have that \tilde{C}_j is by definition $\max\left\{\tilde{C}_i + 1 + \tilde{x}_{ij}: J_i \to J_j\right\} \le \max\left\{\frac{4}{3}C_i^* + \frac{4}{3}(1 + x_{ij}^*): J_i \to J_j\right\}$. We obtain:

Lemma (guarantee, part 3)

The makespan satisfies $\tilde{C} \leq \frac{4}{3}C^*$.

Communication delay scheduling

Communication delay scheduling (7)

Theorem

This poly-time approximation algorithm has approximation ratio 4/3.

Communication delay scheduling

Communication delay scheduling (8a): Gaps

Is this bound tight?

Communication delay scheduling

Communication delay scheduling (8a): Gaps

Is this bound tight?

Example

- 3k + 1 jobs A_1, \ldots, A_{k+1} ; B_1, \ldots, B_k ; C_1, \ldots, C_k
- Precedence constraints: $A_i \rightarrow B_i$ and $A_i \rightarrow C_i$ for $i = 1, \dots, k$ $B_i \rightarrow A_{i+1}$ and $C_i \rightarrow A_{i+1}$ for $i = 1, \dots, k$

Communication delay scheduling

Communication delay scheduling (8b): Integrality Gap

Example

- Job are partitioned into k + 1 levels $0, 1, \ldots, k$, with 2^i jobs at level i
- Every job at level i has two successors at level i + 1
 Every job at level i has one predecessor at level i 1
- $opt_{ILP} \ge 2k + 1$
- $\operatorname{opt}_{LP} \leq \frac{3}{2}k + 1$ $(x_{ij}^* = 1/2 \text{ for all constraints } J_i \to J_j)$

Observation

For large numbers of jobs, opt_{ILP} may come arbitrarily close to $\frac{4}{3}opt_{LP}$.

Therefore the integrality gap of our LP relaxation is 4/3.

Makespan minimization revisited

Approximation Schemes

Makespan minimization revisited

Approximation Schemes

Definition (for minimization problem)

A Polynomial Time Approximation Scheme (PTAS) is a family of approximation algorithms A_{ε} for $\varepsilon > 0$ with approximation guarantee $1 + \varepsilon$, and for every fixed ε running time polynomially bounded in instance size

Makespan minimization revisited

Approximation Schemes

Definition (for minimization problem)

A Polynomial Time Approximation Scheme (PTAS) is a family of approximation algorithms A_{ε} for $\varepsilon > 0$ with approximation guarantee $1 + \varepsilon$, and for every fixed ε running time polynomially bounded in instance size

Typical running times for PTAS: $n^{1/\varepsilon}$, n^{2/ε^3} , $(1/\varepsilon)^{1/\varepsilon} n^4$, n^2/ε^5 , $3^{1/\varepsilon} n^3$, $(4/\varepsilon)! n^{2/\varepsilon}$

Makespan minimization revisited

Approximation Schemes

Definition (for minimization problem)

A Polynomial Time Approximation Scheme (PTAS) is a family of approximation algorithms A_{ε} for $\varepsilon > 0$ with approximation guarantee $1 + \varepsilon$, and for every fixed ε running time polynomially bounded in instance size

Typical running times for PTAS: $n^{1/\varepsilon}$, n^{2/ε^3} , $(1/\varepsilon)^{1/\varepsilon} n^4$, n^2/ε^5 , $3^{1/\varepsilon} n^3$, $(4/\varepsilon)! n^{2/\varepsilon}$

For maximization problems approximation guarantee of A_{ε} is $1-\varepsilon$

Makespan minimization revisited

Makespan minimization (1)

Makespan minimization on m = 2 machines

Instance: *n* jobs with processing times p_1, \ldots, p_n

Goal: assign jobs to two machines so that the makespan is minimized

Makespan minimization revisited

Makespan minimization (1)

Makespan minimization on m = 2 machines

Instance: *n* jobs with processing times p_1, \ldots, p_n Goal: assign jobs to two machines so that the makespan is minimized

• Let $L := \max \{\max p_i, \frac{1}{2} \sum_{i=1}^n p_i\}$, and recall $L \le \operatorname{opt}(I)$

Makespan minimization revisited

Makespan minimization (1)

Makespan minimization on m = 2 machines

Instance: *n* jobs with processing times p_1, \ldots, p_n Goal: assign jobs to two machines so that the makespan is minimized

- Let $L := \max \{\max p_i, \frac{1}{2} \sum_{i=1}^n p_i\}$, and recall $L \le \operatorname{opt}(I)$
- Let $\varepsilon > 0$ be desired precision (for worst case ratio $1 + \varepsilon$)

Makespan minimization (1)

Makespan minimization on m = 2 machines

Instance: *n* jobs with processing times p_1, \ldots, p_n Goal: assign jobs to two machines so that the makespan is minimized

- Let $L := \max \{\max p_i, \frac{1}{2} \sum_{i=1}^n p_i\}$, and recall $L \le \operatorname{opt}(I)$
- Let $\varepsilon > 0$ be desired precision (for worst case ratio $1 + \varepsilon$)

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ompute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found

Makespan minimization revisited

Makespan minimization (2)

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ocmpute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found

Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ocmpute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found

Analysis of the algorithm:

Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ocmpute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found

Analysis of the algorithm:

- running time?
- approximation guarantee?

Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ompute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found

Running time:

Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Compute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found

Running time: Step 1 & 4:

Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ompute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found

Running time:

Step 1 & 4: *O*(*n*)

Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ompute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found

Running time:

Step 1 & 4: *O*(*n*) Step 2 & 3:

Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ompute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found

Running time:

Step 1 & 4: *O*(*n*) Step 2 & 3:

• number of big jobs:

Makespan minimization revisited

Makespan minimization (2)

Approximation algorithm

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ompute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found

Running time:

Step 1 & 4: *O*(*n*) Step 2 & 3:

• number of big jobs: $\leq 2/\varepsilon$

Makespan minimization (2)

Approximation algorithm

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ompute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found

Running time:

Step 1 & 4: *O*(*n*) Step 2 & 3:

- number of big jobs: $\leq 2/\varepsilon$
- number of assignments of big jobs per machine: $2^{2/\varepsilon}$

Makespan minimization (2)

Approximation algorithm

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ompute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found

Running time:

Step 1 & 4: *O*(*n*) Step 2 & 3:

- number of big jobs: $\leq 2/\varepsilon$
- number of assignments of big jobs per machine: $2^{2/\varepsilon}$
- step 3 in $O(2^{2/\varepsilon} \cdot n)$

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ompute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found

Approximation ratio:

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ompute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found

Approximation ratio: One of the $2^{2/\varepsilon}$ assignments agrees with the assignment of big jobs in optimal schedule

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ompute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found
- **Approximation ratio:** One of the $2^{2/\varepsilon}$ assignments agrees with the assignment of big jobs in optimal schedule
- Let **B** denote the makespan (of big jobs) in that assignment

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ompute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found
- **Approximation ratio:** One of the $2^{2/\varepsilon}$ assignments agrees with the assignment of big jobs in optimal schedule
- Let **B** denote the makespan (of big jobs) in that assignment
- If Greedy does not increase **B**: optimal schedule found

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ompute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found
- **Approximation ratio:** One of the $2^{2/\varepsilon}$ assignments agrees with the assignment of big jobs in optimal schedule
- Let **B** denote the makespan (of big jobs) in that assignment
- If Greedy does not increase *B*: optimal schedule found If Greedy increases *B*: difference in workload between our schedule and optimal schedule

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ompute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found
- **Approximation ratio:** One of the $2^{2/\varepsilon}$ assignments agrees with the assignment of big jobs in optimal schedule
- Let **B** denote the makespan (of big jobs) in that assignment
- If Greedy does not increase B: optimal schedule found If Greedy increases B: difference in workload between our schedule and optimal schedule ≤ εL
- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ompute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found
- **Approximation ratio:** One of the $2^{2/\varepsilon}$ assignments agrees with the assignment of big jobs in optimal schedule
- Let **B** denote the makespan (of big jobs) in that assignment
- If Greedy does not increase B: optimal schedule found If Greedy increases B: difference in workload between our schedule and optimal schedule ≤ εL

$$\frac{A_{\varepsilon}(I)}{opt(I)}$$

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ompute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found
- **Approximation ratio:** One of the $2^{2/\varepsilon}$ assignments agrees with the assignment of big jobs in optimal schedule
- Let **B** denote the makespan (of big jobs) in that assignment
- If Greedy does not increase B: optimal schedule found If Greedy increases B: difference in workload between our schedule and optimal schedule ≤ εL

$$\frac{A_{\varepsilon}(I)}{opt(I)} \leq \frac{opt(I) + \varepsilon L}{opt(I)}$$

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ompute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found
- **Approximation ratio:** One of the $2^{2/\varepsilon}$ assignments agrees with the assignment of big jobs in optimal schedule
- Let **B** denote the makespan (of big jobs) in that assignment
- If Greedy does not increase B: optimal schedule found If Greedy increases B: difference in workload between our schedule and optimal schedule ≤ εL

$$\frac{A_{\varepsilon}(I)}{opt(I)} \leq \frac{opt(I) + \varepsilon L}{opt(I)} \leq \frac{opt(I) + \varepsilon opt(I)}{opt(I)}$$

- Classify processing times into big $(p_j > \varepsilon L)$ and small $(p_j \le \varepsilon L)$
- Ompute all assignments of big jobs to machines
- For each such assignment, add the small jobs greedily to the schedule for big jobs
- Output the best schedule found
- **Approximation ratio:** One of the $2^{2/\varepsilon}$ assignments agrees with the assignment of big jobs in optimal schedule
- Let **B** denote the makespan (of big jobs) in that assignment
- If Greedy does not increase B: optimal schedule found If Greedy increases B: difference in workload between our schedule and optimal schedule ≤ εL

$$\frac{A_{\varepsilon}(I)}{opt(I)} \le \frac{opt(I) + \varepsilon L}{opt(I)} \le \frac{opt(I) + \varepsilon opt(I)}{opt(I)} = 1 + \varepsilon$$

Makespan minimization revisited

Makespan minimization (3)

Theorem

Makespan minimization on m = 2 machines has a PTAS. More precisely, for any $\varepsilon \leq 1$, a $(1 + \epsilon)$ -approximation can be found in time $O(2^{2/\varepsilon} \cdot n)$.

Makespan minimization revisited

Fully Polynomial Time Approximation Schemes

Definition (for minimization problem)

A Fully Polynomial Time Approximation Scheme (FPTAS) is a family of approximation algorithms A_{ε} for $\varepsilon > 0$ with approximation guarantee $1 + \varepsilon$, and running time polynomially bounded in instance size **and** $\frac{1}{\varepsilon}$

For maximization problems approximation guarantee of $A_{arepsilon}$ is 1-arepsilon

Chromatic number Communication delay scheduling The gap technique Traveling Salesman Problem

Summary: approximation algorithms

- 2-approximation for (weighted) vertex cover
- $\frac{3}{2}$ -approximation for metric TSP
- $\frac{4}{3}$ -approximation for communication delay scheduling
- (1+arepsilon)-approximation for makespan minimization

Chromatic number Communication delay scheduling The gap technique Traveling Salesman Problem

Summary: approximation algorithms

- 2-approximation for (weighted) vertex cover
- $\frac{3}{2}$ -approximation for metric TSP
- $\frac{4}{3}$ -approximation for communication delay scheduling
- $(1 + \varepsilon)$ -approximation for makespan minimization

Are these the best polynomial-time approximation algorithms for these problems that are possible?

How do we prove such a statement?

\rightarrow Inapproximability

Chromatic number Communication delay scheduling The gap technique Traveling Salesman Problem

In-approximability (1)

Chromatic number (COLORING)

Instance: an undirected graph G = (V, E)Goal: find proper coloring of V with smallest possible number of colors (colors 1, 2, ..., k; adjacent vertices receive different colors)

Chromatic number Communication delay scheduling The gap technique Traveling Salesman Problem

In-approximability (1)

Chromatic number (COLORING)

Instance: an undirected graph G = (V, E)Goal: find proper coloring of V with smallest possible number of colors (colors 1, 2, ..., k; adjacent vertices receive different colors)

Chromatic number $\chi(G)$ = minimum number of colors in proper coloring

Chromatic number Communication delay scheduling The gap technique Traveling Salesman Problem

In-approximability (1)

Chromatic number (COLORING)

Instance: an undirected graph G = (V, E)Goal: find proper coloring of V with smallest possible number of colors (colors 1, 2, ..., k; adjacent vertices receive different colors)

Chromatic number $\chi(G)$ = minimum number of colors in proper coloring

Fact

There exists polynomial time transformation from 3-SAT to COLORING such that

satisfiable 3-SAT instances translate into graphs with $\chi(G) \leq 3$ unsatisfiable 3-SAT instances translate into graphs with $\chi(G) \geq 4$

Chromatic number Communication delay scheduling The gap technique Traveling Salesman Problem

In-approximability (1)

Chromatic number (COLORING)

Instance: an undirected graph G = (V, E)Goal: find proper coloring of V with smallest possible number of colors (colors 1, 2, ..., k; adjacent vertices receive different colors)

Chromatic number $\chi(G)$ = minimum number of colors in proper coloring

Fact

There exists polynomial time transformation from 3-SAT to COLORING such that

satisfiable 3-SAT instances translate into graphs with $\chi(G) \leq 3$ unsatisfiable 3-SAT instances translate into graphs with $\chi(G) \geq 4$

Theorem

If COLORING has poly-time approximation algorithm with ratio r < 4/3, then P=NP.

Chromatic number Communication delay scheduling The gap technique Traveling Salesman Problem

In-approximability (2)

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs J_1, \ldots, J_n ; precedence constraints between some jobs Goal: find a feasible schedule on n machines that obeys unit communication delays and minimizes makespan

Chromatic number Communication delay scheduling The gap technique Traveling Salesman Problem

In-approximability (2)

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs J_1, \ldots, J_n ; precedence constraints between some jobs Goal: find a feasible schedule on n machines that obeys unit communication delays and minimizes makespan

Fact (Hoogeveen, Lenstra & Veltman, 1994)

There exists poly-time transformation from 3-SAT to COMM-DELAY such that

satisfiable 3-SAT instances translate into *I*s with $opt(I) \le 6$ unsatisfiable 3-SAT instances translate into graphs with $opt(I) \ge 7$

Chromatic number Communication delay scheduling The gap technique Traveling Salesman Problem

In-approximability (2)

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs J_1, \ldots, J_n ; precedence constraints between some jobs Goal: find a feasible schedule on n machines that obeys unit communication delays and minimizes makespan

Fact (Hoogeveen, Lenstra & Veltman, 1994)

There exists poly-time transformation from 3-SAT to COMM-DELAY such that

satisfiable 3-SAT instances translate into *I*s with $opt(I) \le 6$ unsatisfiable 3-SAT instances translate into graphs with $opt(I) \ge 7$

Theorem

If COMM-DELAY has poly-time approximation algo with ratio r < 7/6, then P=NP.

Chromatic number Communication delay scheduling **The gap technique** Traveling Salesman Problem

In-approximability (3)

The Gap Technique is a method for establishing in-approximability of a minimization problem X with integral objective values:

- 1. Take an NP-hard problem Y
- Construct a poly-time transformation from Y to X such that YES-instances of Y translate into X-instances with value ≤ A NO-instances of Y translate into X-instances with value ≥ B
- 3. Conclude:

If X has poly-time approximation algorithm with ratio r < B/Athen P=NP

Chromatic number Communication delay scheduling The gap technique Traveling Salesman Problem

In-approximability (4)

TSP (Optimization version)

Instance: cities $1, \ldots, n$; distances d(i, j)Goal: find roundtrip of smallest possible length

Theorem

If TSP has poly-time approximation algo with ratio $r < \infty$, then P=NP.

Pro of:

Chromatic number Communication delay scheduling The gap technique Traveling Salesman Problem

In-approximability (4)

TSP (Optimization version)

Instance: cities $1, \ldots, n$; distances d(i, j)Goal: find roundtrip of smallest possible length

Theorem

If TSP has poly-time approximation algo with ratio $r < \infty$, then P=NP.

Proof: Assume there is a polynomial-time approximation algorithm A with approximation ratio $r < \infty$ for the TSP.

Chromatic number Communication delay scheduling The gap technique Traveling Salesman Problem

In-approximability (4)

TSP (Optimization version)

Instance: cities $1, \ldots, n$; distances d(i, j)Goal: find roundtrip of smallest possible length

Theorem

If TSP has poly-time approximation algo with ratio $r < \infty$, then P=NP.

Proof: Assume there is a polynomial-time approximation algorithm A with approximation ratio $r < \infty$ for the TSP. Then the following polynomial-time algorithm solves HC:

Chromatic number Communication delay scheduling The gap technique Traveling Salesman Problem

In-approximability (4)

TSP (Optimization version)

Instance: cities $1, \ldots, n$; distances d(i, j)Goal: find roundtrip of smallest possible length

Theorem

If TSP has poly-time approximation algo with ratio $r < \infty$, then P=NP.

Proof: Assume there is a polynomial-time approximation algorithm A with approximation ratio $r < \infty$ for the TSP. Then the following polynomial-time algorithm solves HC:

• Transform an instance I defined by a graph G = (V, E) of HC into an instance I' of TSP by defining distances $d(i,j) := \begin{cases} 1 & \text{if } \{i,j\} \in E \\ r \cdot |V| & \text{otherwise} \end{cases}$

Chromatic number Communication delay scheduling The gap technique Traveling Salesman Problem

In-approximability (4)

TSP (Optimization version)

Instance: cities $1, \ldots, n$; distances d(i, j)Goal: find roundtrip of smallest possible length

Theorem

If TSP has poly-time approximation algo with ratio $r < \infty$, then P=NP.

Proof: Assume there is a polynomial-time approximation algorithm A with approximation ratio $r < \infty$ for the TSP. Then the following polynomial-time algorithm solves HC:

- Transform an instance *I* defined by a graph G = (V, E) of HC into an instance *I'* of TSP by defining distances $d(i,j) := \begin{cases} 1 & \text{if } \{i,j\} \in E \\ r \cdot |V| & \text{otherwise} \end{cases}$
- Solve TSP in that graph using A

Chromatic number Communication delay scheduling The gap technique Traveling Salesman Problem

In-approximability (4)

TSP (Optimization version)

Instance: cities $1, \ldots, n$; distances d(i, j)Goal: find roundtrip of smallest possible length

Theorem

If TSP has poly-time approximation algo with ratio $r < \infty$, then P=NP.

Proof: Assume there is a polynomial-time approximation algorithm A with approximation ratio $r < \infty$ for the TSP. Then the following polynomial-time algorithm solves HC:

- Transform an instance I defined by a graph G = (V, E) of HC into an instance I' of TSP by defining distances

 d(i,j) := {

 I if {i,j} ∈ E
 r · |V| otherwise

 Solve TSP in that graph using A
- If $A(I') \leq |V|$, return 'YES', if $A(I') \geq |V|$, return 'NO'.

Other examples of approximation schemes: Euclidean TSP

Euclidean TSP

Instance: Points $(x_1, y_1), \ldots, (x_n, y_n)$ in the plane \mathbb{R}^2 in the plane Goal: Find a Round-tour visiting the total (Euclidean distance)

Theorem (Arora, Mitchell)

There is an $(1 + \varepsilon)$ -approximation algorithm for Euclidean TSP running in time $O(n^{O(\varepsilon)})$.

- The running time was later improved to O(n(log n)^{1/ε}) by Arora.
- Result was found independently by Arora and Mitchell, both received the Gödel prize for it.
- We'll skip a detailed exposition of this algorithm in this course.

Other examples of approximation schemes: Knapsack

Knapsack

Instance: Items 1,..., *n*, each with a weight w_i and value v_i ; an integer *v*. Goal: Find a subset $X \subseteq \{1, ..., n\}$ maximizing $\sum_{i \in X} v_i$ under the constraint that $\sum_{i \in X} w_i \leq W$.

Knapsack is weakly NP-Complete.

Theorem (Folklore)

There is an algorithm $(1 - \varepsilon)$ -approximation algorithm for Knapsack running in time $O(n^3/\varepsilon)$.

• We'll see the algorithm in week 7.

Other examples of approximation schemes: Planar Independent Set

Planar graph: A graph that admit a drawing in \mathbb{R}^2 without crossing of edges.

Planar Independent Set

Instance: A planar graph *G*. Goal: Find a independent of *G* of maximum size.

Planar independent set is NP-complete.

Theorem (Baker)

There is an algorithm $(1 - \varepsilon)$ -approximation algorithm for Planar Independent Set running in time $O(2^{O(1/\varepsilon)}n^4)$.

• We'll see the algorithm in week 8.

Thank you! Goodbye! Enjoy the rest of the course!

Recommended reading

Cormen, Leiserson, Rivest and Stein 'Introduction to Algorithms':

• Chapter 35 (Approximation Algorithms)

Garey, Johnson 'Computers and Intractability'

• Chapter 6 (Coping with NP-complete problems)