You may collaborate and submit answers in groups of at most three. Good solutions are complete and concise. Please mail to j.nederlof@tue.nl or hand in a hardcopy on the day of the deadline.
5. Solve 100-CNF-Sat in $O^{*}\left((2-\epsilon)^{n}\right)$ time for some $\epsilon>0$, where n is the number of variables.
6. Give an $O^{*}\left(k^{4 k}\right)$-time algorithm that takes as input n points in the plane \mathbb{R}^{2} and integer k, and determines whether there exist k straight lines such that every point is on some line. ${ }^{1}$
7. A triangle of a graph $G=(V, E)$ is a triple $u, v, w \in V$ such that $\{u, v\},\{v, w\},\{u, w\} \in E$. A triangle partition is a partition of V into triangles, e.g., a set of triangles $T_{1}, \ldots, T_{n / 3}$ such that $T_{i} \cap T_{j}=\emptyset$ for $i \neq j$ and $\cup_{i=1}^{n / 3} T_{i}=V$. Give an algorithm that determines whether there is a triangle partition of a graph on n vertices in $O^{*}\left(2^{n}\right)$ time using polynomial space. Note: If your algorithm uses exponential space, you still get 90% of the points.

[^0]
[^0]: ${ }^{1}$ Hint: (i) look at $k+1$ points that are on one line to find a reduction rule. (ii) conclude something if n is too large when compared with k^{2} and your reduction rule does not apply. (iii) design an $O^{*}\left(n^{2 k}\right)$ time algorithm.

