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News

Good news

I probably won’t use 1:30 hours.
The talk is supposed to be easy and has many examples.
After the talk you will at least remember how to prove one nice
theorem.

Bad news

Concerning algorithmic concepts, this talk (and the part in the book
it is about) won’t be extraordinary fascinating.

Ugly news

- (none).
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The subject

Part II of the book is about the question

How inefficient are equilibria?

Or, still very vague but in more down to earth terminology:

If we let selfish people do what they want without much control,
will they be much less happy than if we would impose more
rules?

But, of course the first question only make sense if equilibria do
exist.
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A real world example: Street crossing

vs
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A real world example: Street crossing
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If we allow mixed strategies, there are at least 3 equilibria:

Player 1 lets player 2 cross, the other way around, and
both players cross with probability 1

101
.

Note that while the total payoff in the first two equilibria is 1, in the
third it is very small and there is a small probability of a car crash.

So typically in this situation some control is needed.
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Formalization

Like usual, we consider a game with

n players {1, . . . , k},
sets of strategies Si for each player,
a utility function ui : S → R for each player, where
S = S1 × . . .× Sk is the set of all strategy vectors.

unlike before, we also introduce a social function σ : S → R.

Denote E ⊆ S for the set of all equilibria s∗ ∈ S as the social
optimum (the strategy vector maximizing σ).

Definition

The price of anarchy is maxs∈E
σ(s)
σ(s∗) .
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A real world example: Street crossing
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Social cost function is expectancy of sum of payoffs of both players.

Price of stability: 1

Price of anarchy:

2 1
101

100
101 − 100( 1

101 )2 ≈ 0.01
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Our tool: Potential function method

In general, the potential function method is the following:

Suppose we want prove some property of some implicitly given
subset E of a set S (for example, it is nonempty).

Define a potential function φ : S → R such that E are exactly the
(global) minima of φ.

Since φ has a global minimum, E is non-empty.

Algorithmically, this is also useful since an element of E can be
found by minimizing φ (but in chapters 17,18 and 19 of the book
people don’t care).
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Nonatomic Selfish routing
A directed graph G = (V ,E ), and a source-sink pair (si , ti ) for
every player (commodity) i .

A requirement vector r ∈ Rk , where ri represents the traffic of
commodity i , and a nondecreasing, continuous cost function
ce : R+ → R+.

Let Pi be the set of all paths from si to ti , and P = ∪k
i=1Pi .

A flow f is a non-negative vector indexed by P. f is feasible for i if∑
P∈Pi

fP ≤ ri .

Let f = (f 1, . . . , f k) be a strategy vector, and fe be the total
amount of flow of f on e; the cost function ci of player i and social
function σ : S → R+ are defined as

ci (f ) =
∑
P∈Pi

∑
e∈P

ce(fe)f i
e and σ(f ) =

k∑
i=1

ci (f i ) =
∑
e∈P

ce(fe)fe
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For a path P, we shorthand cP(f ) =
∑

e∈P ce(fP).

Observation

A strategy vector f = (f1, . . . , fk) is an equilibrium if and only if
for every commodity i and every pair P, P̃ ∈ Pi with fP > 0

cP(f ) ≤ cP̃(f )

Proof.

The right to left direction follows from definition of equilibrium.
For the other direction, note that since cP is ”nice”, rerouting
any amount of flow from P to P̃ decreases the costs if the
inequality does not hold.
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Theorem (Beckmann et al. (1956))

A nonatomic selfish routing game admits at least one equilibrium
flow, and if f and f̃ are equilibrium flows, ce(f ) = ce(f̃ ) for
every edge e.

Taking the observation into consideration, it is natural to ask
whether equilibria and social optima are the same, but:

Example (Pigou (1920))

c(x) = 1

c(x) = x

s1 t1 r1 = 1
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every edge e.
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Example (Pigou (1920))

c(x) = 1

c(x) = x

s1 t1 r1 = 1
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But, it appears that if we modify the cost function to
c∗(x) = (x · c(x))′, the social optima of the old came are exactly
the equilibria of the new game

:

Example

c(x) = 1

c(x) = x

s1 t1 r1 = 1

c∗(x) = 1

c∗(x) = 2x
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0.5
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Lemma

Let (G , r , c) be instance of nonatomic selfish routing, where c is
a nondecreasing, continues (differentiable) function. Than f ∗ is
an optimal flow if and only if it is an equilibrium in the instance
(G , r , c∗).

Proof.

f ∗ is optimal iff for every i and P, P̃ ∈ Pi∑
e∈P

(f ∗e · ce(f ∗e ))′ ≤
∑
e∈P̃

(f ∗e · ce(f ∗e ))′

now the equivalence follows from the previous observation.
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Proof of Theorem

Now, we define a potential function φ such that φ∗ = c and hence
all minimizers of φ are exactly the equilibria of the instance
(G , r , c).

φ(fe) =
1

fe

∫ fe

0
ce(x)dx

Then φ ∗ (fe) = (feφ(fe))′ = ce(fe).

The second part of the theorem, follows from the convexity of the
cost function and the set of feasible flows.
The proof can probably be used to obtain an equilibrium in
polynomial time using convex programming.
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Braess’s paradox

Example
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Congestion game

Definition

A congestion game is a game k players, a ground set of re-
sources R, a cost function cr : {1, . . . , k} → R for each r ∈ R
and each player has a strategy set Si ⊆ R. In a strategy
profile S = (s1, . . . , sk), the cost of a player is defined as
c i (S) =

∑
r∈si

= cr (nr ), where nr is the number of strategies
containing r .

Theorem (Rosenthal (1973), not in the book.)

Every congestion game has at least one pure equilibrium.
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Proof.

For strategy profile S = (s1, . . . , sk), denote (S−i , s
′) for

the strategy vector (s1, . . . , si−1, s
′, si+1, . . . , sk). Define

φ : S → R+:

φ(s1, . . . , sk) =
∑
r∈R

nr∑
i=1

cr i

then

c i ((S−i , s
′))− c(S) =

∑
r∈s′\si

cr (nr + 1)−
∑

r∈si\s′
cr (nr )

= φ((S−i , s
′))− φ(S)
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Atomic selfish routing
atomic selfish routing game is atomic selfish routing restricted to
integral flows.

note that, if the players are restricted to 0− 1 flows, the existence
directly follows from Rosenthals’ Theorem. However:

Example

x + 33

3x2

6x2

x2 + 44

47x

13x

s t

r1 = 1
r2 = 2

v

w
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Let P1,P2,P3,P4 be respectively st, sv , swt, svwt then

player 2 P1 or P2 → player 1 P4

player 2 P3 or P4 → player 1 P1

player 1 P4 → player 2 P3

player 1 P1 → player 2 P2
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Cliffhanger

Next time:

Bounds on the price of anergy.

Network formation: The same as selfish routing, but with
decreasing cost functions.
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Thanks for attending!!!

Any questions?
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