A Tight Lower Bound for Counting Hamiltonian Cycles via Matrix Rank

Radu Curticapean
BARC Copenhagen

Nathan Lindzey
University of Waterloo

Jesper Nederlof
Eindhoven University of Technology

The complexity of NP-hard problems on small-treewidth instances often depends on the rank of problem-related matrices.

We study this for Hamiltonian Cycles and the matchings connectivity matrix.

Matchings connectivity matrix $\mathbf{M}_{\mathbf{b}}$ for even $b \in \mathbb{N}$: indexed by perfect matchings on b vertices, entry at (M, M^{\prime}) is 1 iff $M \cup M^{\prime}$ forms a single cycle, 0 otherwise.

Rank of M_{b} over \mathbb{Z}_{2} is $2^{b / 2}-1$. [CKN13]
Implies $O^{*}\left(3.414^{p w}\right)$ time for counting HamCycles mod 2 (and for determining existence) on graphs of pathwidth $\boldsymbol{p w}$. Tight under SETH.

Rank of M_{b} over \mathbb{R} is $4^{b} / \operatorname{poly}(b)$. AEW

R
Uses representation theory of $S_{\boldsymbol{n}}$ and algebraic combinatorics.
An $O^{*}\left(6^{p w}\right)$ time algorithm for \#HamCycles was known [BCKN13]. Via our rank bound \& new reduction technique: Tight under SETH.
Bonus: \#HamCycles $\bmod p \neq 2$ needs $O^{*}\left(3.57^{p w}\right)$ time under SETH. Compare to counting mod 2 in $O^{*}\left(3.41^{p w}\right)$ time.

Standard DP

Any partial solution A outside S : vertex-disjoint union of paths, all path endpoints in S.
fingerprint f on S

- degrees $d: S \rightarrow\{0,1,2\}$
- perfect matching M on $d^{-1}(1)$

Algorithm:
Traverse separator hierarchy bottom-up.
At separator S, store \# of partial solutions below S with fingerprint f.
Total time: \#fingerprints $\cdot n^{O(1)} \leq O^{*}\left(k^{O(k)}\right)$

Refined DP (based on rank)

1. Think of standard DP as a chain of matrix multiplications.

Intermediate vectors are contents of DP table.
2. Find explicit low-rank factorizations of these matrices.
(Gives small set of representative fingerprints.)
3. Evaluate matrix multiplication chain using the factorizations.

direct sum of copies of $M_{1} \ldots M_{k}$

fingerprint matrix $\boldsymbol{H}_{\boldsymbol{k}}$ over fingerprints on $[k]$ $\boldsymbol{H}_{\boldsymbol{k}}\left(f, f^{\prime}\right)=1$ iff f, f^{\prime} combine

Our Contributions

Thm 1: $\mathrm{rk}_{\mathbb{R}}\left(M_{b}\right)=\Omega^{*}\left(4^{b}\right)$, and $\mathrm{rk}_{\mathbb{R}}\left(H_{k}\right)=\Omega^{*}\left(6^{k}\right)$
Proof uses representation theory of the symmetric group:

Integer partition $\lambda \vdash n$
Standard Young tableau of λ

- numbers $1 \ldots n$ in the boxes
- ascending in each row, column
$f(\lambda):=$ \# standard Young tableaux of λ λ is hook if $\boxplus \nsubseteq \lambda \quad \lambda$ is nice if $\boxplus \nsubseteq \lambda$

Example Standard Young tableaux

$6=5+1$	\| $\square^{1 / 2\|3\| 4 / 5}$		
$6=4+1+1$	\|12	4	6
$6=3+3$	$\begin{array}{\|l\|l\|l\|} \hline 1 & 2 & 4 \\ \hline 3 & 5 & 6 \\ \hline \end{array}$		

[RZ95]: In a bipartite setting

$$
\begin{aligned}
\mathrm{rk}_{\mathbb{R}} M_{k}^{\text {bip }} & =\sum_{\text {hook } \lambda \vdash k} f(\lambda)^{2} \\
& =\Theta^{*}\left(2^{k}\right)
\end{aligned}
$$

Non-bipartite setting:

$$
\begin{aligned}
\mathrm{rk}_{\mathbb{R}} M_{k} & =\sum_{\text {nice } \lambda \vdash k / 2} f(2 \lambda) \\
& =\Theta^{*}\left(4^{k}\right)
\end{aligned}
$$

Thm 2: If p prime and $r k_{\mathbb{Z}_{p}}\left(H_{k}\right)=\Omega\left(c^{k}\right)$, the number of Hamiltonian cycles cannot be counted in $O^{*}\left((2+c-\varepsilon)^{p w}\right)$, assuming SETH.
Proof based on block propagation technique from [LMS11]

cell gadget at $(\boldsymbol{i}, \boldsymbol{j})$ ensures

1. Same states on $\boldsymbol{l}, \boldsymbol{r}$.
2. State of b is

- 1 if state of \boldsymbol{l} encodes
ass. to \boldsymbol{B}_{i} satisfying C_{j},
- state of t otherwise.

New Idea Large invertible submatrix allows efficient encoding of partial solutions that propagate through graph due to invertibility
Thm 3: The number of Hamiltonian cycles cannot be computed in $O^{*}\left((6-\varepsilon)^{p w}\right)$, assuming SETH.
Follows from Thm1\&2. Tight in the sense that an $O^{*}\left(6^{p w}\right)$ time algorithm exists [BCKN13,W16].

