
1. Think of standard DP as a chain of matrix multiplications. 
Intermediate vectors are contents of DP table.

2. Find explicit low-rank factorizations of these matrices.
(Gives small set of representative fingerprints.)

3. Evaluate matrix multiplication chain using the factorizations.

Thm 2: If 𝑝𝑝 prime and 𝑟𝑟𝑘𝑘ℤ𝑝𝑝 𝐻𝐻𝑘𝑘 = Ω(𝑐𝑐𝑘𝑘), the number of
Hamiltonian cycles cannot be counted in 
𝑂𝑂∗( 2 + 𝑐𝑐 − 𝜀𝜀 𝑝𝑝𝑝𝑝), assuming SETH.

A Tight Lower Bound for Counting Hamiltonian Cycles via Matrix Rank

Matchings connectivity matrix 𝐌𝐌𝐛𝐛 for even 𝑏𝑏 ∈ ℕ:
indexed by perfect matchings on 𝑏𝑏 vertices,
entry at (𝑀𝑀,𝑀𝑀𝑀) is 1 iff 𝑀𝑀 ∪𝑀𝑀𝑀 forms a single cycle, 0 otherwise. 

Rank of 𝑀𝑀𝑏𝑏 over ℤ2 is 2𝑏𝑏/2 − 1. [CKN13] 
Implies 𝑂𝑂∗ 3.414𝑝𝑝𝑝𝑝 time for counting HamCycles mod 2 
(and for determining existence) on graphs of pathwidth 𝒑𝒑𝒑𝒑. 
Tight under SETH.

Rank of 𝑀𝑀𝑏𝑏 over ℝ is 4𝑏𝑏/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑏𝑏). 
Uses representation theory of 𝑺𝑺𝒏𝒏 and algebraic combinatorics. 
An 𝑂𝑂∗(6𝑝𝑝𝑝𝑝) time algorithm for #HamCycles was known [BCKN13].
Via our rank bound & new reduction technique: Tight under SETH. 
Bonus: #HamCycles mod 𝑝𝑝 ≠ 2 needs 𝑂𝑂∗ 3.57𝑝𝑝𝑝𝑝 time under SETH. 
Compare to counting mod 2 in  𝑂𝑂∗ 3.41𝑝𝑝𝑝𝑝 time.

Our Contributions
Thm 1: rkℝ 𝑀𝑀𝑏𝑏 = Ω∗(4𝑏𝑏), and rkℝ 𝐻𝐻𝑘𝑘 = Ω∗(6𝑘𝑘)
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[RZ95]: In a bipartite setting

= Θ∗(2𝑘𝑘)

Proof uses representation theory of the symmetric group:
Integer partition 𝜆𝜆 ⊢ 𝑛𝑛

𝜆𝜆 is hook if      ⊆ 𝜆𝜆

Standard Young tableau of 𝜆𝜆
• numbers 1 …𝑛𝑛 in the boxes
• ascending in each row, column
𝑓𝑓 𝜆𝜆 ≔ # standard Young tableaux of 𝜆𝜆

𝜆𝜆 is nice if      ⊆ 𝜆𝜆
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Non-bipartite setting:

= Θ∗(4𝑘𝑘)
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Example Standard Young tableaux

Proof based on block propagation technique from [LMS11]
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𝒋𝒋-th column
propagates at pos. 𝑖𝑖 whether
blocks 𝑩𝑩𝟏𝟏 …𝑩𝑩𝒊𝒊 satisfy 𝐶𝐶𝑗𝑗

ensures

1. Same states on 𝒍𝒍, 𝒓𝒓.

2. State of 𝑏𝑏 is
• 1 if state of 𝒍𝒍 encodes

ass. to 𝑩𝑩𝒊𝒊 satisfying 𝐶𝐶𝑗𝑗 ,
• state of 𝑡𝑡 otherwise.

cell gadget at (𝒊𝒊, 𝒋𝒋)

𝑝𝑝1 𝑟𝑟1

𝑡𝑡

𝑏𝑏

𝑝𝑝𝛽𝛽 𝑟𝑟𝛽𝛽
⋮ ⋮𝒍𝒍 𝒓𝒓

𝒊𝒊-th row
propagates 
assignment
to block 𝑩𝑩𝒊𝒊

Large invertible submatrix allows efficient encoding of partial 
solutions that propagate through graph due to invertibility

Thm 3: The number of Hamiltonian cycles cannot  be 
computed in 𝑂𝑂∗( 6 − 𝜀𝜀 𝑝𝑝𝑝𝑝), assuming SETH.

Follows from Thm1&2. Tight in the sense that an 𝑂𝑂∗(6𝑝𝑝𝑝𝑝) time algorithm 
exists [BCKN13,W16].
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The complexity of NP-hard problems on small-treewidth instances 
often depends on the rank of problem-related matrices.

We study this for Hamiltonian Cycles and the matchings connectivity matrix.

𝑮𝑮 has treewidth 𝒌𝒌:
tree of 𝑘𝑘-sized separators,
useful for dynamic programming
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𝑂𝑂 𝑡𝑡𝑡𝑡!
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optimal (SETH)
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𝑐𝑐 = 6 (if 𝜔𝜔 = 2)
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Known DPs for 
Hamiltonian Cycles

fingerprint 𝒇𝒇 on 𝑺𝑺
• degrees 𝑑𝑑 ∶ 𝑆𝑆 → 0,1,2
• perfect matching 𝑀𝑀 on 𝑑𝑑−1 1

Any partial solution 𝑨𝑨 outside 𝑺𝑺:
vertex-disjoint union of paths,
all path endpoints in 𝑆𝑆.𝑺𝑺

Algorithm:
Traverse separator hierarchy bottom-up.
At separator 𝑆𝑆, store # of partial solutions below 𝑆𝑆 with fingerprint 𝑓𝑓.

Total time:  #fingerprints ⋅ 𝑛𝑛𝑂𝑂 1 ≤ 𝑂𝑂∗(𝑘𝑘𝑂𝑂(𝑘𝑘))

𝑺𝑺

Standard DP

Refined DP (based on rank)
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fingerprint matrix𝑯𝑯𝒌𝒌
over fingerprints on 𝑘𝑘
𝑯𝑯𝒌𝒌 𝑓𝑓, 𝑓𝑓′ = 1 iff 𝑓𝑓, 𝑓𝑓′ combine
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