Fast polynomial-space algorithms using Möbius inversion: Improving on Steiner Tree and related problems

Jesper Nederlof

$$
7 \text { July } 2009
$$

Outline

(1) Introduction

- Exact exponential time algorithms
- Inclusion-Exclusion (IE)
- Finding and using IE-formulations
(2) IE-formulations
- Hamiltonian path
- Steiner tree
(3) Möbius inversion
- Hamiltonian path revisited
- Subset convolution

Exact exponential time algorithms

- We study the worst-case running time of algorithms for $\mathcal{N} \mathcal{P}$-complete problems.
- The running times we achieve can typically be written as $c^{n} p(n)$, for some constant c, polynomial function p and input measure n.
- We will denote such a running time with $\mathcal{O}^{*}\left(c^{n}\right)$, ignoring the polynomial factor.

Inclusion-Exclusion: An example

- Suppose we are given a family of subsets

$$
A_{1}, \ldots, A_{4} \subseteq U
$$

- We will compute $\left|\bigcup_{i=1}^{4} A_{i}\right|$, by just using intersections.
- For notational ease, we assume all other sets A_{i} to be empty.

Inclusion-Exclusion: An example

- Suppose we are given a family of subsets

$$
A_{1}, \ldots, A_{4} \subseteq U
$$

- We will compute $\left|\bigcup_{i=1}^{4} A_{i}\right|$, by just using intersections.
- For notational ease, we assume all other sets A_{i} to be empty.

Inclusion-Exclusion: An example

- Suppose we are given a family of subsets

$$
A_{1}, \ldots, A_{4} \subseteq U
$$

- We will compute $\left|\bigcup_{i=1}^{4} A_{i}\right|$, by just using intersections.
- For notational ease, we assume all other sets A_{i} to be empty.

Inclusion-Exclusion: An example

- Suppose we are given a family of subsets

$$
A_{1}, \ldots, A_{4} \subseteq U
$$

- We will compute $\left|\bigcup_{i=1}^{4} A_{i}\right|$, by just using intersections.
- For notational ease, we assume all other sets A_{i} to be empty.

$\sum_{i}\left|A_{i}\right|-\sum_{i<j}\left|A_{i} \cap A_{j}\right|+\sum_{i<j<k}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\sum_{i<j<k<l}\left|A_{i} \cap A_{j} \cap A_{k} \cap A_{i}\right|$

Inclusion-Exclusion: An example

- Suppose we are given a family of subsets

$$
A_{1}, \ldots, A_{4} \subseteq U
$$

- We will compute $\left|\bigcup_{i=1}^{4} A_{i}\right|$, by just using intersections.
- For notational ease, we assume all other sets A_{i} to be empty.

$\sum_{i}\left|A_{i}\right|-\sum_{i<j}\left|A_{i} \cap A_{j}\right|+\sum_{i<j<k}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\sum_{i<j<k<l}\left|A_{i} \cap A_{j} \cap A_{k} \cap A_{i}\right|$

Inclusion-Exclusion: An example

- Suppose we are given a family of subsets

$$
A_{1}, \ldots, A_{4} \subseteq U
$$

- We will compute $\left|\bigcup_{i=1}^{4} A_{i}\right|$, by just using intersections.
- For notational ease, we assume all other sets A_{i} to be empty.

$\sum_{i}\left|A_{i}\right|-\sum_{i<j}\left|A_{i} \cap A_{j}\right|+\sum_{i<j<k}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\sum_{i<j<k<l}\left|A_{i} \cap A_{j} \cap A_{k} \cap A_{l}\right|$

Inclusion-Exclusion: An example

- Suppose we are given a family of subsets

$$
A_{1}, \ldots, A_{4} \subseteq U
$$

- We will compute $\left|\bigcup_{i=1}^{4} A_{i}\right|$, by just using intersections.
- For notational ease, we assume all other sets A_{i} to be empty.

$\sum_{i}\left|A_{i}\right|-\sum_{i<j}\left|A_{i} \cap A_{j}\right|+\sum_{i<j<k}\left|A_{i} \cap A_{j} \cap A_{k}\right|$

Inclusion-Exclusion: An example

- Suppose we are given a family of subsets

$$
A_{1}, \ldots, A_{4} \subseteq U
$$

- We will compute $\left|\bigcup_{i=1}^{4} A_{i}\right|$, by just using intersections.
- For notational ease, we assume all other sets A_{i} to be empty.

$$
\sum_{i}\left|A_{i}\right|-\sum_{i<j}\left|A_{i} \cap A_{j}\right|+\sum_{i<j<k}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\sum_{i<j<k<1}\left|A_{i} \cap A_{j} \cap A_{k} \cap A_{l}\right|
$$

Inclusion-Exclusion: An example

- Suppose we are given a family of subsets

$$
A_{1}, \ldots, A_{4} \subseteq U
$$

- We will compute $\left|\bigcup_{i=1}^{4} A_{i}\right|$, by just using intersections.
- For notational ease, we assume all other sets A_{i} to be empty.

$\sum_{i}\left|A_{i}\right|-\sum_{i<j}\left|A_{i} \cap A_{j}\right|+\sum_{i<j<k}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\sum_{i<j<k<1}\left|A_{i} \cap A_{j} \cap A_{k} \cap A_{l}\right|$

The IE-formula

- More general, if $A_{1}, \ldots, A_{n} \subseteq U$ then:

$$
\left|\bigcap_{i=1}^{n} \overline{A_{i}}\right|=\sum_{X \subseteq\{1, \ldots, n\}}(-1)^{|X|}\left|\bigcap_{i \in X} A_{i}\right|
$$

where we define $\bigcap_{i \in \emptyset} A_{i}=U$ and $\overline{A_{i}}=U \backslash A_{i}$

- This equality is called the IE-formula, and each application of it is said to be an IE-formulation.

Finding and using IE-formulations

If we want to solve a counting problem with IE, then we have to:

- Think about an universe U, which at least contains everything we want to count. One could obtain an useful universe by relaxing constraints that are imposed on solutions.
- Define subsets A_{1}, \ldots, A_{n} such that $\left|\bigcap_{i=1}^{n} \overline{A_{i}}\right|$ is what we want to compute.
- Solve the problem of computing $\left|\bigcap_{i \in X} A_{i}\right|$, for a given $X \subseteq\{1, \ldots, n\}$. We will call this the simplified problem.
- Notice that if the simplified problem can be solved in polynomial time, we can obtain an $\mathcal{O}^{*}\left(2^{n}\right)$-time polynomial space algorithm.

Hamiltonian path (Karp, 1982)

Definition (Hamiltonian path)

An Hamiltonian path in a graph G with nodes v_{1}, \ldots, v_{n} is a walk of $n-1$ edges that visits all nodes.

- We relax the constraint that all nodes have to be visited and choose as universe U :
- all walks of $n-1$ edges in G.
- Define A_{i} as all walks with $n-1$ edges that avoid node v_{i}. Now, we have that $\left|\bigcap_{i=1}^{n} \overline{A_{i}}\right|$ is the number of Hamiltonian paths of G.
- The simplified problem is to compute $\left|\bigcap_{i \in X} A_{i}\right|$, which is the number of walks of $n-1$ edges in the subgraph of G induced by nodes $\left\{v_{1}, \ldots, v_{n}\right\} \backslash X$.

The simplified problem

Define $w_{X}(s, k)$ as the number of walks with k edges from s that avoid the nodeset X.

$$
\begin{aligned}
& w_{X}(s, 0)=1 \\
& w_{X}(s, k)=\sum_{t \in N(s) \backslash X} w_{X}(t, k-1)
\end{aligned}
$$

where $N(s)$ are all neighbors of s.

- The number of walks with $n-1$ edges avoiding nodeset X, $\left|\bigcap_{i \in X} A_{i}\right|$, is equal to

$$
\sum_{s \in V \backslash X} w_{X}(s, n-1)
$$

- Hence, the simplified problem can be solved in polynomial time.

Hamiltonian path

Theorem (Karp, 1982)

Counting the number of hamiltonian paths can be done in $\mathcal{O}^{*}\left(2^{n}\right)$ time using polynomial space.

Unit weight Steiner tree

- Given a graph $G=(V, E)$ and a set of terminals $\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V$
- A Steiner tree is a subtree $S \subseteq E$ connecting all terminals.
- We solve the decision variant: does there exist a Steiner tree with at most / edges?

Unit weight Steiner tree

- Given a graph $G=(V, E)$ and a set of terminals $\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V$.
- A Steiner tree is a subtree
$S \subseteq E$ connecting all
terminals.
- We solve the decision variant: does there exist a Steiner tree with at most / edges?

Unit weight Steiner tree

- Given a graph $G=(V, E)$ and a set of terminals $\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V$.
- A Steiner tree is a subtree $S \subseteq E$ connecting all terminals.
- We solve the decision variant: does there exist a Steiner tree with at most / edges?

Steiner tree: Branching walk

Definition (Branching walk)

A branching walk in $G=(V, E)$ is a pair $B=\left(T_{B}, \phi\right)$ where $T_{B}=\left(V_{B}, E_{B}\right)$ is a rooted, ordered tree and $\phi: V_{B} \rightarrow V$ is a homomorphism from T_{B} to G. The length of B is $\left|E_{B}\right|$, and B is from s if the root of T_{B} is mapped to s by ϕ.

Steiner tree: Branching walk

Definition (Branching walk)

A branching walk in $G=(V, E)$ is a pair $B=\left(T_{B}, \phi\right)$ where $T_{B}=\left(V_{B}, E_{B}\right)$ is a rooted, ordered tree and $\phi: V_{B} \rightarrow V$ is a homomorphism from T_{B} to G. The length of B is $\left|E_{B}\right|$, and B is from s if the root of T_{B} is mapped to s by ϕ.

Steiner tree: Branching walk

Definition (Branching walk)

A branching walk in $G=(V, E)$ is a pair $B=\left(T_{B}, \phi\right)$ where $T_{B}=\left(V_{B}, E_{B}\right)$ is a rooted, ordered tree and $\phi: V_{B} \rightarrow V$ is a homomorphism from T_{B} to G. The length of B is $\left|E_{B}\right|$, and B is from s if the root of T_{B} is mapped to s by ϕ.

Steiner tree: Branching walk

Definition (Branching walk)

A branching walk in $G=(V, E)$ is a pair $B=\left(T_{B}, \phi\right)$ where $T_{B}=\left(V_{B}, E_{B}\right)$ is a rooted, ordered tree and $\phi: V_{B} \rightarrow V$ is a homomorphism from T_{B} to G. The length of B is $\left|E_{B}\right|$, and B is from s if the root of T_{B} is mapped to s by ϕ.

Steiner tree: Reformulating

Lemma

Let s be a terminal. There exists a branching walk from s of length at most I that visits all terminals if and only if there exists a Steiner tree T with at most I edges.

Proof.

(\Leftarrow) : Choose T_{B} to be T with root s and ϕ to be the identity function.
(\Rightarrow) : Consider the minimal subgraph of G in which B is still a branching walk. Choose T as a spanning tree of this graph.

Steiner tree: An IE-formulation

- Define U as all branching walks from s of length I.
- Define A_{i} as all branching walks avoiding terminal t_{i}.
- The input is a YES-instance iff

$$
\left|\bigcap_{i=1}^{k} \overline{A_{i}}\right|>0
$$

- It remains to solve the simplified problem.

Counting branching walks

- The simplified problem is to count the number of branching walks from s in $G[V \backslash X]$.
- Let $b_{X}(s, j)$ be the number of branching walks from s of length $/$ in $G[V \backslash X]$.
- $b_{X}(s, 0)=1$, and for $j>0$:

$$
b_{X}(s, j)=\sum_{t \in N(s) \backslash X} \sum_{i=0}^{j-1} b_{X}(s, i) b_{X}(t, j-1-i)
$$

Steiner tree

- This gives us an $\mathcal{O}^{*}\left(2^{k}\right)$-time poly-space algorithm.
- Using the concept of branching walks, we can also obtain $\mathcal{O}^{*}\left(2^{n}\right)$-time poly-space algorithms for finding spanning trees that
- minimize the maximum degree (Degree Constrained Spanning Tree).
- maximize the number of internal nodes (Max Internal Spanning Tree).
- (Both are known to be NP-complete).

Möbius inversion

Definition (Zeta and Möbius transform)

Given a function $f: 2^{V} \rightarrow \mathbb{Z}^{+}$, the zeta-transform ζf and the Möbius-transform μf are defined as follows:

$$
\zeta f(V)=\sum_{X \subseteq V} f(X) \quad \mu f(V)=\sum_{X \subseteq V}(-1)^{|V \backslash X|} f(X)
$$

Theorem (Möbius inversion)

The Möbius-transform is the inverse of the zeta-transform, i.e. for each $f: 2^{V} \rightarrow \mathbb{Z}^{+}$:

$$
f(V)=\sum_{X \subseteq V}(-1)^{|V \backslash X|} \sum_{A \subseteq X} f(A)
$$

Möbius inversion

- Essentially, Möbius inversion and Inclusion-Exclusion are exactly the same.
- Computing the zeta-transform can be viewed as solving the simplified problem.
- So we should also be able to obtain the algorithms in a more structural (algebraical) way.

Hamiltonian path revisited

Definition (Hamiltonian path)

An Hamiltonian path in a graph G with nodes v_{1}, \ldots, v_{n} is a walk of $n-1$ edges that visits all nodes.

We use an Held \& Karp-style DP: let $h_{l}(s, R)$ be the number of walks from s of length / containing exactly the nodeset R.

$$
h_{l}(s, R)= \begin{cases}{[R=\emptyset]} & \text { if } I=0 \\ \sum_{t \in N(s) \cap R} h_{l-1}(t, R \backslash t)+h_{l-1}(t, R) & \text { otherwise }\end{cases}
$$

Note that $h_{n-1}(s, V \backslash s)$ is the number of Hamiltonian paths from s.

$$
h_{l}(s, R)= \begin{cases}{[R=\emptyset]} & \text { if } I=0 \\ \sum_{t \in N(s) \cap R} h_{l-1}(t, R \backslash t)+h_{l-1}(t, R) & \text { otherwise }\end{cases}
$$

Conclusion: $\zeta h_{k}(s, R)=w_{V \backslash R}(s, k)$

$$
\begin{gathered}
h_{l}(s, R)= \begin{cases}{[R=\emptyset]} & \text { if } I=0 \\
\sum_{t \in N(s) \cap R} h_{l-1}(t, R \backslash t)+h_{l-1}(t, R) & \text { otherwise }\end{cases} \\
\zeta h_{0}(s, R)=\sum_{X \subseteq R}[X=\emptyset]=1
\end{gathered}
$$

Conclusion: $\zeta h_{k}(s, R)=w_{V \backslash R}(s, k)$

$$
\begin{aligned}
h_{l}(s, R)= & \begin{cases}{[R=\emptyset]} \\
\sum_{t \in N(s) \cap R} h_{l-1}(t, R \backslash t)+h_{l-1}(t, R) & \text { if } I=0 \\
\zeta h_{0}(s, R)=\sum_{X \subseteq R}[X=\emptyset]=1\end{cases} \\
\zeta h_{l}(s, R) & =\sum_{X \subseteq R} \sum_{t \in N(s) \cap X} h_{l-1}(t, X \backslash t)+h_{l-1}(t, X) \\
& =\sum_{t \in N(s) \cap R} \sum_{t \in X \subseteq R} h_{l-1}(t, X \backslash t)+h_{l-1}(t, X) \\
= & \sum_{t \in N(s) \cap R} \zeta h_{l-1}(t, R)
\end{aligned}
$$

$$
\begin{aligned}
& h_{l}(s, R)= \begin{cases}{[R=\emptyset]} & \text { if } I=0 \\
\sum_{t \in N(s) \cap R} h_{l-1}(t, R \backslash t)+h_{l-1}(t, R) & \text { otherwise }\end{cases} \\
& \zeta h_{0}(s, R)=\sum_{X \subseteq R}[X=\emptyset]=1 \sum_{X \subseteq R} \sum_{t \in N(s) \cap X} h_{l-1}(t, X \backslash t)+h_{l-1}(t, X) \\
& \zeta h_{l}(s, R)=\sum_{t \in N(s) \cap R} \sum_{t \in X \subseteq R} h_{l-1}(t, X \backslash t)+h_{l-1}(t, X) \\
&=\sum_{t \in N(s) \cap R} \zeta h_{l-1}(t, R)
\end{aligned}
$$

Conclusion: $\zeta h_{k}(s, R)=w_{V \backslash R}(s, k)$

Subset convolution

Definition (Björklund et al., 2007)

Given two functions $f, g: 2^{V} \rightarrow \mathbb{Z}^{+}$, the cover product $\left(f *_{c} g\right)$ is defined as follows:

$$
\left(f *_{c} g\right)(V)=\sum_{\substack{A, B \subseteq V \\ A \cup B=V}} f(A) g(B)
$$

Subset convolution

Theorem (Björklund et al., 2007)
 $\zeta\left(\left(f *_{c} g\right)(V)\right)=\zeta f(V) * \zeta g(V)$

Proof.

$$
\begin{aligned}
\zeta\left(f *_{c} g\right) & =\sum_{x \subseteq V} \sum_{\substack{A, B \subseteq x \\
A \cup B=X}} f(A) g(B) \\
& =\left(\sum_{A \subseteq V} f(A)\right)\left(\sum_{B \subseteq V} g(B)\right) \\
& =\zeta f(V) * \zeta g(V)
\end{aligned}
$$

Subset convolution

- Equipped with subset convolution, the considered IE-formulation for Steiner Tree can be obtained by applying Möbius inversion to the Dreyfus-Wagner recurrence (1972).
- Using the same setup, one can also obtain $\mathcal{O}^{*}\left(2^{n}\right)$-time poly-space algorithms for computing the number of c-component spanning forests and the cover polynomial of a graph on n nodes.

Conclusions

- Möbius inversion is a powerful tool to improve the space requirement of some dynamic programming algorithms.
- All dynamic programming algorithms admitting the 'subset convolution shape' can be improved to polynomial-space algorithms.

The end

- Thank you all for your attention!

