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yonential time algorithms

o We study the worst-case running time of algorithms for
NP-complete problems.

o The running times we achieve can typically be written as
c"p(n), for some constant ¢, polynomial function p and input
measure n.

o We will denote such a running time with O*(c"), ignoring the
polynomial factor.
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Exclusion: An example

o Suppose we are given a
family of subsets
A,..., A C U
: 4
o We will compute || J;_; Ail,
by just using intersections.
o For notational ease, we
assume all other sets A; to
be empty.
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o More general, if A1,..., A, C U then:

NAl= > D)X Al

i=1 XC{1,...,n} iex

where we define (;cy Ai = U and A; = U \ A

o This equality is called the IE-formula, and each application of
it is said to be an |IE-formulation.
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nd using |IE-formulations

If we want to solve a counting problem with IE, then we have to:

o Think about an universe U, which at least contains everything
we want to count. One could obtain an useful universe by
relaxing constraints that are imposed on solutions.

o Define subsets Ay,. .., A, such that |(N_; Aj| is what we
want to compute.

@ Solve the problem of computing |[();cx A;l, for a given
X C{1,...,n}. We will call this the simplified problem.

o Notice that if the simplified problem can be solved in
polynomial time, we can obtain an O*(2")-time polynomial
space algorithm.
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|IE-form

Mobius inversion

an path (Karp, 1982)

An Hamiltonian path in a graph G with nodes v, ..., v, is a walk
of n — 1 edges that visits all nodes.

o We relax the constraint that all nodes have to be visited and
choose as universe U:

o all walks of n— 1 edges in G.

o Define A; as all walks with n — 1 edges that avoid node v;.
Now, we have that |7, A;| is the number of Hamiltonian
paths of G.

o The simplified problem is to compute |(1);.x Ai|, which is the

number of walks of n — 1 edges in the subgraph of G induced
by nodes {v1,...,v,} \ X.
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Define wx(s, k) as the number of walks with k edges from s that
avoid the nodeset X.

Wx(s, 0) =1
wx(s, k)= Y wx(t,k—1)

teN(s)\X
where N(s) are all neighbors of s.
o The number of walks with n — 1 edges avoiding nodeset X,
| Mjex Ail, is equal to

Z wx(s,n—1)
seV\X

o Hence, the simplified problem can be solved in polynomial
time.
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Counting the number of hamiltonian paths can be done in O*(2")
time using polynomial space.
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t Steiner tree

o Given a graph G = (V,E)
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ight Steiner tree

o Given a graph G = (V,E)
and a set of terminals
{ti,...., i} C V.

Jesper Nederlof



ght Steiner tree

o Given a graph G = (V,E)
and a set of terminals
{tl,...,tk} cV.

o A Steiner tree is a subtree
S C E connecting all
terminals.

o We solve the decision
variant: does there exist a
Steiner tree with at most /
edges?
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Mobius

ree: Branching walk

A branching walk in G = (V, E) is a pair B = (Tg, ¢) where

Ts = (VB, Eg) is a rooted, ordered tree and ¢ : Vg — Vis a
homomorphism from Tg to G. The length of B is |Eg|, and B is
from s if the root of Ty is mapped to s by ¢.

U9
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ion

: Reformulating

Let s be a terminal. There exists a branching walk from s of length
at most | that visits all terminals if and only if there exists a
Steiner tree T with at most | edges.

(<) : Choose Tg to be T with root s and ¢ to be the identity
function.

(=) : Consider the minimal subgraph of G in which B is still a
branching walk. Choose T as a spanning tree of this graph.
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o Define U as all branching walks from s of length /.

o Define A; as all branching walks avoiding terminal t;.
The input is a YES-instance iff

©

()

It remains to solve the simplified problem.
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branching walks

o The simplified problem is to count the number of branching
walks from s in G[V \ X].

o Let bx(s,j) be the number of branching walks from s of
length /in G[V \ X].

o bx(s,0) =1, and for j > 0:

x(s,J) = Z beSlbxtj—l—l)

teN(s)\X i=0
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o This gives us an O*(2)-time poly-space algorithm.

o Using the concept of branching walks, we can also obtain
O*(2")-time poly-space algorithms for finding spanning trees
that

o minimize the maximum degree (DEGREE CONSTRAINED
SPANNING TREE).

o maximize the number of internal nodes (MAX INTERNAL
SPANNING TREE).

o (Both are known to be NP-complete).
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Given a function f : 2¥ — Z7, the zeta-transform (f and the
Mobius-transform pf are defined as follows:

CF(V)= ) f(X) pf(V) =Y (=1)VVIF(X)

XCV XCV

The Mobius-transform is the inverse of the zeta-transform, i.e. for
each f: 2V — 7*:

(V)= (VX3 7(4)

XCV ACX

Jesper Nederlof




o Essentially, Mobius inversion and Inclusion-Exclusion are
exactly the same.

o Computing the zeta-transform can be viewed as solving the
simplified problem.

@ So we should also be able to obtain the algorithms in a more
structural (algebraical) way.
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an path revisited

An Hamiltonian path in a graph G with nodes vy, ..., v, is a walk
of n — 1 edges that visits all nodes.

We use an Held & Karp-style DP: let h(s, R) be the number of
walks from s of length / containing exactly the nodeset R.

[R=10] if =0
hi(s,R) = Z hi—1(t,R\ t) + hi_1(t,R) otherwise
teN(s)NR

Note that h,_1(s, V' \ s) is the number of Hamiltonian paths from
s.
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M@bius inversion

R =10 if =0
hi(s,R) =19 3" h_1(t,R\ t)+ h_1(t,R) otherwise
teN(s)NR
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Conclusion: Chi(s, R) = wy\gr(s, k)



|E-f¢ 1S
M@bius inversion

nvolution

Given two functions f, g : 2¥ — Z*, the cover product (f *. g) is
defined as follows:

(Fre)(V)= D f(A)g(B)
ABCV
AUB=V
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o Equipped with subset convolution, the considered
|IE-formulation for Steiner Tree can be obtained by applying
Mobius inversion to the Dreyfus-Wagner recurrence (1972).

o Using the same setup, one can also obtain O*(2")-time
poly-space algorithms for computing the number of
c-component spanning forests and the cover polynomial of a
graph on n nodes.
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|E-formula
M@bius inversion

o Mobius inversion is a powerful tool to improve the space
requirement of some dynamic programming algorithms.

o All dynamic programming algorithms admitting the 'subset
convolution shape' can be improved to polynomial-space
algorithms.
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@ Thank you all for your attention!
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