
Introduction
IE-formulations

Möbius inversion

Fast polynomial-space algorithms using Möbius
inversion: Improving on Steiner Tree and related

problems

Jesper Nederlof

7 July 2009

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Outline

1 Introduction
Exact exponential time algorithms
Inclusion-Exclusion (IE)
Finding and using IE-formulations

2 IE-formulations
Hamiltonian path
Steiner tree

3 Möbius inversion
Hamiltonian path revisited
Subset convolution

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Exact exponential time algorithms
Inclusion-Exclusion (IE)
Finding and using IE-formulations

Exact exponential time algorithms

We study the worst-case running time of algorithms for
NP-complete problems.

The running times we achieve can typically be written as
cnp(n), for some constant c , polynomial function p and input
measure n.

We will denote such a running time with O∗(cn), ignoring the
polynomial factor.

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Exact exponential time algorithms
Inclusion-Exclusion (IE)
Finding and using IE-formulations

Inclusion-Exclusion: An example

Suppose we are given a
family of subsets
A1, . . . ,A4 ⊆ U

We will compute |
⋃4

i=1 Ai |,
by just using intersections.

For notational ease, we
assume all other sets Ai to
be empty.

U

A1 A2

A3 A4

∑
i

|Ai |−
∑
i<j

|Ai∩Aj |+
∑

i<j<k

|Ai∩Aj∩Ak |−
∑

i<j<k<l

|Ai∩Aj∩Ak∩Al |

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Exact exponential time algorithms
Inclusion-Exclusion (IE)
Finding and using IE-formulations

Inclusion-Exclusion: An example

Suppose we are given a
family of subsets
A1, . . . ,A4 ⊆ U

We will compute |
⋃4

i=1 Ai |,
by just using intersections.

For notational ease, we
assume all other sets Ai to
be empty.

U

A1 A2

A3 A4

∑
i

|Ai |−
∑
i<j

|Ai∩Aj |+
∑

i<j<k

|Ai∩Aj∩Ak |−
∑

i<j<k<l

|Ai∩Aj∩Ak∩Al |

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Exact exponential time algorithms
Inclusion-Exclusion (IE)
Finding and using IE-formulations

Inclusion-Exclusion: An example

Suppose we are given a
family of subsets
A1, . . . ,A4 ⊆ U

We will compute |
⋃4

i=1 Ai |,
by just using intersections.

For notational ease, we
assume all other sets Ai to
be empty.

U

1

1

1

1

2

2

2 2

3

3

3

3

4

A1 A2

A3 A4

∑
i

|Ai |−
∑
i<j

|Ai∩Aj |+
∑

i<j<k

|Ai∩Aj∩Ak |−
∑

i<j<k<l

|Ai∩Aj∩Ak∩Al |

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Exact exponential time algorithms
Inclusion-Exclusion (IE)
Finding and using IE-formulations

Inclusion-Exclusion: An example

Suppose we are given a
family of subsets
A1, . . . ,A4 ⊆ U

We will compute |
⋃4

i=1 Ai |,
by just using intersections.

For notational ease, we
assume all other sets Ai to
be empty.

U

1

1

1

1
A1 A2

A3 A4

∑
i

|Ai |−
∑
i<j

|Ai∩Aj |+
∑

i<j<k

|Ai∩Aj∩Ak |−
∑

i<j<k<l

|Ai∩Aj∩Ak∩Al |

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Exact exponential time algorithms
Inclusion-Exclusion (IE)
Finding and using IE-formulations

Inclusion-Exclusion: An example

Suppose we are given a
family of subsets
A1, . . . ,A4 ⊆ U

We will compute |
⋃4

i=1 Ai |,
by just using intersections.

For notational ease, we
assume all other sets Ai to
be empty.

U

1

1

1

1

1

1

1 1

0

0

0

0

-2

A1 A2

A3 A4

∑
i

|Ai |−
∑
i<j

|Ai∩Aj |+
∑

i<j<k

|Ai∩Aj∩Ak |−
∑

i<j<k<l

|Ai∩Aj∩Ak∩Al |

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Exact exponential time algorithms
Inclusion-Exclusion (IE)
Finding and using IE-formulations

Inclusion-Exclusion: An example

Suppose we are given a
family of subsets
A1, . . . ,A4 ⊆ U

We will compute |
⋃4

i=1 Ai |,
by just using intersections.

For notational ease, we
assume all other sets Ai to
be empty.

U

1

1

1

1

1

1

1 1

A1 A2

A3 A4

∑
i

|Ai |−
∑
i<j

|Ai∩Aj |+
∑

i<j<k

|Ai∩Aj∩Ak |−
∑

i<j<k<l

|Ai∩Aj∩Ak∩Al |

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Exact exponential time algorithms
Inclusion-Exclusion (IE)
Finding and using IE-formulations

Inclusion-Exclusion: An example

Suppose we are given a
family of subsets
A1, . . . ,A4 ⊆ U

We will compute |
⋃4

i=1 Ai |,
by just using intersections.

For notational ease, we
assume all other sets Ai to
be empty.

U

1

1

1

1

1

1

1 1

1

1

1

1

2

A1 A2

A3 A4

∑
i

|Ai |−
∑
i<j

|Ai∩Aj |+
∑

i<j<k

|Ai∩Aj∩Ak |−
∑

i<j<k<l

|Ai∩Aj∩Ak∩Al |

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Exact exponential time algorithms
Inclusion-Exclusion (IE)
Finding and using IE-formulations

Inclusion-Exclusion: An example

Suppose we are given a
family of subsets
A1, . . . ,A4 ⊆ U

We will compute |
⋃4

i=1 Ai |,
by just using intersections.

For notational ease, we
assume all other sets Ai to
be empty.

U

1

1

1

1

1

1

1 1

1

1

1

1

A1 A2

A3 A4

∑
i

|Ai |−
∑
i<j

|Ai∩Aj |+
∑

i<j<k

|Ai∩Aj∩Ak |−
∑

i<j<k<l

|Ai∩Aj∩Ak∩Al |

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Exact exponential time algorithms
Inclusion-Exclusion (IE)
Finding and using IE-formulations

Inclusion-Exclusion: An example

Suppose we are given a
family of subsets
A1, . . . ,A4 ⊆ U

We will compute |
⋃4

i=1 Ai |,
by just using intersections.

For notational ease, we
assume all other sets Ai to
be empty.

U

1

1

1

1

1

1

1 1

1

1

1

1

1

A1 A2

A3 A4

∑
i

|Ai |−
∑
i<j

|Ai∩Aj |+
∑

i<j<k

|Ai∩Aj∩Ak |−
∑

i<j<k<l

|Ai∩Aj∩Ak∩Al |

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Exact exponential time algorithms
Inclusion-Exclusion (IE)
Finding and using IE-formulations

The IE-formula

More general, if A1, . . . ,An ⊆ U then:

|
n⋂

i=1

Ai | =
∑

X⊆{1,...,n}

(−1)|X ||
⋂
i∈X

Ai |

where we define
⋂

i∈∅ Ai = U and Ai = U \ Ai

This equality is called the IE-formula, and each application of
it is said to be an IE-formulation.

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Exact exponential time algorithms
Inclusion-Exclusion (IE)
Finding and using IE-formulations

Finding and using IE-formulations

If we want to solve a counting problem with IE, then we have to:

Think about an universe U, which at least contains everything
we want to count. One could obtain an useful universe by
relaxing constraints that are imposed on solutions.

Define subsets A1, . . . ,An such that |
⋂n

i=1 Ai | is what we
want to compute.

Solve the problem of computing |
⋂

i∈X Ai |, for a given
X ⊆ {1, . . . , n}. We will call this the simplified problem.

Notice that if the simplified problem can be solved in
polynomial time, we can obtain an O∗(2n)-time polynomial
space algorithm.

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path
Steiner tree

Hamiltonian path (Karp, 1982)

Definition (Hamiltonian path)

An Hamiltonian path in a graph G with nodes v1, . . . , vn is a walk
of n − 1 edges that visits all nodes.

We relax the constraint that all nodes have to be visited and
choose as universe U:

all walks of n − 1 edges in G .

Define Ai as all walks with n − 1 edges that avoid node vi .
Now, we have that |

⋂n
i=1 Ai | is the number of Hamiltonian

paths of G .

The simplified problem is to compute |
⋂

i∈X Ai |, which is the
number of walks of n − 1 edges in the subgraph of G induced
by nodes {v1, . . . , vn} \ X .

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path
Steiner tree

The simplified problem

Define wX (s, k) as the number of walks with k edges from s that
avoid the nodeset X .

wX (s, 0) = 1

wX (s, k) =
∑

t∈N(s)\X

wX (t, k − 1)

where N(s) are all neighbors of s.

The number of walks with n − 1 edges avoiding nodeset X ,
|
⋂

i∈X Ai |, is equal to ∑
s∈V \X

wX (s, n − 1)

Hence, the simplified problem can be solved in polynomial
time.

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path
Steiner tree

Hamiltonian path

Theorem (Karp, 1982)

Counting the number of hamiltonian paths can be done in O∗(2n)
time using polynomial space.

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path
Steiner tree

Unit weight Steiner tree

Given a graph G = (V ,E )
and a set of terminals
{t1, . . . , tk} ⊆ V .

A Steiner tree is a subtree
S ⊆ E connecting all
terminals.

We solve the decision
variant: does there exist a
Steiner tree with at most l
edges?

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path
Steiner tree

Unit weight Steiner tree

Given a graph G = (V ,E )
and a set of terminals
{t1, . . . , tk} ⊆ V .

A Steiner tree is a subtree
S ⊆ E connecting all
terminals.

We solve the decision
variant: does there exist a
Steiner tree with at most l
edges?

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path
Steiner tree

Unit weight Steiner tree

Given a graph G = (V ,E )
and a set of terminals
{t1, . . . , tk} ⊆ V .

A Steiner tree is a subtree
S ⊆ E connecting all
terminals.

We solve the decision
variant: does there exist a
Steiner tree with at most l
edges?

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path
Steiner tree

Steiner tree: Branching walk

Definition (Branching walk)

A branching walk in G = (V ,E ) is a pair B = (TB , φ) where
TB = (VB ,EB) is a rooted, ordered tree and φ : VB → V is a
homomorphism from TB to G . The length of B is |EB |, and B is
from s if the root of TB is mapped to s by φ.

v9

v1 v2 v3

v4
v5 v6

v7
v8

v10
v11

v9

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path
Steiner tree

Steiner tree: Branching walk

Definition (Branching walk)

A branching walk in G = (V ,E ) is a pair B = (TB , φ) where
TB = (VB ,EB) is a rooted, ordered tree and φ : VB → V is a
homomorphism from TB to G . The length of B is |EB |, and B is
from s if the root of TB is mapped to s by φ.

v9

v1 v2 v3

v4
v5 v6

v7
v8

v10
v11

v9

v7 v5 v10

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path
Steiner tree

Steiner tree: Branching walk

Definition (Branching walk)

A branching walk in G = (V ,E ) is a pair B = (TB , φ) where
TB = (VB ,EB) is a rooted, ordered tree and φ : VB → V is a
homomorphism from TB to G . The length of B is |EB |, and B is
from s if the root of TB is mapped to s by φ.

v9

v1 v2 v3

v4
v5 v6

v7
v8

v10
v11

v9

v7 v5

v2

v10

v9 v5 v11

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path
Steiner tree

Steiner tree: Branching walk

Definition (Branching walk)

A branching walk in G = (V ,E ) is a pair B = (TB , φ) where
TB = (VB ,EB) is a rooted, ordered tree and φ : VB → V is a
homomorphism from TB to G . The length of B is |EB |, and B is
from s if the root of TB is mapped to s by φ.

v9

v1 v2 v3

v4
v5 v6

v7
v8

v10
v11

v9

v7 v5

v2

v10

v9 v5 v11

v3

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path
Steiner tree

Steiner tree: Reformulating

Lemma

Let s be a terminal. There exists a branching walk from s of length
at most l that visits all terminals if and only if there exists a
Steiner tree T with at most l edges.

Proof.

(⇐) : Choose TB to be T with root s and φ to be the identity
function.
(⇒) : Consider the minimal subgraph of G in which B is still a
branching walk. Choose T as a spanning tree of this graph.

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path
Steiner tree

Steiner tree: An IE-formulation

Define U as all branching walks from s of length l .

Define Ai as all branching walks avoiding terminal ti .

The input is a YES-instance iff

|
k⋂

i=1

Ai | > 0

It remains to solve the simplified problem.

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path
Steiner tree

Counting branching walks

The simplified problem is to count the number of branching
walks from s in G [V \ X ].

Let bX (s, j) be the number of branching walks from s of
length l in G [V \ X ].

bX (s, 0) = 1, and for j > 0:

bX (s, j) =
∑

t∈N(s)\X

j−1∑
i=0

bX (s, i) bX (t, j − 1− i)

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path
Steiner tree

Steiner tree

This gives us an O∗(2k)-time poly-space algorithm.

Using the concept of branching walks, we can also obtain
O∗(2n)-time poly-space algorithms for finding spanning trees
that

minimize the maximum degree (Degree Constrained
Spanning Tree).
maximize the number of internal nodes (Max Internal
Spanning Tree).

(Both are known to be NP-complete).

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path revisited
Subset convolution

Möbius inversion

Definition (Zeta and Möbius transform)

Given a function f : 2V → Z+, the zeta-transform ζf and the
Möbius-transform µf are defined as follows:

ζf (V ) =
∑
X⊆V

f (X ) µf (V ) =
∑
X⊆V

(−1)|V \X |f (X )

Theorem (Möbius inversion)

The Möbius-transform is the inverse of the zeta-transform, i.e. for
each f : 2V → Z+:

f (V ) =
∑
X⊆V

(−1)|V \X |
∑
A⊆X

f (A)

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path revisited
Subset convolution

Möbius inversion

Essentially, Möbius inversion and Inclusion-Exclusion are
exactly the same.

Computing the zeta-transform can be viewed as solving the
simplified problem.

So we should also be able to obtain the algorithms in a more
structural (algebraical) way.

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path revisited
Subset convolution

Hamiltonian path revisited

Definition (Hamiltonian path)

An Hamiltonian path in a graph G with nodes v1, . . . , vn is a walk
of n − 1 edges that visits all nodes.

We use an Held & Karp-style DP: let hl(s,R) be the number of
walks from s of length l containing exactly the nodeset R.

hl(s,R) =


[R = ∅] if l = 0∑
t∈N(s)∩R

hl−1(t,R \ t) + hl−1(t,R) otherwise

Note that hn−1(s,V \ s) is the number of Hamiltonian paths from
s.

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path revisited
Subset convolution

hl(s,R) =


[R = ∅] if l = 0∑
t∈N(s)∩R

hl−1(t,R \ t) + hl−1(t,R) otherwise

ζh0(s,R) =
∑
X⊆R

[X = ∅] = 1

ζhl(s,R) =
∑
X⊆R

∑
t∈N(s)∩X

hl−1(t,X \ t) + hl−1(t,X )

=
∑

t∈N(s)∩R

∑
t∈X⊆R

hl−1(t,X \ t) + hl−1(t,X )

=
∑

t∈N(s)∩R

ζhl−1(t,R)

Conclusion: ζhk(s,R) = wV \R(s, k)

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path revisited
Subset convolution

hl(s,R) =


[R = ∅] if l = 0∑
t∈N(s)∩R

hl−1(t,R \ t) + hl−1(t,R) otherwise

ζh0(s,R) =
∑
X⊆R

[X = ∅] = 1

ζhl(s,R) =
∑
X⊆R

∑
t∈N(s)∩X

hl−1(t,X \ t) + hl−1(t,X )

=
∑

t∈N(s)∩R

∑
t∈X⊆R

hl−1(t,X \ t) + hl−1(t,X )

=
∑

t∈N(s)∩R

ζhl−1(t,R)

Conclusion: ζhk(s,R) = wV \R(s, k)

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path revisited
Subset convolution

hl(s,R) =


[R = ∅] if l = 0∑
t∈N(s)∩R

hl−1(t,R \ t) + hl−1(t,R) otherwise

ζh0(s,R) =
∑
X⊆R

[X = ∅] = 1

ζhl(s,R) =
∑
X⊆R

∑
t∈N(s)∩X

hl−1(t,X \ t) + hl−1(t,X )

=
∑

t∈N(s)∩R

∑
t∈X⊆R

hl−1(t,X \ t) + hl−1(t,X )

=
∑

t∈N(s)∩R

ζhl−1(t,R)

Conclusion: ζhk(s,R) = wV \R(s, k)

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path revisited
Subset convolution

hl(s,R) =


[R = ∅] if l = 0∑
t∈N(s)∩R

hl−1(t,R \ t) + hl−1(t,R) otherwise

ζh0(s,R) =
∑
X⊆R

[X = ∅] = 1

ζhl(s,R) =
∑
X⊆R

∑
t∈N(s)∩X

hl−1(t,X \ t) + hl−1(t,X )

=
∑

t∈N(s)∩R

∑
t∈X⊆R

hl−1(t,X \ t) + hl−1(t,X )

=
∑

t∈N(s)∩R

ζhl−1(t,R)

Conclusion: ζhk(s,R) = wV \R(s, k)

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path revisited
Subset convolution

Subset convolution

Definition (Björklund et al., 2007)

Given two functions f , g : 2V → Z+, the cover product (f ∗c g) is
defined as follows:

(f ∗c g)(V ) =
∑

A,B⊆V
A∪B=V

f (A)g(B)

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path revisited
Subset convolution

Subset convolution

Theorem (Björklund et al., 2007)

ζ((f ∗c g)(V )) = ζf (V ) ∗ ζg(V )

Proof.

ζ(f ∗c g) =
∑
X⊆V

∑
A,B⊆X
A∪B=X

f (A)g(B)

=
( ∑

A⊆V

f (A)
)( ∑

B⊆V

g(B)
)

= ζf (V ) ∗ ζg(V )

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path revisited
Subset convolution

Subset convolution

Equipped with subset convolution, the considered
IE-formulation for Steiner Tree can be obtained by applying
Möbius inversion to the Dreyfus-Wagner recurrence (1972).

Using the same setup, one can also obtain O∗(2n)-time
poly-space algorithms for computing the number of
c-component spanning forests and the cover polynomial of a
graph on n nodes.

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path revisited
Subset convolution

Conclusions

Möbius inversion is a powerful tool to improve the space
requirement of some dynamic programming algorithms.

All dynamic programming algorithms admitting the ’subset
convolution shape’ can be improved to polynomial-space
algorithms.

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion



Introduction
IE-formulations

Möbius inversion

Hamiltonian path revisited
Subset convolution

The end

Thank you all for your attention!

Jesper Nederlof Fast polynomial-space algorithms using Möbius inversion


	Introduction
	Exact exponential time algorithms
	Inclusion-Exclusion (IE)
	Finding and using IE-formulations

	IE-formulations
	Hamiltonian path
	Steiner tree

	Möbius inversion
	Hamiltonian path revisited
	Subset convolution


