Saving Space by Algebraization

Daniel Lokshtanov and Jesper Nederlof

6 June 2010
"Saving space by algebraization", STOC 2010
Jesper Nederlof
UNIVERSITETET I BERGEN Institutt for informatikk

Dynamic Programming (DP)

- From the 1950's by Richard Bellman in his book "Bottleneck Problems and Dynamic Programming"; Nowadays a prominent algorithmic technique in designing algorithms.

Dynamic Programming (DP)

- From the 1950's by Richard Bellman in his book "Bottleneck Problems and Dynamic Programming"; Nowadays a prominent algorithmic technique in designing algorithms.
- Uses a big table of data that has to be stored in the memory.

Dynamic Programming (DP)

- From the 1950's by Richard Bellman in his book "Bottleneck Problems and Dynamic Programming"; Nowadays a prominent algorithmic technique in designing algorithms.
- Uses a big table of data that has to be stored in the memory.
- A relatively easy procedure computes new table entries using already computed table entries.

Dynamic Programming (DP)

- From the 1950's by Richard Bellman in his book "Bottleneck Problems and Dynamic Programming"; Nowadays a prominent algorithmic technique in designing algorithms.
- Uses a big table of data that has to be stored in the memory.
- A relatively easy procedure computes new table entries using already computed table entries.
- This easy procedure is often so easy that we just write it down as a single formula, obtaining a recurrence.

Dynamic Programming (DP)

- From the 1950 's by Richard Bellman in his book "Bottleneck Problems and Dynamic Programming"; Nowadays a prominent algorithmic technique in designing algorithms.
- Uses a big table of data that has to be stored in the memory.
- A relatively easy procedure computes new table entries using already computed table entries.
- This easy procedure is often so easy that we just write it down as a single formula, obtaining a recurrence.
- We are interested in conditions that are sufficient for being able to reduce the space requirement of DP algorithms significantly (without significant loss of speed).

The approach in a nutshell

- Usually the dependency between table entries is highly unpredictable and interleaved.

The approach in a nutshell

- Usually the dependency between table entries is highly unpredictable and interleaved.
- The best one can do is keeping track of (almost) the whole table.

The approach in a nutshell

- Usually the dependency between table entries is highly unpredictable and interleaved.
- The best one can do is keeping track of (almost) the whole table.
- We use a transformation to transform the table into one where the dependency between table entries is very restricted and systematic.

The approach in a nutshell

- Usually the dependency between table entries is highly unpredictable and interleaved.
- The best one can do is keeping track of (almost) the whole table.
- We use a transformation to transform the table into one where the dependency between table entries is very restricted and systematic.
- This allows us to turn DP algorithms of which the recurrence only uses certain operators in space efficient ones.

Subset Sum

- Given integers $\left\{e_{1}, \ldots, e_{n}\right\}$ and t in binary representation, count the number of subsets $S \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in S} e_{i}=t$.

Subset Sum

- Given integers $\left\{e_{1}, \ldots, e_{n}\right\}$ and t in binary representation, count the number of subsets $S \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in S} e_{i}=t$.
- Brute force gives a $\mathcal{O}\left(2^{n}\right)$ time, polynomial space algorithm. DP gives an $\mathcal{O}(n t)$ time and $\mathcal{O}(t)$ space algorithm:

Subset Sum

- Given integers $\left\{e_{1}, \ldots, e_{n}\right\}$ and t in binary representation, count the number of subsets $S \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in S} e_{i}=t$.
- Brute force gives a $\mathcal{O}\left(2^{n}\right)$ time, polynomial space algorithm. DP gives an $\mathcal{O}(n t)$ time and $\mathcal{O}(t)$ space algorithm:
- Define $A[i, j]$ as the number of subsets $S \subseteq\{1, \ldots, i\}$ such that $\sum_{k \in S} e_{k}=j$. Then

Subset Sum

- Given integers $\left\{e_{1}, \ldots, e_{n}\right\}$ and t in binary representation, count the number of subsets $S \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in S} e_{i}=t$.
- Brute force gives a $\mathcal{O}\left(2^{n}\right)$ time, polynomial space algorithm. DP gives an $\mathcal{O}(n t)$ time and $\mathcal{O}(t)$ space algorithm:
- Define $A[i, j]$ as the number of subsets $S \subseteq\{1, \ldots, i\}$ such that $\sum_{k \in S} e_{k}=j$. Then

$$
A[i, j]= \begin{cases}0 & \text { if } i=1, e_{1} \neq j, \text { and } e_{1} \neq 0 \\ 1 & \text { if } i=1 \text { and }\left(e_{1}=j \text { or } j=0\right. \\ A[i-1, j]+A\left[i-1, j-e_{i}\right] & \text { if } i>1\end{cases}
$$

Subset Sum

- Given integers $\left\{e_{1}, \ldots, e_{n}\right\}$ and t in binary representation, count the number of subsets $S \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in S} e_{i}=t$.
- Brute force gives a $\mathcal{O}\left(2^{n}\right)$ time, polynomial space algorithm. DP gives an $\mathcal{O}(n t)$ time and $\mathcal{O}(t)$ space algorithm:
- Define $A[i, j]$ as the number of subsets $S \subseteq\{1, \ldots, i\}$ such that $\sum_{k \in S} e_{k}=j$. Then

$$
A[i, j]= \begin{cases}0 & \text { if } i=1, e_{1} \neq j, \text { and } e_{1} \neq 0 \\ 1 & \text { if } i=1 \text { and }\left(e_{1}=j \text { or } j=0\right) \\ A[i-1, j]+A\left[i-1, j-e_{i}\right] & \text { if } i>1\end{cases}
$$

- The answer of the Subset Sum instance can be read from $A[n, t]$.

Weight
items
1
2
2

$$
A[i, j]= \begin{cases}0 & \text { if } i=1, e_{1} \neq j, \text { and } e_{1} \neq 0 \\ 1 & \text { if } i=1 \text { and }\left(e_{1}=j \text { or } j=0\right) \\ A[i-1, j]+A\left[i-1, j-e_{i}\right] & \text { if } i>1\end{cases}
$$

"Saving space by algebraization", STOC 2010
Jesper Nederlof

Weight
items
1
2
2

$$
A[i, j]= \begin{cases}0 & \text { if } i=1, e_{1} \neq j, \text { and } e_{1} \neq 0 \\ 1 & \text { if } i=1 \text { and }\left(e_{1}=j \text { or } j=0\right) \\ A[i-1, j]+A\left[i-1, j-e_{i}\right] & \text { if } i>1\end{cases}
$$

"Saving space by algebraization", STOC 2010
Jesper Nederlof

Weight
items
1
2
2

$$
A[i, j]= \begin{cases}0 & \text { if } i=1, e_{1} \neq j, \text { and } e_{1} \neq 0 \\ 1 & \text { if } i=1 \text { and }\left(e_{1}=j \text { or } j=0\right) \\ A[i-1, j]+A\left[i-1, j-e_{i}\right] & \text { if } i>1\end{cases}
$$

"Saving space by algebraization", STOC 2010
Jesper Nederlof

Weight

1		0	1	2	3	4	5	6	7	8	$t-6339$ t-3175 t			$\underline{n t}$
	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	2	1	1	1	1	0	0	0	0	0	0	0	0	0
	5	1	1	1	1	0	1	1	1	1	0	0	0	0
items														
	3156	1	1	1	1	0	1	1	1	1	1	1	0	0
	3164	1	1	1	1	0	1	1	1	1	65	2	0	0
	3175	1	1	1	1	0	1	1	1	1	82	67	2	0

$$
A[i, j]= \begin{cases}0 & \text { if } i=1, e_{1} \neq j, \text { and } e_{1} \neq 0 \\ 1 & \text { if } i=1 \text { and }\left(e_{1}=j \text { or } j=0\right) \\ A[i-1, j]+A\left[i-1, j-e_{i}\right] & \text { if } i>1\end{cases}
$$

Weight

1		0	1	2	3	4	5	6	7	8			t	$n t$
	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	2	1	1	1	1	0	0	0	0	0	0	0	0	0
	5	1	1	1	1	0	1	1	1	1	0	0	0	0
items														
	3156	1	1	1	1	0	1	1	1	1	1	1	0	0
	3164	1	1	1	1	0	1	1	1	1	65	2	Q	0
	, 3175	1	1	1	1	0	1	1	1	1	82	67	2	0

$$
A[i, j]= \begin{cases}0 & \text { if } i=1, e_{1} \neq j, \text { and } e_{1} \neq 0 \\ 1 & \text { if } i=1 \text { and }\left(e_{1}=j \text { or } j=0\right) \\ A[i-1, j]+A\left[i-1, j-e_{i}\right] & \text { if } i>1\end{cases}
$$

Weight

$$
A[i, j]= \begin{cases}0 & \text { if } i=1, e_{1} \neq j, \text { and } e_{1} \neq 0 \\ 1 & \text { if } i=1 \text { and }\left(e_{1}=j \text { or } j=0\right) \\ A[i-1, j]+A\left[i-1, j-e_{i}\right] & \text { if } i>1\end{cases}
$$

Weight

$$
A[i, j]= \begin{cases}0 & \text { if } i=1, e_{1} \neq j, \text { and } e_{1} \neq 0 \\ 1 & \text { if } i=1 \text { and }\left(e_{1}=j \text { or } j=0\right) \\ A[i-1, j]+A\left[i-1, j-e_{i}\right] & \text { if } i>1\end{cases}
$$

Definition (Convolution operator)

- Define the operator \otimes on column vectors of size N as

$$
\mathbf{a} \otimes \mathbf{b}=\left(\sum_{i+j=k} a_{i} b_{j}\right)_{0 \leq k<N}^{T}
$$

Definition (Convolution operator)

- Define the operator \otimes on column vectors of size N as

$$
\mathbf{a} \otimes \mathbf{b}=\left(\sum_{i+j=k} a_{i} b_{j}\right)_{0 \leq k<N}^{T}
$$

Example

$$
\left(\begin{array}{l}
1 \\
3 \\
4 \\
0 \\
0
\end{array}\right) \otimes\left(\begin{array}{l}
2 \\
3 \\
3 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
2 \\
9 \\
20 \\
21 \\
12
\end{array}\right)
$$

Definition (Convolution operator)

- Define the operator \otimes on column vectors of size N as

$$
\mathbf{a} \otimes \mathbf{b}=\left(\sum_{i+j=k} a_{i} b_{j}\right)_{0 \leq k<N}^{T}
$$

Example

$$
\left(\begin{array}{l}
1 \\
3 \\
4 \\
0 \\
0
\end{array}\right) \otimes\left(\begin{array}{l}
2 \\
3 \\
3 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
2 \\
9 \\
20 \\
21 \\
12
\end{array}\right)
$$

$$
\left(1+3 x+4 x^{2}\right)\left(2+3 x+3 x^{2}\right)=2+9 x+20 x^{2}+21 x^{3}+12 x^{4}
$$

Convolution

Definition (Pointwise multiplication)

- Let • be the point-wise multiplication of two vectors, that is:

$$
\mathbf{a} \cdot \mathbf{b}=\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{N-1}
\end{array}\right) \cdot\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{N-1}
\end{array}\right)=\left(\begin{array}{c}
a_{0} b_{0} \\
a_{1} b_{1} \\
\vdots \\
a_{N-1} b_{N-1}
\end{array}\right)
$$

Convolution

- Assume we have an invertible matrix \mathbf{T} such that for every \mathbf{a}, \mathbf{b}

$$
\mathbf{T}(\mathbf{a} \otimes \mathbf{b})=\mathbf{T a} \cdot \mathbf{T} \mathbf{b}
$$

- and we want to compute \mathbf{d}_{t}, where (for example)

$$
\mathbf{d}=(\mathbf{a} \otimes \mathbf{b}) \otimes(\mathbf{c}+\mathbf{a})
$$

- Then we know that

$$
\begin{aligned}
\mathbf{T} \mathbf{d} & =\mathbf{T}((\mathbf{a} \otimes \mathbf{b}) \otimes(\mathbf{c}+\mathbf{a})) \\
& =\mathbf{T}(\mathbf{a} \otimes \mathbf{b}) \cdot \mathbf{T}(\mathbf{c}+\mathbf{a}) \\
& =(\mathbf{T} \mathbf{a} \cdot \mathbf{T} \mathbf{b}) \cdot(\mathbf{T} \mathbf{c}+\mathbf{T a})
\end{aligned}
$$

- And \mathbf{d}_{t} can be obtained using

$$
\mathbf{d}_{t}=\left(\mathbf{T}^{-1} \mathbf{T d}\right)_{t}=\sum_{i=0}^{N-1} \mathbf{T}_{t i}^{-1}\left((\mathbf{T a})_{d}(\mathbf{T b})_{d}\right)\left((\mathbf{T c})_{d}+(\mathbf{T a})_{d}\right)
$$

Discrete Fourier Transform (DFT)

Definition

Let ω be a number s.t. $\omega^{N}=1$ and $\omega^{i} \neq 1$ for $1<i<N$, then the discrete Fourier transform F is defined as:

$$
\mathbf{F}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & \omega & \ldots & \omega^{N-1} \\
\vdots & \vdots & \omega^{i j} & \vdots \\
1 & \omega^{N-1} & \ldots & \omega^{(N-1)(N-1)}
\end{array}\right)
$$

Lemma

$$
\mathbf{F}^{-1}=\frac{1}{N}\left(\omega^{-i j}\right)_{0 \leq i, j<N} \quad \text { and also } \quad \mathbf{F}(\mathbf{a} \otimes \mathbf{b})=\mathbf{F a} \cdot \mathbf{F b}
$$

Subset Sum revisited

- Now we will use the DFT on the dynamic programming algorithm.
- In order to achieve this we first have to change perspective slightly, and consider the DP table as an array of row vectors.
- For an integer k, denote I_{k} as the k 'th column of the identity matrix.

Example

$$
\left(\begin{array}{l}
1 \\
3 \\
4 \\
0 \\
0
\end{array}\right) \otimes\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
3 \\
4
\end{array}\right)
$$

Metamorphosis

So we had

$$
A[i, j]= \begin{cases}0 & \text { if } i=1, e_{1} \neq j, \text { and } e_{1} \neq 0 \\ 1 & \text { if } i=1 \text { and }\left(e_{1}=j \text { or } j=0\right) \\ A[i-1, j]+A\left[i-1, j-e_{i}\right] & \text { if } i>1\end{cases}
$$

And we rewrite it as

$$
A[i]= \begin{cases}I_{0}^{T}+I_{e_{1}}^{T} & \text { if } i=1 \\ A[i-1]+A[i-1] \otimes I_{e_{i}}^{T} & \text { if } i>1\end{cases}
$$

- Recall we are interested in $A[n, t]=A[n]_{t}$.

Metamorphosis

$$
A[i]=\left\{\begin{array}{lll}
I_{0}^{T}+I_{e_{1}}^{T} & \text { if } i=1 \\
A[i-1]+A[i-1] \otimes & I_{e_{i}}^{T} & \text { if } i>1
\end{array}\right.
$$

Metamorphosis

$$
\mathbf{F}(A[i])=\left\{\begin{array}{lll}
\mathbf{F}\left(I_{0}^{T}+I_{e_{1}}^{T}\right) & & \text { if } i=1 \\
\mathbf{F}(A[i-1]+A[i-1] \otimes & \left.I_{e_{i}}^{T}\right) & \text { if } i>1
\end{array}\right.
$$

Metamorphosis

$$
\mathbf{F}(A[i])=\left\{\begin{array}{ll}
\mathbf{F} I_{0}^{T}+\mathbf{F} I_{e_{1}}^{T} & \text { if } i=1 \\
\mathbf{F}(A[i-1])+\mathbf{F}(A[i-1] \otimes & \left.I_{e_{i}}^{T}\right)
\end{array} \text { if } i>1 .\right.
$$

Metamorphosis

$$
\mathbf{F}(A[i])=\left\{\begin{array}{ll}
\mathbf{F} I_{0}^{T}+\mathbf{F} I_{e_{1}}^{T} & \text { if } i=1 \\
\mathbf{F}(A[i-1])+\mathbf{F}(A[i-1] &) \cdot \mathbf{F}\left(I_{e_{i}}^{T}\right)
\end{array} \text { if } i>1 .\right.
$$

Metamorphosis

$$
\mathbf{F}(A[i])=\left\{\begin{array}{ll}
\mathbf{F} I_{0}^{T}+\mathbf{F} I_{e_{1}}^{T} & \text { if } i=1 \\
\mathbf{F}(A[i-1])+\mathbf{F}(A[i-1] &) \cdot \mathbf{F}\left(I_{e_{i}}^{T}\right)
\end{array} \text { if } i>1 .\right.
$$

- And all dependency between different components of vectors is gone, since we only use addition and point wise multiplication.

The transformed table

The transformed table

								ndex	x of	vec				
		0	1	2	3	4	5	6	7	8	6339	-31	t	$n t$
1	1	5	23	68	79	14	143	87	401	413	154	294	513	94
	2	41	25	325	83	25	325	6	72	9	97	32	273	26
	5	43	12	13	91	150	13	267	65	89	256	426	18	103
which														
	3156	6	65	44	12	109	44	325	9	25	169	113	93	284
	3164	72	43	98	72	83	98	83	43	78	36.5	52	265	185
	, 3175	516	12	78	283	12	247	43	102	13	62	77	112	394

- Any component of the bottom row can be computed using $\mathcal{O}(n)$ additions and multiplications!

The finishing touch

- So we can compute any component of the vector $\mathbf{F}(A[n])$ fast.
- Now we can compute $A[n]_{t}$ according to

$$
A[n]_{t}=\left(\mathbf{F}^{-1}(\mathbf{F}(A[n]))\right)_{t}=
$$

$$
\left(\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & \omega & \cdots & \omega^{-(N-1)} \\
\vdots & \vdots & \omega^{-i j} & \vdots \\
1 & \omega^{-(N-1)} & \cdots & \omega^{-(N-1)(N-1)}
\end{array}\right)\left(\begin{array}{c}
(\mathbf{F}(A[n]))_{1} \\
\vdots \\
(\mathbf{F}(A[n]))_{N-1}
\end{array}\right)\right)_{t}
$$

The finishing touch

- So we can compute any component of the vector $\mathbf{F}(A[n])$ fast.
- Now we can compute $A[n]_{t}$ according to

$$
A[n]_{t}=\left(\mathbf{F}^{-1}(\mathbf{F}(A[n]))\right)_{t}=
$$

$$
\left(\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & \omega & \cdots & \omega^{-(N-1)} \\
\vdots & \vdots & \omega^{-i j} & \vdots \\
1 & \omega^{-(N-1)} & \cdots & \omega^{-(N-1)(N-1)}
\end{array}\right)\left(\begin{array}{c}
(\mathbf{F}(A[n]))_{1} \\
\vdots \\
(\mathbf{F}(A[n]))_{N-1}
\end{array}\right)\right)_{t}
$$

- and we are done!

The transformed table

The new algorithm uses $\tilde{\mathcal{O}}\left(n^{3} t \log t\right)$ time and $\tilde{\mathcal{O}}\left(n^{2}\right)$ space.

Further remarks

- The algorithm has to work in a field where there exists an ω.
- This can be achieved by using for example complex numbers with finite precision.
- We also used the Möbius transformation to save space for a different type of DP algorithms
- in combination with the DFT, this found applications to among others the Traveling Salesman and Weighted Steiner Tree problems.
- It would be interesting to find more transformations that also are useful to save space for existing DP algorithms.

Further research

- Can we efficiently save space for "Min-Sum DP algorithms"?
- For the Knapsack problem the approach results in an algorithm much slower then the corresponding DP algorithm.
- Are there space and time efficient algorithms for deciding properties of partial k-trees (for example, maximum independent set)?
- Does there exists a positive ϵ such that
- Subset Sum can be solved in $\mathcal{O}\left((2-\epsilon)^{n}\right)$ time and polynomial space?
- Subset Sum can be solved in $\mathcal{O}\left(n^{c} t^{(1-\epsilon)}\right)$ time?

Thanks for listening!

