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Dynamic Programming (DP)

From the 1950’s by Richard Bellman in his book ”Bottleneck
Problems and Dynamic Programming”; Nowadays a prominent
algorithmic technique in designing algorithms.

Uses a big table of data that has to be stored in the memory.

A relatively easy procedure computes new table entries using
already computed table entries.

This easy procedure is often so easy that we just write it down as a
single formula, obtaining a recurrence.

We are interested in conditions that are sufficient for being able to
reduce the space requirement of DP algorithms significantly
(without significant loss of speed).
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The approach in a nutshell

Usually the dependency between table entries is highly unpredictable
and interleaved.

The best one can do is keeping track of (almost) the whole table.

We use a transformation to transform the table into one where the
dependency between table entries is very restricted and systematic.

This allows us to turn DP algorithms of which the recurrence only
uses certain operators in space efficient ones.
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Subset Sum

Given integers {e1, . . . , en} and t in binary representation, count the
number of subsets S ⊆ {1, . . . , n} such that

∑
i∈S ei = t.

Brute force gives a O(2n) time, polynomial space algorithm. DP
gives an O(nt) time and O(t) space algorithm:

Define A[i , j ] as the number of subsets S ⊆ {1, . . . , i} such that∑
k∈S ek = j . Then

A[i , j ] =


0 if i = 1, e1 6= j , and e1 6= 0

1 if i = 1 and (e1 = j or j = 0)

A[i − 1, j ] + A[i − 1, j − ei ] if i > 1

The answer of the Subset Sum instance can be read from A[n, t].
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Definition (Convolution operator)

Define the operator ⊗ on column vectors of size N as

a⊗ b =
( ∑

i+j=k

aibj

)T

0≤k<N

Example 
1
3
4
0
0

⊗


2
3
3
0
0

 =


2
9

20
21
12



(1 + 3x + 4x2)(2 + 3x + 3x2) = 2 + 9x + 20x2 + 21x3 + 12x4
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Convolution

Definition (Pointwise multiplication)

Let · be the point-wise multiplication of two vectors, that is:

a · b =


a0

a1
...

aN−1

 ·


b0

b1
...

bN−1

 =


a0b0

a1b1
...

aN−1bN−1


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Convolution
Assume we have an invertible matrix T such that for every a, b

T(a⊗ b) = Ta · Tb,

and we want to compute dt , where (for example)

d = (a⊗ b)⊗ (c + a).

Then we know that

Td = T
(
(a⊗ b)⊗ (c + a)

)
= T(a⊗ b) · T(c + a)

= (Ta · Tb) · (Tc + Ta)

And dt can be obtained using

dt = (T−1Td)t =
N−1∑
i=0

T−1
ti

(
(Ta)d(Tb)d

)(
(Tc)d + (Ta)d

)
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Discrete Fourier Transform (DFT)
Definition

Let ω be a number s.t. ωN = 1 and ωi 6= 1 for 1 < i < N, then
the discrete Fourier transform F is defined as:

F =


1 1 . . . 1
1 ω . . . ωN−1

...
... ωij ...

1 ωN−1 . . . ω(N−1)(N−1)


Lemma

F−1 =
1

N

(
ω−ij

)
0≤i ,j<N

and also F(a⊗ b) = Fa · Fb
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Subset Sum revisited
Now we will use the DFT on the dynamic programming algorithm.

In order to achieve this we first have to change perspective slightly,
and consider the DP table as an array of row vectors.

For an integer k , denote Ik as the k ’th column of the identity matrix.

Example 
1
3
4
0
0

⊗


0
0
1
0
0

 =


0
0
1
3
4


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Metamorphosis

So we had

A[i , j ] =


0 if i = 1, e1 6= j , and e1 6= 0

1 if i = 1 and (e1 = j or j = 0)

A[i − 1, j ] + A[i − 1, j − ei ] if i > 1

And we rewrite it as

A[i ] =

{
IT
0 + IT

e1
if i = 1

A[i − 1] + A[i − 1]⊗ IT
ei

if i > 1

Recall we are interested in A[n, t] = A[n]t .
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Metamorphosis

F(

A[i ]

)

=

{

F(

IT
0 +

F

IT
e1

)

if i = 1

F(

A[i − 1]

)

+

F(

A[i − 1]⊗

) · F(

IT
ei

)

if i > 1

And all dependency between different components of vectors is
gone, since we only use addition and point wise multiplication.
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The transformed table
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n

nt

1
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5

5

41

43

23

25

12

68

325

13

154 513

97 273

256 18

6

72 83

65 1091244

98

78

169 93

365

94

26

103

284

185

394

t− 3175

265

62 112

3156

3164

3175

which

index of vector

1 2 3 4 5 6 7 8 t− 6339 t

113

52

77

294

32

426

79 401

43

14

25

12
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325

13

6

72

283

65

9

12

44

98

247

325

43

25

83

9

78

43 102 13

83

91 150
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267 89

72

87 413

vector

U N I V E R S I T E T E T  I  B E RG E N
Institutt for informatikk



“Saving space by algebraization”, STOC 2010 Jesper Nederlof

Subject Subset Sum Convolution Subset Sum revisited Further comments

The transformed table

0

1

n

nt

1

2

5

5

41

43

23

25

12

68

325

13

154 513

97 273

256 18

6

72 83

65 1091244

98

78

169 93

365

94

26

103

284

185

394

t− 3175

265

62 112

3156

3164

3175

which

index of vector

1 2 3 4 5 6 7 8 t− 6339 t

113

52

77

294

32

426

79 401

43

14

25

12

143

325

13

6

72

283

65

9

12

44

98

247

325

43

25

83

9

78

43 102 13

83

91 150

516

267 89

72

87 413

vector

Any component of the bottom row can be computed using O(n)
additions and multiplications!
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The finishing touch

So we can compute any component of the vector F(A[n]) fast.

Now we can compute A[n]t according to

A[n]t = (F−1(F(A[n])))t =




1 1 . . . 1
1 ω . . . ω−(N−1)

...
... ω−ij

...
1 ω−(N−1) . . . ω−(N−1)(N−1)


 (F(A[n]))1

...
(F(A[n]))N−1




t

and we are done!
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The new algorithm uses Õ(n3t log t) time and Õ(n2) space.
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Further remarks

The algorithm has to work in a field where there exists an ω.

This can be achieved by using for example complex numbers with
finite precision.

We also used the Möbius transformation to save space for a
different type of DP algorithms

in combination with the DFT, this found applications to among
others the Traveling Salesman and Weighted Steiner Tree problems.

It would be interesting to find more transformations that also are
useful to save space for existing DP algorithms.
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Further research

Can we efficiently save space for ”Min-Sum DP algorithms”?

For the Knapsack problem the approach results in an algorithm
much slower then the corresponding DP algorithm.

Are there space and time efficient algorithms for deciding properties
of partial k-trees (for example, maximum independent set)?

Does there exists a positive ε such that

Subset Sum can be solved in O((2− ε)n) time and polynomial
space?
Subset Sum can be solved in O(nct(1−ε)) time?
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Thanks for listening!
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