Recognizing ($\mathbf{p , q}$)-cluster graphs

Pinar Heggernes, Daniel Lokshtanov, Christophe Paul and Jesper Nederlof

29 June 2010
36th International Workshop on Graph Theoretic

Outline

(1) Introduction
(2) (p,q)-cluster graphs
(3) Special cases
(4) NP-completeness
(5) $(0, q)$
(6) Further remarks

Cluster Editing

- We are given a graph which should be a disjoint union of cliques, but it is not due to faulty data.

Cluster Editing

- We are given a graph which should be a disjoint union of cliques, but it is not due to faulty data.

Cluster Editing

- We are given a graph which should be a disjoint union of cliques, but it is not due to faulty data.

Cluster Editing

- We are given a graph which should be a disjoint union of cliques, but it is not due to faulty data.

Cluster Editing

- The classical Cluster Editing problem is:
- Given a graph G and integer k, is it possible to add and remove at most k edges to obtain a disjoint union of cliques?
- This problem, and many variants, are well studied and known to be $N P$-complete and FPT parameterized by k.

The high school problem

- Suppose you have to partition a huge number of 1 st years children in classes on a school.

The high school problem

- Suppose you have to partition a huge number of 1 st years children in classes on a school.
- All the children indicate their friendships.

The high school problem

- Suppose you have to partition a huge number of 1 st years children in classes on a school.
- All the children indicate their friendships.
- In this application, friendships are symmetric.

The high school problem

- Suppose you have to partition a huge number of 1 st years children in classes on a school.
- All the children indicate their friendships.
- In this application, friendships are symmetric.
- Minimize the number of friendships broken plus the number of non-friends in the same class.

The high school problem

- Suppose you have to partition a huge number of 1st years children in classes on a school.
- All the children indicate their friendships.
- In this application, friendships are symmetric.
- Minimize the number of friendships broken plus the number of non-friends in the same class.
- Then this is Cluster Editing on the "friendship graph".

The high school problem

- Suppose you have to partition a huge number of 1 st years children in classes on a school.
- All the children indicate their friendships.
- In this application, friendships are symmetric.
- Minimize the number of friendships broken plus the number of non-friends in the same class.
- Then this is Cluster Editing on the "friendship graph".
- Probably lots of editing has to be done \rightarrow FPT algorithms are slow.

The high school problem

- Suppose you have to partition a huge number of 1 st years children in classes on a school.
- All the children indicate their friendships.
- In this application, friendships are symmetric.
- Minimize the number of friendships broken plus the number of non-friends in the same class.
- Then this is Cluster Editing on the "friendship graph".
- Probably lots of editing has to be done \rightarrow FPT algorithms are slow.
- There might be classes with very few friends \rightarrow Unbalanced.

The high school problem

- Suppose you have to partition a huge number of 1 st years children in classes on a school.
- All the children indicate their friendships.
- In this application, friendships are symmetric.
- Minimize the number of friendships broken plus the number of non-friends in the same class.
- Then this is Cluster Editing on the "friendship graph".
- Probably lots of editing has to be done \rightarrow FPT algorithms are slow.
- There might be classes with very few friends \rightarrow Unbalanced.
- Today: Minimize the maximum of the number of friendships broken and the number of non-friends over all classes.

(p, q)-cluster graphs

Definition ((p,q)-clustering)

Given a graph $G=(V, E)$, integers p, q
Asked a partition C_{1}, \ldots, C_{l} of V s.t. for every C_{i} :

- the number of edges with exactly one endpoint in C_{i} is at most p, and
- the number of non-adjacent pairs $u, v \in C_{i}$ (with $u \neq v$) is at most q.

Definition ((p,q)-cluster graphs)

If (G, p, q) is a YES-instance, then G is called a (p, q)-cluster graph.

(\mathbf{p}, \mathbf{q})-cluster graphs

Is this graph a (2,3)-cluster graph (2 missing, 3 redundant)?

(\mathbf{p}, \mathbf{q})-cluster graphs

Is this graph a $(2,3)$-cluster graph (2 missing, 3 redundant)? Yes!

Special cases

- We can assume G is connected (otherwise, consider the connected components independently)

Special cases

- We can assume G is connected (otherwise, consider the connected components independently)
- $(0,0)$-clustering: YES iff G is a clique.

Special cases

- We can assume G is connected (otherwise, consider the connected components independently)
- $(0,0)$-clustering: YES iff G is a clique.
- ($p, 0$)-clustering: YES iff there are at most p non-adjacent pairs.

Special cases

- We can assume G is connected (otherwise, consider the connected components independently)
- $(0,0)$-clustering: YES iff G is a clique.
- ($p, 0$)-clustering: YES iff there are at most p non-adjacent pairs.
- ($\mathrm{p}, 1$)-clustering: YES iff there exists an edge whose removal gives a ($\mathrm{p}, 0$)-cluster graph.

Special cases

- We can assume G is connected (otherwise, consider the connected components independently)
- $(0,0)$-clustering: YES iff G is a clique.
- ($p, 0$)-clustering: YES iff there are at most p non-adjacent pairs.
- ($\mathrm{p}, 1$)-clustering: YES iff there exists an edge whose removal gives a ($\mathrm{p}, 0$)-cluster graph.
- ($\mathrm{p}, 2$)-clustering: solvable with dynamic programming in polynomial time.

Special cases

- We can assume G is connected (otherwise, consider the connected components independently)
- (0,0)-clustering: YES iff G is a clique.
- ($p, 0$)-clustering: YES iff there are at most p non-adjacent pairs.
- ($p, 1$)-clustering: YES iff there exists an edge whose removal gives a ($\mathrm{p}, 0$)-cluster graph.
- (p,2)-clustering: solvable with dynamic programming in polynomial time.

NP-completeness of (p, q)-clustering

Reduction from Clique: Let (G, k) be an instance of Clique. Create

n

NP-completeness of (p, q)-clustering

Reduction from Clique: Let (G, k) be an instance of Clique. Create

NP-completeness of (p, q)-clustering

Reduction from Clique: Let (G, k) be an instance of Clique. Create

NP-completeness of (p, q)-clustering

Reduction from Clique: Let (G, k) be an instance of Clique. Create

$$
\begin{array}{ll}
\mathrm{n} & \mathrm{a} \\
a \geq(n-k) k+1 & q=(n-k+1) a-1
\end{array}
$$

NP-completeness of (\mathbf{p}, \mathbf{q})-clustering

Reduction from Clique: Let (G, k) be an instance of Clique. Create

$a=(n-k) k+1$
$q=(n-k+1) a-1$
$b=q-a+2$
$p=b k$

(0,q)-clustering

Can we partition the vertices of G into cliques such that each clique has at most q edges to other cliques?

- Solvable in polynomial time!

Definition

A high degree vertex is a vertex of degree at least $q+1$. A good clique is a clique having at most q edges to other cliques.

Lemma

G is a $(0, q)$-cluster graph iff all its high degree vertices are in good cliques.

Lemma

Every good clique containing a high degree vertex is the closed neighborhood of a vertex.

Proof.

- Consider a good clique C of size c with high degree vertex v

Lemma

Every good clique containing a high degree vertex is the closed neighborhood of a vertex.

Proof.

- Consider a good clique C of size c with high degree vertex v
- There are at least $p+1-(c-1)$ edges leaving C from v

Lemma

Every good clique containing a high degree vertex is the closed neighborhood of a vertex.

Proof.

- Consider a good clique C of size c with high degree vertex v
- There are at least $p+1-(c-1)$ edges leaving C from v
- If all other vertices of C have at least one leaving edge, there are at least $p+1-(c-1)+c-1=p+1$ edges.

Lemma

Every good clique containing a high degree vertex is the closed neighborhood of a vertex.

Proof.

- Consider a good clique C of size c with high degree vertex v
- There are at least $p+1-(c-1)$ edges leaving C from v
- If all other vertices of C have at least one leaving edge, there are at least $p+1-(c-1)+c-1=p+1$ edges.
- This doesn't happen since C is a good clique, so there is a vertex w without leaving edges.

Lemma

Every good clique containing a high degree vertex is the closed neighborhood of a vertex.

Proof.

- Consider a good clique C of size c with high degree vertex v
- There are at least $p+1-(c-1)$ edges leaving C from v
- If all other vertices of C have at least one leaving edge, there are at least $p+1-(c-1)+c-1=p+1$ edges.
- This doesn't happen since C is a good clique, so there is a vertex w without leaving edges.
- Then $N[w]=C$ since C is a clique.

(0,q)-clustering

Lemma

G is a $(0, q)$-cluster graph iff all its high degree vertices are in good cliques.

Lemma

Every good clique containing a high degree vertex is the closed neighborhood of a vertex.

These two facts together give us a polynomial time algorithm!

Further remarks

- We introduced (p, q)-clustering.
- NP-complete when p, q are part of the input.
- Special cases $(p, 0),(p, 1),(p, 2)$ and $(0, q)$ are polynomial time solvable.
- We also proved $(1,1),(1,2)$ and $(1,3)$ to be polynomial time solvable.
- Very recently, Lokshtanov and Marx found $f(p) n^{c}$ and $f(q) n^{c}$ algorithms.

