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Repetition of Dijkstra

Some repetition...

Dijkstra((V ,E ),w , s, t)

1 for each v ∈ V do d(v)←∞
2 d(s)← 0

3 initialize priority queue Q with v ∈ V and priorities d(v)

4 while priority queue Q is not empty

5 u ← remove node with smallest d(u) in Q

6 if u = t return

7 for each (u, v) ∈ E

8 Relax(u, v ,w)
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Repetition of Dijkstra

Relaxation step

Relax(u, v ,w)

1 if d(v) > d(u) + w(u, v)
2 then d(v)← d(u) + w(u, v)
3 p(v)← u
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Basic heuristics

For the single pair shortest path problem, 2 techniques will be
presented:

1 Bidirectional search
2 Goal-Directed search

First one can be used for arbitrary graphs, second one only for
plane graphs.
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Bidirectional search

After all Dijkstra iterations, for every node u not inside Q,
d(u) is the length of the shortest s-u-path.

At the same time we could execute another Dijkstra on the
graph with reversed arcs. Now we have the length of the
shortest v-t-path for each node v not in this second priority
queue too.

When a node gets gets outside both priority queues, we know
the shortest path (on white board).

A degree of freedom in this method is the choice whether a
forward or backward iteration is executed.

Simply alternate or choose the one with lower minimum d in
the queue are examples of strategies.

Jesper Nederlof Faster shortest path algorithms, part 1



Introduction
Basic heuristics

Geometric containers
Conclusions

Bidirectional search
Goal-Directed search

Goal-Directed search

Example with the weight function of an edge its length.

Assign to each node a potential p, in our case the euclidean
distance to t.

Use an adjusted weight function
w ′(u, v) = w(u, v)− p(u) + p(t)

w ′ never gets negative due to the triangle inequality.

Use Dijkstra with the new weights.

Gives same shortest path.

Should terminate faster in most cases.
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A special situation

Central server has to answer a huge number of on-line queries
asking for best routes in a very large, plane network.

Only linear storage is feasible.

Main goal is to minimize the response time for answering the
queries.

Applications in route planning systems for private transport,
public transport or web searching etc.

Special case of single pair shortest path on a directed graph.

If edges of negative weight exist, use the algorithm of Johnson
to make them positive (this could take a while).

So we only have positive weights.
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Geometric containers: The idea

Observation

An edge that is not the first edge on a shortest path to the target
can be safely ignored in any shortest path computation to this
target.

Definition

Let S(u, v) be the set of nodes x for which the shortest u-x-path
starts with edge (u, v).

Now we can adjust Dijkstra’s algorithm such that only edges
(u, v) with t ∈ S(u, v) are considered.
But unfortunately, checking whether a target is in S(u, v)
takes O(log n) (an array based approach takes too much
memory).
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Containers

A container C (u, v) is some kind of geometric object which at
least has to contain S(u, v)

We will use containers that can be described with
constant-sized information and have a constant-time point
containment check.
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The algorithm: Small adjustment to Dijkstra’s algorithm

DijkstraWithPruning((V ,E ),w , s, t)

1 for each v ∈ V set d(u)←∞
2 d(s)← 0

3 initialize priority queue Q with v ∈ V and priorities d(v)

4 while priority queue Q is not empty

5 u ← node with smallest d(u) in Q

6 if u = t return

7 for each (u, v) ∈ E

8 if t ∈ C (u, v)

9 Relax(u, v ,w)
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Computing S: Larger adjustment to Dijkstra’s algorithm

A(v) stores the first edge in a shortest s-v-path

DijkstraForComputingS((V ,E ),w)

1 for each s ∈ V

2 for each v ∈ V set d(u)←∞
3 d(s)← 0

4 initialize priority queue Q with v ∈ V and priorities d(v)

5 while priority queue Q is not empty

6 u ← node with smallest d(u) in Q

7 if u 6= s enlarge S(A(v)) to contain u

8 for each (u, v) ∈ E

9 Relax2(u, v ,w)
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Relaxation step

Relax2(u, v ,w)

1 if d(v) > d(u) + w(u, v)

2 then d(v)← d(u) + w(u, v)

3 p(v)← u

4 if u = s

5 A(v)← (s, v)

6 else

7 A(v)← A(u)

Jesper Nederlof Faster shortest path algorithms, part 1



Introduction
Basic heuristics

Geometric containers
Conclusions

A special situation
The idea
The algorithm
Computing S
Performance

Computing C

Because
∑

(u,v)∈E |S(u, v)| ≤ n, all sets S can be stored in
memory.

Multiple kinds of shapes for the containers have been studied
extensively.

The simple bounding box seems to be one of the best.

For each (u, v), the smallest bounding box C containing all
nodes S(u, v) can easily be computed.
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Performance bounding box container
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Performance bounding box container

In some experiments, the discussed method seems to be 20
times faster than Dijkstra on average.

This is based on graphs with 400 to 50000 nodes.
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Combining techniques

Most of the techniques can be combined, for example
directional search and geometric containers.

Store for each edge (u, v) all t nodes for which the shortest
u-t-path starts with edge (u, v) as before.

Also store for each edge (u, v) all s nodes for which the
shortest s-v-path ends with edge (u, v).

With this information, it is possible to update containers when
an edge weight is adjusted.
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Conclusions

Several techniques can be used to speedup Dijkstra’s
algorithm.

Some can be applied to arbitrary graphs, other ones only in
certain scenarios.

’Faster shortest path algorithms, part 2’ will be about another
speed technique for the same situation.
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