Faster shortest path algorithms, part 1

Jesper Nederlof

10 October 2007

Outline

(1) Introduction

- Repetition of Dijkstra
(2) Basic heuristics
- Bidirectional search
- Goal-Directed search
(3) Geometric containers
- A special situation
- The idea
- The algorithm
- Computing S
- Performance
(4) Conclusions

Some repetition...

Dijkstra $((V, E), w, s, t)$

1 for each $v \in V$ do $d(v) \leftarrow \infty$
$2 \quad d(s) \leftarrow 0$
3 initialize priority queue Q with $v \in V$ and priorities $d(v)$
4 while priority queue Q is not empty
$5 \quad u \leftarrow$ remove node with smallest $d(u)$ in Q
6 if $u=t$ return
7 for each $(u, v) \in E$ $\operatorname{Relax}(u, v, w)$

Relaxation step

$\operatorname{Relax}(u, v, w)$
1 if $d(v)>d(u)+w(u, v)$
2 then $d(v) \leftarrow d(u)+w(u, v)$
$3 \quad p(v) \leftarrow u$

(a) Relax lowers $d(v)$

$\operatorname{Relax}(u, v, w)$

(b) Relax doesn't lower $d(v)$

Basic heuristics

- For the single pair shortest path problem, 2 techniques will be presented:
(1) Bidirectional search
(2) Goal-Directed search
- First one can be used for arbitrary graphs, second one only for plane graphs.

Bidirectional search

- After all Dijkstra iterations, for every node u not inside Q, $d(u)$ is the length of the shortest s-u-path.
- At the same time we could execute another Dijkstra on the graph with reversed arcs. Now we have the length of the shortest v-t-path for each node v not in this second priority queue too.
- When a node gets gets outside both priority queues, we know the shortest path (on white board).
- A degree of freedom in this method is the choice whether a forward or backward iteration is executed.
- Simply alternate or choose the one with lower minimum d in the queue are examples of strategies.

Goal-Directed search

- Example with the weight function of an edge its length.
- Assign to each node a potential p, in our case the euclidean distance to t.
- Use an adjusted weight function
$w^{\prime}(u, v)=w(u, v)-p(u)+p(t)$
- w^{\prime} never gets negative due to the triangle inequality.
- Use Dijkstra with the new weights.
- Gives same shortest path.
- Should terminate faster in most cases.

A special situation

- Central server has to answer a huge number of on-line queries asking for best routes in a very large, plane network.
- Only linear storage is feasible.
- Main goal is to minimize the response time for answering the queries.
- Applications in route planning systems for private transport, public transport or web searching etc.
- Special case of single pair shortest path on a directed graph.
- If edges of negative weight exist, use the algorithm of Johnson to make them positive (this could take a while).
- So we only have positive weights.

Geometric containers: The idea

Observation

An edge that is not the first edge on a shortest path to the target can be safely ignored in any shortest path computation to this target.

Definition

Let $S(u, v)$ be the set of nodes x for which the shortest u-x-path starts with edge (u, v).

- Now we can adjust Dijkstra's algorithm such that only edges (u, v) with $t \in S(u, v)$ are considered.
- But unfortunately, checking whether a target is in $S(u, v)$ takes $O(\log n)$ (an array based approach takes too much memory).

Containers

- A container $C(u, v)$ is some kind of geometric object which at least has to contain $S(u, v)$
- We will use containers that can be described with constant-sized information and have a constant-time point containment check.

The algorithm: Small adjustment to Dijkstra's algorithm

DijkstraWithPruning $((V, E), w, s, t)$

1 for each $v \in V$ set $d(u) \leftarrow \infty$
$2 \quad d(s) \leftarrow 0$
3 initialize priority queue Q with $v \in V$ and priorities $d(v)$
4 while priority queue Q is not empty
$5 \quad u \leftarrow$ node with smallest $d(u)$ in Q
6 if $u=t$ return
7 for each $(u, v) \in E$
8 if $t \in C(u, v)$

9
$\operatorname{Relax}(u, v, w)$

Computing S: Larger adjustment to Dijkstra's algorithm

$A(v)$ stores the first edge in a shortest s - v-path
DijkstraForComputingS $((V, E), w)$
1 for each $s \in V$
2 for each $v \in V$ set $d(u) \leftarrow \infty$
$3 \quad d(s) \leftarrow 0$
4 initialize priority queue Q with $v \in V$ and priorities $d(v)$
5 while priority queue Q is not empty
$6 \quad u \leftarrow$ node with smallest $d(u)$ in Q
7 if $u \neq s$ enlarge $S(A(v))$ to contain u
8 for each $(u, v) \in E$
9 $\operatorname{Relax} 2(u, v, w)$

Relaxation step

$\operatorname{ReLAX} 2(u, v, w)$
1 if $d(v)>d(u)+w(u, v)$
2 then $d(v) \leftarrow d(u)+w(u, v)$
3 $p(v) \leftarrow u$
4 if $u=s$
5

$$
A(v) \leftarrow(s, v)
$$

6 else
7

$$
A(v) \leftarrow A(u)
$$

Computing C

- Because $\sum_{(u, v) \in E}|S(u, v)| \leq n$, all sets S can be stored in memory.
- Multiple kinds of shapes for the containers have been studied extensively.
- The simple bounding box seems to be one of the best.
- For each (u, v), the smallest bounding box C containing all nodes $S(u, v)$ can easily be computed.

Introduction Basic heuristics Geometric containers

Conclusions

Performance bounding box container

Performance bounding box container

- In some experiments, the discussed method seems to be 20 times faster than Dijkstra on average.
- This is based on graphs with 400 to 50000 nodes.

Combining techniques

- Most of the techniques can be combined, for example directional search and geometric containers.
- Store for each edge (u, v) all t nodes for which the shortest u-t-path starts with edge (u, v) as before.
- Also store for each edge (u, v) all s nodes for which the shortest s - v-path ends with edge (u, v).
- With this information, it is possible to update containers when an edge weight is adjusted.

Conclusions

- Several techniques can be used to speedup Dijkstra's algorithm.
- Some can be applied to arbitrary graphs, other ones only in certain scenarios.
- 'Faster shortest path algorithms, part 2' will be about another speed technique for the same situation.

References

- D. Wagner, T. Willhalm, C. Zaroliagis. Geometric containers for efficient shortest-path computation, Journal of Experimental Algorithms 10, 2005, 1.3.
- D. Wagner, Speed-Up Techniques for Shortest-Path Computations, Proceedings STACS 2007.

