Faster shortest path algorithms, part 2

Jesper Nederlof

12 October 2007

Jesper Nederlof Faster shortest path algorithms, part 2

Outline

Introduction

- Problem definition
- Usual approach

2 Highway networks

- The idea
- Notation
- Creation
- 3 Highway hierarchy
 - The 2-core of a graph
 - Contracted highway network
 - Highway hierarchy
 - Querying Highway hierarchy

Conclusions

Problem definition Usual approach

The problem

- A very large road network is given.
- Weight on edges could be distance, but also could be traveling time for example.
- We have to answer single pair shortest path queries very fast.
- Preprocessing is allowed, only linear storage available.
- We assume shortest paths are unique.

Problem definition Usual approach

Usual approach

- Most commercial systems use some bidirectional search.
- Search from the source and target within a certain radius (for example 30 km), considering all roads
- Continue the search within a larger radius (for example 100 km), considering only national roads and highways.
- Continue the search, only considering highways.
- This is fast but not exact.
- The method which we will discuss does look like this, but uses a careful definition of different levels of roads.
- Because of this, this method will give an optimal route.

The idea Notation Creation

The idea

- We want to use some kind of local search, in which we only look to the H closest nodes (not equal to the source), where H is an tuning parameter.
- After this local search we want to switch over into a *highway network* that is much smaller.

The idea Notation Creation

Some notation...

- The distance between nodes x and v, d(x, v), is the length of the shortest x-v-path.
- The neighborhood of a node x (or the set of nearest neighbors), N_H(x), is the set of H+1 nodes v with the smallest d(x, v) (we assume there's only one).
- So after H + 1 removals of nodes from Q in Dijkstra's algorithm from a node s, all nodes N_H(x) are outside Q (because all nodes v are removed from Q in order of ascending d(s, v)).
- Because H will be fixed during runtime, most of the times we will forget it and simply use $\mathcal{N}(\cdot)$

The idea Notation Creation

Formalization

Highway network

For a given parameter H (the neighborhood size), $G_1 = (V_1, E_1)$ is the highway network of a graph G = (V, E), with:

- E₁ is the set of edges (u, v) ∈ E that appear in a shortest path (s,..., u, v,..., t) such that v ∉ N_H(s) and u ∉ N_H(t).
- V₁ is the maximal subset of V such that G₁ contains no isolated vertices.

The idea **Notation** Creation

An example

A simple example of a highway network. The highway edges are highlighted. The weight of an edge is the length of the line segment that represents the edge in this figure. The neighbourhood size H is 3.

000

The idea **Notation** Creation

Another example

The highway network of Europe, clipped by a bounding box around Karlsruhe. The highway edges are highlighted.

The creation of a highway network

For each $s_0 \in V$, do the following:

• Phase 1: Construct a partial shortest path tree with *s*₀ as source.

• This tree will be such that all leaves are "sufficiently" far away.

• Phase 2: Select the highway edges from this tree and add them to the resulting edge set.

Phase 1: Partial shortest path tree

 s_1 is the second node one the shortest path from s_0 to u.

DIJKSTRA((V, E), w, s)

- 1 for each $v \in V$ do $d(v) \leftarrow \infty$
- 2 make s active
- $3 \quad d(s) \leftarrow 0$
- 4 initialize priority queue Q with $v \in V$ and priorities d(v)
- 5 while there are any active nodes left in priority queue Q
- 6 $u \leftarrow$ remove node with smallest d(u) in Q
- 7 **if** $|\mathcal{N}(s_1) \cap \mathcal{N}(u)| \leq 1$ **then** make *u* passive
- 8 for each $(u, v) \in E$
- 9 RELAX2(u, v, w)

The idea Notation Creation

Relaxation step

Relax2(u, v, w)

1	if $d(v) > d(u) + w(u, v)$
2	then $d(v) \leftarrow d(u) + w(u, v)$
3	$p(v) \leftarrow u$
4	if u is passive
5	make v passive
6	else
7	make v active

H is 3. An SSSP search is performed from s_0 . The abort criterion applies three times: the involved nodes s_1 and p and the corresponding neighbourhoods are marked in cyan, magenta, and brown, respectively. In the brown case, the intersection of the concerned neighbourhoods contains exactly one element; in the other two cases, the intersections are empty. All edges that belong to s_0 's partial shortest path tree are coloured: edges that leave active nodes are blue, edges that leave passive nodes are green.

イロン イボン イヨン イヨン ヨ

The idea Notation Creation

Second phase: Select highway edges

- Add all edges (u, v) to the result that lie on a path $\langle s_0, \ldots, u, v, \ldots, t_0 \rangle$ in the partial shortest tree *B* where t_0 is a leaf in *B*, $v \notin \mathcal{N}(s_0)$ and $u \notin \mathcal{N}(t_0)$.
- This can be done in $\mathcal{O}(|B|)$ time.

An example of Phase 2 of the construction. s_0 's partial shortest path tree has five leaves t_0 , which are marked in different colours. The edges that are added to E_1 are highlighted.

The idea Notation Creation

Correctness

Construction methods constructs highway graph

An edge $(u, v) \in E$ is added to E_1 by the construction algorithm \Leftrightarrow it belongs to a shortest path $\langle s, \ldots, u, v, \ldots, t \rangle$ and $v \notin \mathcal{N}(s)$ and $u \notin \mathcal{N}(t)$

- ⇒ : Each edge from the root (s₀) to a leaf (t₀) is a shortest path. Rest follows from specification of phase 2.
- \Leftarrow : The edge (u, v) will be added to the result when Phase 1 and 2 are executed from s_0 where $v \notin \mathcal{N}(s_0)$ and $d(s_0, v)$ is minimal.
 - B is the partial tree created in the iteration from s_0 .
 - If t is a leaf in B, phase 2 will add (u, v).
 - If t is an internal node in B, the shortest path can be extended to a leaf t_0 with $u \notin \mathcal{N}(t)$.
 - If t is not in B, it gets more complicated. We omit this case.

The 2-core of a graph Contracted highway network Highway hierarchy Querying Highway hierarchy

The 2-core of a graph

2-Core

The 2-Core of a graph is the maximal vertex induced subgraph with minimum degree 2.

- Can be found in $\mathcal{O}(m)$
- Each graph consists of its 2-core and attached trees.
- Attached trees are trees whose roots belong to the 2-core, but all other nodes don't.

The 2-core of a graph Contracted highway network Highway hierarchy Querying Highway hierarchy

The 2-core of a graph

The 2-core of the highway network and an attached tree whose root r belongs to the 2-core. Note that u does not belong to the 2-core although it has degree 3 in the highway network.

The 2-core of a graph Contracted highway network Highway hierarchy Querying Highway hierarchy

Contracted highway network

Line

A line is a path $\langle u_0, u_1, \ldots, u_k \rangle$ where the inner nodes u_1, \ldots, u_{k-1} have degree two.

Contracted highway network

From the highway network G_1 of G'_0 the contracted highway network G'_1 of G'_0 is obtained by taking the 2-core of G_1 , and, then, replacing all lines $\langle u_0, u_1, \ldots, u_k \rangle$ with an edge (u_0, u_k) .

The 2-core of a graph Contracted highway network Highway hierarchy Querying Highway hierarchy

The 2-core of the highway network from containing five lines. Both endpoints of a line are connected by an undirected shortcut. There is a directed shortcut from each inner node of a line to both endpoints.

The 2-core of a graph Contracted highway network Highway hierarchy Querying Highway hierarchy

The contracted highway network obtained from the highway network

Jesper Nederlof Faster shortest path algorithms, part 2

The 2-core of a graph Contracted highway network Highway hierarchy Querying Highway hierarchy

Highway hierarchy

Highway hierarchy

The highway hierarchy \mathcal{G} consists of G_0, G_1, \ldots, G_L , which can be constructed by iteratively taking the contract highway graph G'_{i+1} from G'_i .

- Denote with v_i the copy of v in G_i .
- On top of the edges from all graphs G₀, G₁, ... G_L directed edges (v_i, v_{i+1}) are added with weight 0.
- For all inner nodes of a line segment, we add shortcuts to its corresponding outer nodes.

The 2-core of a graph Contracted highway network **Highway hierarchy** Querying Highway hierarchy

Figure 4.1: A highway hierarchy $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ of the graph given in Fig. 2.4 consisting of two levels: $G_0 = (V_0, E_0)$ ('level 0') and $G_1 = (V_1, E_1)$ ('level 1'). As in the previous examples, the neighbourhood size H is 3. Nodes and horizontal edges in level 0 are plotted in grey. There are directed vertical edges from level 0 to level 1. Horizontal edges in level 1 are red. The nodes in level 1 are coloured by type: tree nodes, line nodes, and nodes that belong to the core $G'_1 = (V'_1, E'_1)$. $u_0 \in V_0$ and $u_1 \in V_1$ are copies of the node $u \in V$. $(u_0, v_0) \in E_0$ and $(u_1, v_1) \in E_1$ are copies of the edge $(u, v) \in E$.

The 2-core of a graph Contracted highway network Highway hierarchy Querying Highway hierarchy

Querying Highway hierarchy

Bidirectional search

- With bidirectional search we only know the shortest path when forward and backward steps meet, if all nodes which are not considered yet have a larger distance than those who are.
- Doesn't work right away, some additional work has to be done.
- The intuition behind the 2-core and line-replacement reductions is:
 - Attached trees and inner nodes of line will only be visited in a shortest path near the end or the beginning.
 - If at the beginning, this part of the path will be found by the forward search in a more detailed graph.
 - If at the end, this part of the path will be found by the backward search in a more detailed graph.

Results

		USA	Europe	Germany
	#nodes	24 278 285	18 029 721	4 345 567
innut	#edges	29 106 596	22 217 686	5 446 916
mput	#degree 2 nodes	7 316 573	2 375 778	604 540
	#road categories	4	13	13
paramators	average speeds [km/h]	40-100	10-130	10-130
parameters	Н	225	125	100
agentitian	CPU time [h]	4.3	2.7	0.5
construction	#levels	7	11	11
	CPU time [ms]	7.04	7.38	5.30
query	#settled nodes	3 912	4 065	3 286
	main memory usage [MB]	2 443	1 850	466 (346)

Conclusions

- Appropriate definition of a highway resulted in an optimal algorithm.
- Iteratively simplifying the road network resulted in fast queries.
- Bidirectional search is really useful.
- If time left: Demo!
- Questions?

References

• 'Fast and Exact Shortest Path Queries Using Highway Hierarchies', Dominik Schultes, MSc. Thesis , July 2005, http://algo2.iti.uka.de/schultes/hwy/