Exponential Time Paradigms Through the
Polynomial Time Lens*

Andrew Drucker!, Jesper Nederloff?, and Rahul Santhanam?3

1 Computer Science Department, University of Chicago, USA.
andy.drucker@gmail.com

2 Department of Mathematics and Computer Science, Eindhoven University of
Technology, The Netherlands. J.Nederlof@tue.nl

3 Department of Computer Science, University of Oxford, United Kingdom.
rahul.santhanam@cs.ox.ac.uk

—— Abstract

We propose a general approach to modelling algorithmic paradigms for the exact solution of
NP-hard problems. Our approach is based on polynomial time reductions to succinct versions

of problems solvable in polynomial time. We use this viewpoint to explore and compare the
power of paradigms such as branching and dynamic programming, and to shed light on the true
complexity of various problems.

As one instantiation, we model branching using the notion of witness compression, i.e., re-
ducibility to the circuit satisfiability problem parameterized by the number of variables of the
circuit. We show this is equivalent to the previously studied notion of ‘OPP-algorithms’, and pro-
vide a technique for proving conditional lower bounds for witness compressions via a constructive
variant of AND-composition, which is a notion previously studied in theory of preprocessing. In
the context of parameterized complexity we use this to show that problems such as PATHWIDTH
and TREEWIDTH and INDEPENDENT SET parameterized by pathwidth do not have witness com-
pression, assuming NP ¢ coNP/poly. Since these problems admit fast fixed parameter tractable
algorithms via dynamic programming, this shows that dynamic programming can be stronger
than branching, under a standard complexity hypothesis. Our approach has applications outside
parameterized complexity as well: for example, we show if a polynomial time algorithm outputs
a maximum independent set of a given planar graph on n vertices with probability exp(—n'~¢)
for some € > 0, then NP C coNP/poly. This negative result dims the prospects for one very
natural approach to sub-exponential time algorithms for problems on planar graphs.

As two other illustrations (more exploratory) of our approach, we model algorithms based
on inclusion-exclusion or group algebras via the notion of "parity compression", and we model a
subclass of dynamic programming algorithms with the notion of "disjunctive dynamic program-
ming". These models give us a way to naturally classify various parameterized problems with
FPT algorithms. In the case of the dynamic programming model, we show that INDEPENDENT
SET parameterized by pathwidth is complete for this model.

1998 ACM Subject Classification F.2.0. Analysis of Algorithms and Problem Complexity

Keywords and phrases exponential time paradigms, branching, dynamic programming, lower
bounds

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.[183]

* This work was partly done while the authors were visiting the Simons Institute for the Theory of
Computing during the program ‘Fine-Grained Complexity and Algorithm Design’ in the fall of 2015.

T Funded by the NWO VENI project 639.021.438.

¥ Supported by the European Research Council under the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013)/ERC Grant Agreement no. 615075

© Andrew Drucker, Jesper Nederlof and Rahul Santhanam;
Bv licensed under Creative Commons License CC-BY
24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. [183]; pp. [183]:1-[183]:29

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.[183]
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

[183]:2

Exponential Time Paradigms Through the Polynomial Time Lens

1 Introduction

The successes of theoretical computer science have often been driven by simple but gen-
eral algorithmic approaches, or paradigms, leading to efficient algorithms in many different
application domains. Indeed, paradigms such as divide-and-conquer, branching, dynamic
programming and linear programming have been applied over and over to design algorithms.

A natural question that arises is to quantify the power and limitations of a given algo-
rithmic paradigm. Doing so may have several benefits. It can help us understand what
makes the paradigm effective. It can make algorithm design and analysis less ad hoc, with
greater clarity about when and for which problems the paradigm is relevant. It can also
enable us to compare various algorithmic paradigms with each other in terms of their power
and usefulness. A crucial challenge in studying the power of algorithmic paradigms is the
modelling question. We need a modelling framework which is rich enough to capture exist-
ing, successful algorithms within the paradigm. On the other hand, we need the modelling
framework to be meaningfully restricted, so that we can prove interesting things about these
models and the limits of their power. These goals are often in tension.

We aim to model exponential time algorithms. Understanding what can be computed in
exponential time seems to be harder than understanding what can be computed in polyno-
mial time, and less is known. In particular, showing general exponential-time lower bounds
based on standard hypotheses about polynomial-time computation (for example, the hy-
potheses that P # NP or that the Polynomial Hierarchy is infinite) seems out of reach.
We propose to bypass this issue by arguing that several specific, established algorithmic
paradigms can be modelled as polynomial-time reductions to (succinct) problems, so that
limitations to their power may follow from these kinds of traditional hypotheses.

Approaches to algorithmic modelling can be broadly classified into syntactic and semantic
approaches. Syntactic approaches attempt to faithfully represent the step-by-step operation
of algorithms conforming to the method. Examples include the modelling of 1. DPLL algo-
rithms by proof systems such as Resolution, 2. backtracking and dynamic programming by
certain kinds of branching programs [1], 3. dynamic programming by feasible dominance re-
lations [22], 4. linear programming by extended formulations [9]. These approaches, though
natural, suffer from some drawbacks. The first is their lack of flexibility—they can fail to
capture simple-looking variants of the method, e.g., the failure of proof systems to capture
randomization. Second, in the search for accuracy, the models produced by such approaches
can get quite complicated, which makes them hard to analyze.

Our models, in contrast, are semantic—we try to capture broad features of the algo-
rithmic method rather than trying to model it in a step-by-step fashion. In particular, we
allow arbitrary polynomial-time computations as constituent subroutines. This allows the
model to flexibly accommodate preprocessing and natural variants of the method, and makes
sense for the intended applications to exponential time algorithms. Our use of parameter-
ization enables us to distinguish between algorithmic methods in a way that a traditional
complexity-theoretic approach cannot. Although our approach is coarser than most syntac-
tic approaches, it is more uniform, applying to a variety of algorithmic methods at once,
and enables us to get useful information about the relative power of these methods.

Related Previous Work

A large number of problems have been shown to be Fized Parameter Tractable (FPT),
i.e., solvable in time O*(f(k)), where k is a parameter provided with each input, O*(-)
suppresses factors polynomial in the input size, and f(-) is some computable function. For

A. Drucker, J. Nederlof and R. Santhanam

many problems we now know essentially the optimal running time: there is an O*(f(k))
time algorithm and an O*(g(k)) time algorithm for any g(k) < f(o(k)) contradicts the
Exponential Time Hypothesis (ETH). For a few problems we even know that O*(f(k)) time
algorithms cannot be improved to O*(f (k:)l_Q(l)) time algorithm under stronger hypotheses
as the Strong ETH. In this work we are mostly interested in problems for which f(k) =
2poly(k) _ this is the case for most natural FPT parameterizations of N P-complete problems.

Kernelization. A natural paradigm to prove a problem is solvable in O*(ZPOIY(’“)) time is
preprocessing plus brute force: given an instance (x, k) of a parameterized problem, trans-
form it in polynomial time to an instance (z/, k) of the same problem where |2'|, k" are poly-
nomial in k (this part is called the polynomial kernel), and then solve the smaller instance
using brute-force search.! The power of polynomial kernelization has been extensively inves-
tigated, and is by now fairly well understood. For many parameterized problems, we have
either found a polynomial kernel, or showed they do not exist unless NP C coN P/poly;
the latter is proved by providing an (OR or AND)-composition, and appealing to results
in [4, 19, 16] and related works. This fits as an excellent starting point for our study since it
gives a lower bound for a class of exponential-time algorithms modelled via polynomial-time
reductions, and is conditional on an hypothesis concerning polynomial-time computation.

Branching. Another heavily used paradigm to solve a problem in O*(2p°13’(k)) time is that
of branching, or bounded search trees. A natural model for this paradigm is the model of
One-sided Probabilistic Polynomial (OPP) algorithms proposed by Paturi and Pudlak [33] in
their study of algorithms for satisfiability. OPP algorithms are polynomial-time algorithms
with one-sided error which never accept no-instances but only detect yes-instances with
small but non-trivial probability (called the success probability). An OPP algorithm with
success probability f(n) can be converted to a bounded-error randomized algorithm running
in time poly(n)/f(n) just by taking the OR of f(n) independent trials. On the other hand if
an exponential-time algorithm can be thought of as traversing an exponential-size recursion
tree which performs polynomial-time checks at leaves and returns true if at some leaf true
is returned, then we can cast this as an OPP algorithm provided we are able to sample
leaves of the branching tree in an efficient, nearly uniform way (in [33], this observation was
attributed to Eppstein [17]). We would like to remark that OPP is more powerful than one
might think at first sight as it also directly captures, for example, Schoning’s algorithm [36].

Concerning lower bounds, Paturi and Pudlak [33] showed that OPP algorithms with
success probability significantly better than 2" for circuit satisfiability on n variables would
have unlikely consequences. Particularly relevant for our work is work by Drucker [15]
showing a 2 n'"¢ upper bound of OPP algorithms’ success probability for 3-CNF-SAT (for
any € > 0), assuming NP ¢ coNP/poly.

Several closely-related formalisms of branching algorithms have been proposed in the
literature [6, 35, 40]. In the context of parameterized complexity, Marx proposed a study
of branching [29, 30] using a model ‘BFPT’ of branching FPT algorithms.? Also relevant is
work of Dantsin and Hirsch [13], which discusses a notion closely related to our notion of
witness compression in the context of exact algorithms for Satisfiability, and provides lower
bounds conditioned on ETH.

L That is, try all bit-strings and see if a certificate arises.
2 That turns out to be equivalent to OPP algorithms with success probability 2-0),

[183]:3

ESA 2016

[183]:4

Exponential Time Paradigms Through the Polynomial Time Lens

Our Contribution

In this work, we argue that many contemporary exponential-time algorithms can be rewrit-
ten as polynomial-time reductions to succinct version of problems in P, and we also give
several concrete results on the applicability of specific algorithmic paradigms to different
problems. We outline these results next.

Branching. Our main technical contributions address branching algorithms as modelled
by OPP algorithms or equivalently witness compressions (defined below). Building on ma-
chinery developed by Drucker [15] we give lower bounds for constructive OPP algorithms.
For instance:

» Theorem 1.1. If there is a polynomial time algorithm that, given a planar graph on n
vertices, outputs a mazimum independent set with probability exp(—O(n!'~¢)) for some e > 0,

then NP C coNP/poly.

Note that exp(O(y/n)) time algorithms are known (e.g. [26]), so this indicates that a rich
class of branching algorithms is incapable of exploiting planarity for solving independent
set. We also give a simple OPP algorithm that actually establishes success probability
exp(—0(n//log(n))).

Following a hashing lemma from [33], we observe that having an OPP algorithm with
success probability f(k) is equivalent to having a polynomial-time Monte Carlo reduction
from the problem at hand to CKT-SAT? with 1/log(f(k)) input gates. Thus in the generic
context sketched in this paper, the succinct problem corresponding to our model of branching
is CKT-SAT. If f(k) = 27P°Y(¥) there are witnesses for the problem of size poly(k) and we
will refer to the polynomial time Monte Carlo reduction as a polynomial witness compression
since a satisfying solution of the circuit that the reduction outputs can be seen as a witness for
the original instance to be a yes-instance. We call a witness compression Levin or constructive
if we can determine a solution of the original problem given a satisfying assignment of the
circuit.

We define a type of reduction we call ‘constructive AND-composition’ that is closely
related to AND-compositions from kernelization theory, and show that assuming NP ¢
coN P/poly no parameterized problem can both have a constructive AND-composition and
a Levin polynomial witness compression. As one particular application, we use this to
separate dynamic programming from branching (as modelled via OPP algorithms). Specif-
ically, we show that INDEPENDENT SET parameterized by pathwidth,* which is known to
be FPT via a dynamic programming algorithm, does not have Levin polynomial witness
compressions unless NP ¢ coNP/poly. An important question® is how fast this problem
can be solved using only polynomial space. In [27], the authors provide an O*(20®%"))-time
and polynomial-space algorithm based on a tradeoff between dynamic programming and
Savitch’s theorem, but the folklore dynamic programming algorithm uses O*(2P¥) time and
space (see also Section E). Our results thus indicate that branching algorithms of the OPP
type, a very natural class of polynomial space algorithms, will not be useful here.

We emphasize that the model of OPP algorithms and witness compressions are powerful
by observing that problems such as STEINER TREE, LONG PATH and DIRECTED FEED-

3 Refer to Section 2 for a definition.
4 That is, we assume a path decomposition of width pw is given as input.
5 This question first appeared in print in [27], but was explicitly asked before at least in [31].

A. Drucker, J. Nederlof and R. Santhanam

BACK VERTEX SET (DFVS) do have polynomial witness compressions as a consequence of
methods from previous works.

Kernelization. The above results on branching have a number of consequences for kernel-
ization theory. To explain these, let us first stress that it seems that if a problem has an
AND-composition it seems very likely it also has an constructive AND-composition since all
known AND-compositions are known to be constructive.

There has been interest recently in relaxed versions of kernelization, such as OR-kernels,
where rather than computing one small instance from the initial instance, we compute a list
of instances, at least one of which is in the language if and only if the original instance was.
It is easy to see that a polynomial witness compression is a far reaching generalization of
OR-kernelization: if a problem has a OR-kernel the witness would indicate which output
of the OR-kernel is a yes-instance along with a certificate of this instance being a YES.
On the other hand, a problem as CKT-SAT with k& input variables is known to not have
polynomial kernelization assuming NP ¢ coNP/poly (see e.g., [14]) but trivially has a
polynomial witness compression. Our observation thus implies that problems cannot have
both constructive AND-compositions and OR-kernelizations simultaneously unless NP C
coN P/poly.

Our connection between constructive AND-composition and witness compressions com-
bined with the polynomial witness compressions for STEINER TREE, LONG PATH and DFVS
implies that these problems do not have constructive AND-compositions, which is a clear
indication that they do not admit AND-compositions as studied in kernelization theory.
We feel this is a useful insight especially for DFVS because the existence of a polynomial
compression for this is a major open problem [10], and since we currently only know how to
exclude polynomial compressions via AND- and OR-compressions our connection indicates
we probably should not look for AND-compressions.

Parity Compression. There are several other important paradigms that in many cases seem
essential to known algorithms for various problems, especially to obtain the best known
bounds on the function f(k). In [33], the authors mention as examples the paradigms
of exponential-time divide-and-conquer; inclusion-exclusion; dynamic programming; group
algebra; and Voronoi cell decomposition; and they argue that ‘OPP and its generalizations
could serve as an excellent starting point for the study of exponential-time algorithms for
NP-complete problems in general’, although they leave such generalizations unspecified.

We further explore this direction, using our unifying perspective via succinct parameter-
ized problems. Similar to witness compression, we define a notion of "parity compression"
corresponding to reducibility to the problem $CKT-SAT parameterized by the number of
variables. The idea here is that algebraic and inclusion-exclusion based approaches to FPT
algorithms often implicitly reduce the problem to a succinctly represented parity of expo-
nentially many input bits, i.e, an instance of @CKT-SAT. We illustrate this phenomenon
by capturing the LONG PATH and K-CYCLE problems in our model.

Disjunctive Dynamic Programming. We model a subclass of dynamic programming algo-
rithms which we refer to as "disjunctive dynamic programming". Intuitively, this corresponds
to dynamic programming tables whose entries are Boolean ORs of lexicographically-prior
entries. We model this class via reducibility to the problem CNF-REACH, an instance of
which is a directed graph succinctly encoded by a CNF, with the question being whether
there is a source-sink path of a prescribed length in the graph. The parameter is the number

[183]:5

ESA 2016

[183]:6

Exponential Time Paradigms Through the Polynomial Time Lens

of variables of the CNF. Essentially, the existence of a path corresponds to a "trace" of a
disjunctive dynamic programming algorithm with a YES answer.

More generally, one could study succinctness implemented by circuits rather than CNFs;
however, the choice of CNFs has a nice benefit: it allows us to find natural complete problems
for our model. Specifically, we show that INDEPENDENT SET parameterized by pathwidth is
complete for this model, thus in some sense dynamic programming is the "right" algorithmic
technique for this problem. The completeness of INDEPENDENT SET parameterized by
pathwidth may also be interpreted as another signal that polynomial space algorithms for
problems parameterized by pathwidth might be hard to find as they need to exploit the
succinctness given by the CNF representation or otherwise need to improve over Savitch’s
theorem for short reachability. Let us remark that related research has been proposed earlier:
the reduction as outlined here has been conjectured in the second author’s PhD-thesis [32],
and the aforementioned signal was remarked in [32, 2, 34]

Organization This work is organized as follows: in Section 2 we provide a few preliminar-
ies. Note that due to space constraints we do not cover basic definitions from parameterized
complexity such as definitions of fixed-parameter tractability that provide context for our
work; we refer the reader to a recent textbook [11]. Section 3 presents our main techni-
cal results, which are on branching algorithms. Section 4 introduces the model of parity
compression, Section 5 introduces the model of disjunctive dynamic programming and in
Section 6 we list a number of interesting directions for further research.

2 Preliminaries and Notation

For an integer p, [p] :={1,...,p}, and (f) denotes the family of size-p subsets of a set X.

Probabilistic Circuits. A probabilistic circuit is a (De Morgan) Boolean circuit C(z,r)
which, in addition to its input gates x € {0,1}", has a designated set of “randomness gates”
r € {0,1}P°¥(") We say such a circuit computes a function f(x) with success probability
p(n) if, for all = € {0,1}", Pr,.[C(x,r) = f(x)] > p(n). Here the probability is taken over a
uniform random setting to r. By Cook’s transformation, any polynomial time randomized
algorithm can be expressed as a (logspace-uniform) family of polynomial-size probabilistic
circuits.

Problem Definitions. PC' denotes the set of search problems whose solutions can be verified
in polynomial time (following [20]). For L C {0,1}*, x1 denotes the characteristic vector of
L. A parameterized problem is a set @ C {0,1}* x N.

We use the following notation to define (parameterized) (search) problems in NP or
PC: if k is some parameter of an unparameterized problem R, R/k denotes the associated
problem parameterized by k. When a problem has a natural search version, we will use this
to define it, as the decision version follows from the search version. We use Lg to denote
the decision version of a search problem). The following parameterized search problems
will be important for this paper:

CKT-SAT Parameter: n.
Instance: A Boolean circuit C on n variables.
Witness: An assignment x € {0,1}" such that C'(z) = 1.

(d)-CNF-SaT Parameter: n.

A. Drucker, J. Nederlof and R. Santhanam

Instance: A Boolean (d)-CNF-formula C' on n variables.
Witness: An assignment = € {0, 1}" such that C(x) = 1.

For any search problem R € PC, we define a search problem AND(R) as follows:
AND(R) Parameter: n.

Instance: Instances x1,...,2z; € {0,1}"

Witness: yi,...,y: such that (z;,y;) € R for every i.

Reductions. For search problems® Q,R € PC, a Levin reduction from @ to R consists
of two polynomial time algorithms, A; and As, such that (i) Jy : (x,y) € Q if and only
it 3y (A1(x),y') € R, (ii) if (A1(x),y’) € R, then (z,As(x,y")) € Q. A Monte Carlo
reduction from language L to language L’ is a randomized polynomial time algorithm that
takes z € {0,1}* as input and outputs y € {0,1}* such that (i) if z ¢ L then y ¢ L', (ii) if
x € L then Prly € L'] > 1/4. A Levin Monte Carlo reduction from search problem @ to
search problem R is a pair of two randomized polynomial time algorithms A and B with
the following properties: (i) A is a Monte Carlo reduction from Ly to L mapping z to 2/,
(ii) B takes as input z, ' and ¥, and if (2’,3’) € R, then with probability 1/4, B outputs
y such that (z,y) € Q.

Success Probability of Polynomial Time Algorithms. Let f : N x N — R. We say that
an algorithm solves a parameterized problem @ with success probability f, if given (x,k)
it returns NO if (z,k) ¢ Lo and YES with probability at least f(|z|,k) if (z,k) € Lg.
Moreover, if Q € PC, it finds solutions for Q with probability at least f if given (z, k) it
returns NO if (z,k) ¢ Lg and it returns a certificate for (x,k) € Lg with probability at
least f(|zl|, k), otherwise. Note that an algorithm finding solutions for) also solves Q.

By standard boosting arguments we see that if there is a polynomial time algorithm
solving @ or finding solutions for) with probability at least f, then for any polynomial p
there is also a polynomial time algorithm solving @ or finding solutions for () with probability
at least min{3, p(|z|)f(|z|,k)}. Therefore, if f(|z|, k) is 1/(poly(|z|)f(k)), we say it solves
or finds solutions for @) with probability at least f’(k) where f'(k) = f(1,k).

Non-deterministic Direct Product Reductions. For a function f : A — B and integer t,
we denote f®!: A — B to be the t-fold direct product of f, e.g., for x1,...,z; € A we let
[(z1, ... 2) = (f(21), ..., f(x¢)). The following result will be crucial for this work:

» Theorem 2.1 (Theorem 1.2 of [15]). Let f = {fn} be a family of Boolean functions on
N input bits, and suppose that f ¢ N P/poly N coN P/poly. Let 100 < t(N) < poly(N) be a
parameter and let {Cn}nso be any family of polynomial-size probabilistic circuits outputting
t(N) bits. Then for infinitely many choices of N and x € {0, 1}V**N)

Pr[Cy = f2'™) (2)] < exp(—Q(¢(N)). (2.1)

3 Branching via OPP Algorithms and Witness Compressions
In this section we present our results on branching algorithms. We first formally define

the notion of constructive AND-compositions and state how they exclude OPP algorithms.

6 In this work, we implicitly cast a parameterized (search) problem as a normal (search) problem by
omitting the parameter where convenient.

[183]:7

ESA 2016

[183]:8

Exponential Time Paradigms Through the Polynomial Time Lens

Then we formally introduce witness compressions and show their close relation with OPP
algorithms. Subsequently, we point out implications to parameterized complexity.

Constructive AND-Compositions and Their Consequences.

» Definition 3.1 (Constructive AND-composition). Let L be a search problem, @ be a pa-
rameterized search problem and d be a constant. We say that a pair of algorithms (A,B) is
a constructive AND-composition of degree d from L into @ if the following conditions hold:

1. Ais given x1, s, ..., z; and outputs an instance (x,k) € ¥* x N in time polynomial in
22:1 |z;| such that k < poly(max; |z;|log(t)) and |z| < poly(max; |z;|log(t))t,

2. if for every i there exist y; such that (x;,y;) € L, then B does the following: B takes as
input 1,9, ..., 2, the instance (z, k), and a certificate y such that (z,k,y) € @, and
outputs y; for every i such that

PrVi: (z;,y;) € L] > exp (—poly (m?x |xl|) log(t)> .

This is closely related to AND-compositions as studied in kernelization complexity (see
e.g. [11, Section 15.1.3]): it is more strict in the sense that the reduction needs to be
Levin, but more general in the sense that we only need a weak probabilistic guarantee on
the output. We will see that even constructive AND-compositions of degree 1 with trivial
parameterizations have interesting consequences.

» Theorem 3.2. If there is a constructive AND-composition of degree d from a PC-hard
search problem L into a parameterized search problem Q, then no polynomial time algorithm
finds solutions for every instance (x,k) of Q with probability exp(—poly(k)|z|'/4=2MW) un-
less NP C coNP/poly.

As one concrete application we obtain the Theorem as mentioned in the introduction:

» Theorem 1.1 (restated). If there is a polynomial time algorithm that, given a planar
graph on n vertices, outputs a maximum independent set with probability exp(—O(n'~¢))
for some € > 0, then NP C coN P/poly.

Proof. Let L be the following search problem: given the adjacency list of a planar graph
G and integer 6, find an independent set of G of size at least §. The decision variant of
this problem NP-complete and by inspecting the known reductions, the problem is also
seen to be PC-complete. Let @ be L with a trivial parameterization (e.g., the parameter
equals 1). We now give a constructive AND-composition of degree 1 from L to Q. Given
instances (G1 = (V4, E1),01),...,(Gy = (W, Et), 6;), create an instance (G,0*) of @ where
G is the disjoint union of Gy,...,G; (i.e. it has each graph G; as a connected component
in it), and 6* is picked uniformly at random from {1,.. ~aZ§=1 |Vil}. We see that with
probability 1/ Z’;:l |Vi] > exp (—poly (max; |z;]) log(t)), we have that 6* equals the size
of the maximum independent set. Moreover, if we are given a maximum independent set
of G, its intersection with every component must be a maximum independent set in that
component so if all instances are YES instances we find maximum independent sets of size
at least 0; in G; for every i. Since (G,) is represented with poly(max; |V;|)tlog(t) bits,
we therefore found a constructive AND-composition of degree 1, and no polynomial time
algorithm finds solutions for @ with probability exp(—|z|'~®®")) by Theorem 3.2. This
implies the statement since |z| is nlogn for n-vertex graphs. |

We remark the naive guessing procedure here is not optimal (the proof is in Appendix G):

A. Drucker, J. Nederlof and R. Santhanam

» Theorem 3.3. There exists a polynomial time algorithm that outputs a mazximum inde-
pendent set of a planar graph on n vertices with probability exp(—n/+/logn).

Witness Compressions. We will now give an equivalent interpretation of OPP algorithms
that paves the way for defining models of other paradigms in the next sections.

» Definition 3.4 ((Levin) Witness Compression). A (Levin) h(k, N)-witness compression for
a parameterized (search) problem @ is a (Levin) Monte-Carlo reduction from @ to CKT-SAT
that maps (z, k) with |x| = N to (y,n) with n < h(k,N).

Note that having a h(k, N)-witness compression is equivalent to having a h(k, N +1g(N))-
witness compression since we can brute-force over all assignments of lg(N) input bits in
polynomial time. We say a (Levin) h(k, N)-witness compression is polynomial if h(k, N) <
poly(k) (or equivalently poly(k) + log(N)). The following lemma shows the equivalence of
witness compression and OPP algorithms.

» Lemma 3.5. A parameterized (search) problem has a (Levin) h(k, N)-witness compression
if and only if there is a polynomial time algorithm solving it (respectively, finding solutions)
with success probability at least 2~ "*N),

The proof is postponed to Appendix A. The forward direction in both variants is immediate.
For the backward direction, we use the ‘Hash-Down lemma’ from [33] to prove both variants.
Our proof of the equivalence takes advantage of the fact that we allow randomized reductions
in the definition of witness compression. If we were to only allow deterministic reductions in
the definition, the equivalence would still hold under a sufficiently strong derandomization
hypothesis - we omit the details.

We emphasize the power of polynomial witness compression by revisiting a few FPT-
algorithms and observing that they give rise to efficient witness compressions. Marx [30]
observes that VERTEX COVER and FEEDBACK VERTEX SET have a witness compression
with h(k) linear. Here, we add a few non-trivial witness compressions to this list with h(k)
quasi-linear. The relevant problem statements and proof of the following theorem can be
found in Appendix B. All these results go via the connection from Theorem 3.5.

» Theorem 3.6. STEINER TREE and LONG PATH have Levin O(klog k)-witness compres-
sions, and DFVS has a Levin O(klog®(k))-witness compression.

Implications to Parameterized Complexity. As mentioned in the introduction, polynomial
witness compression appears significantly more powerful than polynomial kernelization. In-
deed if a problem has an OR-kernelization,” it is easily seen we have a polynomial witness
compression:

» Observation 3.7. If @ admits a polynomial (Levin) OR-kernelization to a problem in
NP, it admits a polynomial (Levin) witness compression.

On the other hand, let us remark here that there may be problems in NP that admit
polynomial compressions® but no polynomial witness compression: Wahlstrom [39] gives

7 Where rather than computing one small instance from the initial instance as in kernelization, we
compute a list of instances at least one of which is in the language if and only if the original instance
was, see e.g.[25] where the name ‘disjunctive kernelization’ was used.

A compression is a kernelization where the target problem might be different (and crucially here, not
even in NP).

[183]:9

ESA 2016

[183]:10 Exponential Time Paradigms Through the Polynomial Time Lens

an interesting polynomial compression of the K-cycle problem (see Appendix F for the
problem definition) to a language that is not in N P, and remarks that this seems to separate
polynomial kernelization from polynomial compression since it is not clear whether K-cycle
has polynomial witness compressions.

The above connection is relevant for kernelization complexity because Theorem 3.8 sug-
gests that parameterized problems with AND-compositions have no OR-kernelizations. An-
other interesting consequence obtained by combining Theorem 3.2 and Theorem 3.6 is (since
the problems at hand are easily seen to be PC-complete):

» Theorem 3.8. STEINER TREE, LONG PATH, and DFVS do not admit constructive AND-
compositions unless NP C coN P/poly.

As mentioned before, this is a useful fact especially for DFVS because the existence of
a polynomial compressions for this is a big open problem [10], and we currently only know
how to exclude polynomial compressions via AND- and OR-compressions Theorem 3.8. So
this indicates researchers attacking this open problem probably should not look for AND-
compressions.

Another useful implication concerns the following parameterized problem:

INDEPENDENT SET (IS/PwW) Parameter: pw
Instance: A graph G, path decomposition of G of width pw, integer 6.
Witness: An independent set of G of size at least 6.

As mentioned in the introduction, it is an important open question how fast this problem
can be solved using only polynomial space. We show that branching algorithms (which is a
subset of all polynomial space algorithms) are not useful here:

» Theorem 3.9. Suppose a polynomial time algorithm takes as input a path decomposition
of width pw of a graph G on n vertices, and outputs with probability exp(—poly(pw)n'~?M)
a mazimum independent set of G, then NP C coN P/poly.

Since the proof is very similar to the proof of Theorem 1.1, it is postponed to Appendix H.
Let us remark that several other interesting graph problems admit constructive AND-
compositions. For example, following Lemma 7 from [4] we have that

» Observation 3.10. Let L be a parameterized graph search problem such that for any pair
of graphs G; and Go, and integer k € N, (G1,k) € L A (Go,k) € L + (G1 U Ga, k) where
GG1 UG5 is the disjoint union of G7 and G5. Then L admits a constructive AND-composition
of degree 1.

Similar as in [4], this implies hardness for several problems. We refer to [4] for the
definitions of these problems since our only goal is to point out the applicability of our
framework.

» Theorem 3.11. No polynomial time algorithm finds solutions for any instance (z,k)
of CuTwiDTH, MODIFIED CUTWIDTH, PATHWIDTH, BRANCHWIDTH, SEARCH NUMBER,
GATE MATRIX LAYOUT, and FRONT SI1ZE with probability exp(—poly(k)|z|'~?M)) unless
NP ¢ coNP/poly.

Proof. Following [4], we have by Observation 3.10 that all the above problems admit con-
structive AND-compositions. By inspection it can be seen that the reductions from these
problems to CKT-SAT (which exist since all the above problems are NP-complete) are
all Levin reductions, thus all problems are PC-complete. The claim follows from Theo-
rem 3.2. <

A. Drucker, J. Nederlof and R. Santhanam

4 Parity Compression

As mentioned before, witness compression tightly captures a large part of contemporary
FPT-algorithms, but still far from all of them. Motivated by this, we propose the following
natural generalization of witness compression, based on the definition of witness compression
as a reduction to CKT-SAT. A parity compression is a polynomial time Monte Carlo
reduction from the problem at hand to the @CKT-SAT problem, defined as follows:

®CKT-SAT Parameter: n
Instance: A Boolean circuit C on n variables
Asked: Whether the parity of the size of the set {x € {0,1}" : C(x) = 1} is odd.

Analogous to witness compressions, we can interpret parity compressions as exponential
time algorithms by solving the resulting @CKT-SAT instance in time 2"|x\o(1) (the ana-
logue of witness compressions was to solve the CKT-SAT instance by simple brute-force
enumeration). By an easy application of the Isolation Lemma of [38], there is a polynomial
time Monte Carlo reduction from CKT-SAT to @CKT-SAT that increases the number of
input variables by O(polylog(|C|)). Thus parity compression is a generalization of witness
compression. No polynomial-time reduction in the reverse direction is known, and such a
reduction (even randomized) would imply a collapse of PH in light of Toda’s theorem [37].

While we are not yet able to show lower bounds for parity compressions since its study
is still in its infancy, we do argue in Appendix D that several interesting contemporary
algorithms (mainly, ones using inclusion/exclusion or group algebra) are exponential parities.
This motivates a very interesting future research direction:

» Open Problem 1. Find non-trivial evidence against a polynomial time Monte Carlo
reduction from CKT-SAT on n-variable circuits to ®CKT-SAT on n' circuits where n’ << n.

Another goal would be to further exclude more polynomial space paradigms that are able
to solve Independent Set parameterized by the pathwidth:

» Open Problem 2. Find evidence against a polynomial time Monte Carlo reduction from
IS/PW to @CKT-SAT where n = o(pw?).

5 Disjunctive Dynamic Programming

One natural other algorithmic paradigm unaddressed so far (as highlighted in Theorem 3.9
and Open Problem 2) is dynamic programming. We focus in this work on a subclass of
dynamic programming algorithms which we call ’disjunctive dynamic programming’ - this
corresponds to dynamic programming tables where the entries are Boolean ORs of previous
entries. Specifically, we say a disjunctive dynamic programming algorithm is a polynomial
time parameter reduction to the following problem:

CNF-REACH Parameter: n
Instance: A CNF-formula ¢ : {0,1}" — {0,1} with m clauses and n even, integer
¢ = poly(n).

Witness: z',...,z¢ € {0,1}"/? with ' = 0---0,2° = 1---1 and @(z’zt') = 1 for
every 0 <7</ —1.

[183]:11

ESA 2016

[183]:12 Exponential Time Paradigms Through the Polynomial Time Lens

In Appendix E.1 we show that IS/PW is almost equivalent to CNF-REACH? by giving
almost tight reductions between the two problems. Thus IS/PW can be seen as complete
for the class of problems efficiently solvable with disjunctive dynamic programming. We
feel such a reduction expresses the hardness of a problem typically solved with dynamic
programming better than e.g., a reduction to CNF-SAT or even CKT-SAT since these
problem do have small witnesses and polynomial-space algorithms. Next to Theorem 3.9,
this may be seen as additional evidence that finding fast space-efficient algorithms for IS /pw
might be very hard (e.g., we either need to exploit the succinct representation via CNF-
formula’s or find new algorithms for the directed reachability problem).

We also show that an algorithm for SET COVER is a disjunctive dynamic programming
algorithm: we reduce SET COVER to CNF-REACH in Appendix E.1.2.

6 Directions for Further Research

We conclude this paper with a few open questions. First, for several problems, the existence
of polynomial witness compression is open (see Appendix F for missing problem definitions):

» Open Problem 3. Do SUBSET SUM, KNAPSACK, KNAPSACK/WEIGHT-VALUE, K-CYCLE
or DISJOINT PATHS have polynomial witness compressions?

Note that currently, it is not clear whether there exists a parameterized problem that has
a polynomial compression but no polynomial witness compression, although as suggested
in [39] the K-CYCLE would be a good candidate for such a problem.

One algorithmic paradigm not addressed is exponential time divide and conquer [21],
which is also closely related to applications of Savitch’s Theorem as used by [27]:

» Open Problem 4. Is there a good model of exponential time divide and conquer based
on reductions to a succinct version of a natural problem? Can it solve IS/Pw in O*(2°F%"))
time?

Ambitiously, having finer-grained lower bounds would be very insightful:

» Open Problem 5. Can we rule out linear witness compressions for some problems with
quasilinear witness compressions under standard assumptions?

—— References

1 Michael Alekhnovich, Allan Borodin, Joshua Buresh-Oppenheim, Russell Impagliazzo,
Avner Magen, and Toniann Pitassi. Toward a model for backtracking and dynamic pro-
gramming. In 20th Annual IEEE Conference on Computational Complexity (CCC 2005),
11-15 June 2005, San Jose, CA, USA, pages 308-322. IEEE Computer Society, 2005.

2 Eric Allender, Shiteng Chen, Tiancheng Lou, Periklis A. Papakonstantinou, and Bangsheng
Tang. Width-parametrized SAT: time—space tradeoffs. Theory of Computing, 10:297-339,
2014.

3 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, New York, NY, USA, 1st edition, 2009.

4 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423-434, 2009.

9 Such a reduction was already conjectured in the PhD-thesis of the second author (32, Page 35]

A. Drucker, J. Nederlof and R. Santhanam

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial Optimization on Graphs of
Bounded Treewidth. The Computer Journal, 51(3):255-269, 2008.

Liming Cai and Jianer Chen. On the amount of nondeterminism and the power of verifying.
SIAM Journal on Computing, 26(3):733-750, 1997.

Arthur Cayley. A theorem on trees. In The Collected Mathematical Papers, volume 13,
pages 26-28. Cambridge University Press, 2009. Cambridge Books Online.

Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. J. ACM, 55(5), 2008.

Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Extended formulations in
combinatorial optimization. 4OR, 8(1):1-48, 2010.

Marek Cygan, Fedor Fomin, Bart M.P. Jansen, Lukasz Kowalik, Daniel Lokshtanov, Daniel
Marx, Marcin Pilipczuk, and Saket Saurabh Michal Pilipczuk. Open problems for fpt school
2014.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Déniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In FOCS, pages 150-159, 2011.

Evgeny Dantsin and Edward A. Hirsch. Satisfiability certificates verifiable in subexpo-
nential time. In Karem A. Sakallah and Laurent Simon, editors, Theory and Applications
of Satisfiability Testing - SAT 2011 - 14th International Conference, SAT 2011, Ann Ar-
bor, MI, USA, June 19-22, 2011. Proceedings, volume 6695 of Lecture Notes in Computer
Science, pages 19-32. Springer, 2011.

Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses. J. ACM, 61(4):23:1-23:27, 2014.

Andrew Drucker. Nondeterministic direct product reductions and the success probability
of SAT solvers. In 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 20138, 26-29 October, 2013, Berkeley, CA, USA, pages 736-745. IEEE Computer
Society, 2013.

Andrew Drucker. New limits to classical and quantum instance compression. SIAM J.
Comput., 44(5):1443-1479, 2015.

David Eppstein. Quasiconvex analysis of multivariate recurrence equations for backtracking
algorithms. ACM Trans. Algorithms, 2(4):492-509, October 2006.

Guy Even, Joseph Naor, Baruch Schieber, and Madhu Sudan. Approximating minimum
feedback sets and multicuts in directed graphs. Algorithmica, 20(2):151-174, 1998.

Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct
PCPs for NP. J. Comput. Syst. Sci., 77(1):91-106, 2011.

Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge Univer-
sity Press, 2008.

Yuri Gurevich and Saharon Shelah. Expected computation time for hamiltonian path
problem. SIAM J. Comput., 16(3):486-502, 1987.

Paul Helman. A common schema for dynamic programming and branch and bound algo-
rithms. Journal of the ACM, 36(1):97-128, 1989.

Illya V. Hicks, Arie M. C. A. Koster, and Elif Kolotoglu. Branch and tree decomposition
techniques for discrete optimization. Tutorials in Operations Research 2005, pages 1-19,
2005.

Ton Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in
Computer Science. Springer, 1994.

Stefan Kratsch. Recent developments in kernelization: A survey. Bulletin of the EATCS,
113, 2014.

[183]:13

ESA 2016

[183]:14 Exponential Time Paradigms Through the Polynomial Time Lens

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Richard J. Lipton and Robert Endre Tarjan. Applications of a planar separator theorem.
SIAM J. Comput., 9(3):615-627, 1980.

Daniel Lokshtanov, Matthias Mnich, and Saket Saurabh. Planar k-path in subexponential
time and polynomial space. In Petr Kolman and Jan Kratochvil, editors, Graph-Theoretic
Concepts in Computer Science - 37th International Workshop, WG 2011, Tepla Monastery,
Czech Republic, June 21-24, 2011. Revised Papers, volume 6986 of Lecture Notes in Com-
puter Science, pages 262-270. Springer, 2011.

Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. Linear time parameterized
algorithms for subset feedback vertex set. In Magnts M. Halldérsson, Kazuo Iwama, Naoki
Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming -
42nd International Colloguium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings,
Part I, volume 9134 of Lecture Notes in Computer Science, pages 935-946. Springer, 2015.
Déniel Marx. What’s next? reductions other than kernelization. Talk at WorKer 2010:
Workshop on Kernelization, Leiden, The Netherlands, 2010.

Déniel Marx. What’s next? future directions in parameterized complexity. In Hans L.
Bodlaender, Rod Downey, Fedor V. Fomin, and Déniel Marx, editors, The Multivariate
Algorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows on the Oc-
casion of His 60th Birthday, volume 7370 of Lecture Notes in Computer Science, pages
469-496. Springer, 2012.

Jesper Nederlof. Saving space by algebraization. Talks at seminars in Utrecht (January
8) and UiB (Februari 11), UiB ICT Research school (May 18), STOC, Dagstuhl ‘Exact
Complexity of NP-hard Problems’, 2010.

Jesper Nederlof. Space and Time Efficient Structural Improvements of Dynamic Program-
ming Algorithms. PhD thesis, University of Bergen, 2011. "http://www.win.tue.nl/
~jnederlo/PhDThesis.pdf".

Ramamohan Paturi and Pavel Pudldk. On the complexity of circuit satisfiability. In
Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of Com-
puting, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 241-250. ACM,
2010.

Michal Pilipczuk and Marcin Wrochna. On space efficiency of algorithms working on
structural decompositions of graphs. In Nicolas Ollinger and Heribert Vollmer, editors,
33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, February 17-
20, 2016, Orléans, France, volume 47 of LIPIcs, pages 57:1-57:15. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016.

Rahul Santhanam. On separators, segregators and time versus space. In Computational
Complexity, 16th Annual IEEE Conference on, 2001., pages 286—294, 2001.

Uwe Schoning. A probabilistic algorithm for k-sat and constraint satisfaction problems. In
40th Annual Symposium on Foundations of Computer Science, FOCS 99, 17-18 October,
1999, New York, NY, USA, pages 410-414. IEEE Computer Society, 1999.

Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput.,
20(5):865-877, 1991.

Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions. Theor.
Comput. Sci., 47(3):85-93, 1986.

Magnus Wahlstrém. Abusing the tutte matrix: An algebraic instance compression for the
K-set-cycle problem. In Natacha Portier and Thomas Wilke, editors, 30th International
Symposium on Theoretical Aspects of Computer Science, STACS 2013, February 27 - March
2, 2013, Kiel, Germany, volume 20 of LIPIcs, pages 341-352. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2013.

Ryan Williams. Inductive time-space lower bounds for sat and related problems. compu-
tational complexity, 15(4):433-470.

http://www.win.tue.nl/~jnederlo/PhDThesis.pdf
http://www.win.tue.nl/~jnederlo/PhDThesis.pdf

A. Drucker, J. Nederlof and R. Santhanam

A Proof of Lemma 3.5

We will need to recall the ‘Hash Down’ lemma from [33], along with the relevant terminology.

Let C be a circuit on n variables 1, ..., 7, and let S¢ C {0,1}" be the set of assignments
tox1,..., T, satisfying C. Let s < |log |S¢|] —2, and assume s > 0. Let desc be an encoding
of the description of C' and let m = |desc(C')|. Let

t= (t—n-l—l)- s totstosta, e 7tn—1> € {Oa 1}2"_17

and let T; be the Toeplitz matrix defined by ¢, i.e., T3(4,j) = t(;—; for 0 <i,j <n —1. For
w € {0,1}* and z € {0,1}" %, we define the column vector (w;z) to be the concatenation
of w and z. For w € {0,1}® and ¢ such that T} is invertible, we define

Jew(x) = T;l (w; x), Sparset’w(C)(x) = C(Jw(z))

» Lemma A.1 (Lemma 1 from [33]). If t,w are picked uniformly and independently at
random, C and Sparset’w(C) are equivalent with respect to satisfiability with probability at
least 1/4. Furthermore, Sparse’™ (C) can be constructed in time O(m) and its description
can be computed by a circuit of size O(m) given desc(C),t and w.

Proof of Lemma 3.5. We start with the first equivalence. The forward implication follows
easily since we can simply guess at random a satisfying assignment of the circuit C resulting
from the witness compression.

For the backward direction, assume we have a randomized polynomial time algorithm V'
that solves @ with success probability at least 27 (*) (which is without loss of generality since
we may dispense with factors inversely polynomial in the input size by using a polynomial
number of independent trials). Let r be the number of random bits used by V. With
standard techniques as used in Cook’s theorem, we can transform this algorithm into a
Boolean circuit C' on r variables such that C(y,...,y,) is equivalent to the outcome of
running A on the given instance with random bits y1,...,y,. It follows that the set S¢ C
{0,1}7 of assignments to 1, . . ., 4, satisfying C has the property |SC| > 27 /2"(*). Therefore,
we may set s = r — h(k) — 2, pick ¢ and w uniformly and independently at random and
construct a circuit Sparse”” (C) using Lemma A.1 that is equivalent to C' with respect to
satisfiability with probability at least 1/4. Now the claim follows as Sparse”* (C) is on at
most r — s = h(k) + 2 variables, and an equivalent circuit on h(k) variables can be found
just by brute-forcing over assignments to the first 2 variables.

We continue with the second equivalence. Again, the forward implication follows directly
since we can simply guess a satisfying assignment of the circuit C resulting from the witness
compression. The proof of the backward direction is also very similar to the backward
direction of the previous part, except now we need the fact that CKT-sSAT is PC-complete
and use Levin reductions to map the verifier V' to a circuit that outputs a witness with
probability 27" before we apply Lemma A.1. <

B Some Constructive Polynomial Witness Compressions.

In this section we will demonstrate the power of polynomial witness compression by re-
visiting some known algorithms and observe that they give rise to (quasi)-linear witness
compressions, thereby proving Theorem 3.6. We would like to stress that by no means these
results are surprising or require any new methods!®, but anyway provide descriptions for

10 And indeed, according to some anonymous reviewer these results are folklore.

[183]:15

ESA 2016

[183]:16 Exponential Time Paradigms Through the Polynomial Time Lens

completeness.
We study the following problems

LoNG PATH Parameter: k.
Instance: Graph G = (V, E) and integer k.
Waitness: A simple path of length k.

STEINER TREE Parameter: k.
Instance: Graph G = (V, E) and set of terminal vertices K C V with |K| = k and
integer 6.

Witness: A set S with K C S such that G[S] is connected and |S| < 6.

DIRECTED FEEDBACK VERTEX SET (DFVS) Parameter: k.

Instance: Directed graph G = (V, E), integer k.
Witness: A set X C F with |X| < k such that (V, E'\ X) is acyclic.

We will provide algorithms that find solutions with sufficiently good probability; the
statement of Theorem 3.6 follows directly from this by Lemma 3.5.

B.1 Longest Path

The color-coding technique directly applies here: Let G = (V,E) and let vq,...,v; be
the vertices visited in order by the simple path. For every vertex v € V assign a color
c(v) € {1,...,k} uniformly and independently at random. We see that

1

Fa

and given such a coloring ¢, it can be determined in linear time whether a path with con-

Pr[VlSiSkC(vi) = Z} =

secutive colors exists by a longest path computation in a directed acyclic graph.

B.2 Steiner Tree

Note that equivalently, we may look for a rooted tree T = (S, E’) with K C S C V and
E’' C E (to see this, simply pick E’ to be a spanning tree of G[S]). Note also that we may
assume that the set of leaves in this tree equals the set of terminals: We may replace every
terminal &’ in G with a vertex v and add &’ as a pendant vertex to it so terminals must be
in leaves, and if a leaf vertex in T is not a terminal we may always omit it.

We first guess the topology T" of the tree T obtained after vertices of degree two are
contracted: By Cayley’s formula [7], there are at most [!~2 different trees on [vertices and
since the number of vertices of T” is at most 2k, we have at most 20(*108() possibilities. It
is not hard to see that such trees can also be uniformly sampled in polynomial time.

Thus we may uniformly sample a tree T’ on at most 2k vertices and restrict our attention
to finding T whose topology is the given tree T'. To do this, use a polynomial time dynamic
programming algorithm, based on the following definition and recurrence: for a vertex u of
T’ and a vertex v € V define Afu,v] as

min{|E’| : T'[u] obtainable from (S’, E’) by unifying u,v and contracting degree-2 vertices}.
Then it is easy to see that

0, ifuisaleafin T/ and u = v
Alu,v] = < oo, ifuisaleafin 77 and u # v

Zle min, ey {Alc;, v'] + d(v,v")}, if u has children ¢q,...,¢p in T7,

A. Drucker, J. Nederlof and R. Santhanam

where T'[v'] denotes the subtree of T” rooted at v and d(v,v’) denotes the number of edges
on a shortest path from v to v’ in G.

The answer can now be computed as min,ecy{A[u,v]} where u is the root of T’, and it
is easy to in fact find a tree that implements this value.

B.3 Directed Feedback Vertex Set

In this section we revisit the proof of the result that DEVS/k is FPT. A large part of this
subsection directly follows parts of Chapeter 8 from [11]. We follow the notation that for a
graph G, V(@) and E(G) denote the vertex set and edge set respectively.

» Definition B.1. Let G be a directed graph. For disjoint sets X, Y C V(G), an (X,Y)-cut
is a set of edges C' C E(G) such that no vertex of Y is reachable from a vertex of X in G\ C.

» Definition B.2. Let G be a directed graph and let X, Y C V(G) be disjoint sets of vertices.
Let S C E(G) be an (X,Y)-cut and let R be the set of vertices reachable from X in G\ S.
We say that S is an émportant (X,Y)-cut if it is minimal and there is no (X, Y)-cut S’ with
|S’| <|S| such that R C R’, where R’ is the set of vertices reachable from X in G\ 5'.

The following is a mild variant of [11, Theorem 8.36], and was observed!! in [28, Lemma
1].

» Theorem B.3. There is a randomized polynomial time algorithm that takes as input a
directed graph G on n vertices and m edges, X, Y C V(G) and an integer k, and outputs a
set S C E such that for every important (X,Y)-cut S’ of size at most k, we have Pr[S’ =
S] >4k,

SKEW EDGE MuULTICUT Parameter: k.

Instance: Directed graph D = (V, A), vertices s1,..., S, t1,...,t¢ € V and integer k.

Witness: S C A such that |S| < k and (V, E'\ S) has no path from s; to t;, for any

1> 7.

To solve this problem, we require the following ‘pushing lemma for SKEW EDGE MUL-
TICUT’, is Lemma 8.40 from [11]:

» Lemma B.4. Let (D,s1,...,80,t1,...,t0,k) be an instance of SKEW EDGE MULTICUT.
If the instance has a solution S, then it has a solution S* with |S*| < |S| that contains an
important (s¢, {t1,...,te})-cut.

» Theorem B.5. There is a polynomial time algorithm that finds solutions for SKEW EDGE
MULTICUT with probability at least 47%.

Proof. Suppose the given instance is a yes-instance. Let i be the largest integer such that
there exists a path from s; to ¢; for some. If such an i does not exist, the instance is
trivially solvable. By Lemma B.4, there exists a witness S* that contains an important
(8iy{t1,...,te})-cut. Use Theorem ?? to guess such an important cut C' and then output
the union of this cut with the output of a recursive call on the graph (V,E \ C) with
parameter k — |C|. It is easy to see that this algorithm runs in (expected) polynomial time
and outputs a solution with probability at least 47*. |

DIRECTED FEEDBACK ARC SET COMPRESSION Parameter: k.

1'We thank an anonymous reviewer for pointing that this was explicitly proved in [28]

[183]:17

ESA 2016

[183]:18 Exponential Time Paradigms Through the Polynomial Time Lens

Instance: Directed graph G = (V, E), Feedback Vertex Set W C V and integer k.
Witness: A set S C E such that (V, E'\ S) is acyclic.

» Lemma B.6. There is a polynomial time algorithm that finds solutions for DIRECTED
FEEDBACK ARC SET COMPRESSION with probability at least 1/(|W |14F).

Proof. We uniformly guess one of the [IW|! orderings of [W| and denote it with w1, ..., wy.
Note that if a solution S exists, there must exist a topological ordering of (V, E'\ S) and the
probability that such an ordering induces wy, ..., w;y| on W is at least [W|..

We build a graph in the following way: replace every vertex w; with two vertices
si,t; and add an edge (¢;,s;) between them. We define Eyw = {(t;,s;) : 1 < i < |[W|}.
Then we replace every edge (a,w;) with (a,t;), every edge (w;,a) with (s;,a) and ev-
ery edge (w;,w;) with (s;,¢;). Let us define the SKEW EDGE MULTICUT instance as
(G', ((s15t1),- -, (8w, tywy)), k). The following claims from Lemma 8.43 in [11] establish a
connection between the solutions of this instance and our problem.

» Claim B.7. If there is a set S C E(G) of size at most k such that G\ S has a topological
ordering inducing the order ws,...,w)y |, then the SKEW EDGE MULTICUT instance has a
solution.

» Claim B.8. Given a solution S’ of the SKEW EDGE MULTICUT instance, one can find a
feedback arc set S of size at most k for G in polynomial time.

The lemma follows by applying the Algorithm from Theorem B.5 on the obtained SKEW
EDGE MULTICUT instance. |

DIRECTED FEEDBACK ARC SET (DFAS) Parameter: k
Instance: Directed graph G = (V, E), integer k.
Witness: A set S C A such that (V, E'\ S) is acyclic.

The following is due to Even et al. [18]:

» Theorem B.9. There is a polynomial time algorithm that, given a directed graph with a
feedback vertex set of size k, finds a feedback vertex set of size at most c- klog(k)log(log(k)),
for some absolute constant c.

Now we use the approximation scheme along the lines of Remark 5.3 in [8]:

» Theorem B.10. There is a polynomial time algorithm that finds solutions for DIRECTED
FEEDBACK ARC SET COMPRESSION with probability at least 1/O(2k108°(F) 4k).

Proof. Use Theorem B.9 to find an approximate directed feedback vertex set W. If W is
larger than c¢ - klog(k)log(log(k)), we may return NO. Otherwise, we can directly use the
algorithm of Lemma B.6. |

Now the main result from this section follows from an easy reduction:

Proof of Theorem 3.6. Given an instance G,k of DFVS, replace every vertex v with ver-
tices v;, and v,,; where v;, has as in-neighbors all in-neighbors of v and v;, has as out-
neighbors all out-neighbors of v and there is an arc from v;,, to v, to obtain graph G’. It
is easy to see that (G', k) is a yes-instance of DFAS if and only if (G, k) is a yes-instance of
DFVS. |

A. Drucker, J. Nederlof and R. Santhanam

C Proof of Theorem 3.2

The proof of this theorem crucially relies on Theorem 2.1. We will use the following straight-
forward lemma that was already used for a similar goal in [15]:

» Lemma C.1 ([15]). There is a deterministic polynomial algorithm that takes as input
descriptions of 3CNF formulas @1, ..., @y on disjoint sets of variables and an integer ¢ > 0
and returns a SCNF formula ¢’ that is satisfiable if and only if at least ¢ of the p;’s are
satisfiable. Moreover, ' contains designated variables s1,. .., sy such that 1. every satisfying
assignment of ¢’ sets at least ¢ of the variable sq,...,s, to 1, 2. and for each i € [b], if ¢
has a satisfying assignment with s; = 1 then ; is satisfiable. If p; has m; clauses then ¢’

has O(b+ >, mi) clauses.
Before we proceed with the proof, let us restate the theorem here for convenience:

» Theorem 3.2 (restated). If there is a constructive AND-composition of degree d from a PC-
hard search problem L into a parameterized search problem @, then no polynomial time algo-
rithm finds solutions for every instance (z, k) of Q with probability exp(—poly(k)|z|*/¢=D),
unless NP C coN P/poly.

Proof. Let f = xsonp.saT with respect to some fixed encoding of 3CNF-formulas. Since
3CNF-SAT is NP-complete and we assume NP ¢ coN P/poly we see that f ¢ NP/poly N
coNP/poly. Thus, by Theorem 2.1, it is sufficient to show that if a polynomial time al-
gorithm with success probability as stated exists, for some polynomially bounded function
t(N) we can construct an algorithm A such that for any N:

1. A accepts z1,...,7yn) € {0, 1}V as input,
2. A outputs in poly(ZéZl x;) time ¢ bits zq,..., 2 € {0, 1},
3. Pr[Vi_; : x; € 3CNF-SAT ¢ z; = 1] > exp(—o(t(N))).

The remainder of this proof is devoted to construct such an algorithm. Let ¢ = ¢(N),
and let ; be the 3CNF-formula represented by x;. The algorithm proceeds as follows:

1. Arbitrarily partition x1, ...,z into £ = [t/b] blocks By, ..., By of size at most b each.
2. For every i = 1,...,¢ do the following:

a. Uniformly pick an integer ¢; € [b].

b. Apply Lemma C.1 with formulas {¢;};ep, and ¢ = ¢; to obtain a formula /.

c. Use the Levin reduction implied by the PC-completeness'? of L to transform ¢! to an
instance x} of L.

3. Run the assumed constructive AND-composition of degree d from L into @) on the set of
instances 1, ..., 2, to obtain an instance (z, k) of Q.

4. Run the assumed algorithm to find with probability exp(—poly(k)|z|*/4=?M)) a string y
such that (z,k,y) € Q, if it exists.

5. Run algorithm B of the constructive AND-composition to retrieve y; such that

Pr[Vi: (z},y.) € L] > exp (—poly (m?x |x;\> log(t)) .

6. For every i = 1,...,/¢ do the following:

2 Confer Definition 2.8 of [20].

[183]:19

ESA 2016

[183]:20 Exponential Time Paradigms Through the Polynomial Time Lens

a. Verify whether (2}, y;) € L and if not, abort.

b. Use the second part of the Levin reduction from Step 2.c to obtain from y; a satisfying
assignment of ¢/

c. Let s;; be the value of the designated variable as promised in Lemma C.1 for z; in
this assignment.

d. For every x; € B;, set z; = s; ;.

7. Return 21, ..., 2.

For verifying whether this implements algorithm A as needed, note it trivially satisfies
Property 1. and 2.. For Property 3., denote ¢ for the number of satisfiable instances in B;.
Suppose that ¢; = ¢ for every i and both the algorithm at Line 4. and the constructive
AND-composition at Line 5. are successful. Then y} is a satisfying assignment of ¢} for
every i and by Lemma C.1 the output z1, ..., 2; indeed satisfies x; € 3SCNF-SAT « z; =1
for every 1 < i < 1. Thus, we see that Pr[V!_, : z; € 3CNF-SAT ¢ z; = 1] is at least

Pr[V; : ¢; = ¢f] Pr(x, k,y) € QIV; : ¢; = | Pr[Vi: (z},y}) € L|(x, k,y) € Q,Vi: c; = cf],

and by the guarantee on the success probability of the algorithm of Line 4. and the con-
structive AND-composition we can lower bound this by

> PrlV; : ¢; = ¢f] exp(—poly(k)|z|*/ D)) exp (—poly (maX |3U;|) 10g(t)> .

By the definition of constructive AND-composition we see that k is poly(max; |z;|log(t))
and |z| is at most poly(max; |z;|)t?, and computing the first probability using that the ¢;
are picked uniformly and independently at random we can continue the derivation with

1/d—Q(1)
> bt/ exp (—poly (max fzi Tog(t)) (poly(max ;| log())) = poly (max|z]) log<t>)
> pt/b exp (—poly (max |33z| lOg(t)) (td)l/dfﬂ(l) — poly (max ‘be) 10g(t)>
i i
> bft/b exp (—poly (max |CE1| log(t)) tlfﬂ(d) — poly (max |£L’Z|b) IOg(t)) .

Recall that d is a constant given by the constructive AND composition. Now it is clear that
by first choosing b to be arbitrarily large, and subsequently ¢ = ¢(N) to be a polynomial
large enough such that the (4 = (1) term dominates the terms poly(max; |z;|log(t))
and poly(max; |z;|b) log(t), we are able to obtain probability at least exp(—¢/C) for any C,
which is equivalent to exp(o(—t)) achieving the desired contradiction. <

D Parity Compression

In this section we show that some algorithms can be seen as parity compressions, similarly
as some algorithm can be seen as witness compressions. Recall that parity compressions are
reductions to the following problem:

@CKT-SAT Parameter: n

Instance: A Boolean circuit C' on n variables

Asked: The parity of the size of the set {x € {0,1}™: C(x) = 1} is odd.

Since we would like to show that many recent interesting algorithms using arithmetic in

GF(2%) also are parity compressions, we will also study the following version of ©@CKT-Sat:

@!CKT-SAT Parameter: n

A. Drucker, J. Nederlof and R. Santhanam

Instance: A Boolean circuit on n variables computing a function C': {0,1}" — GF(2%),
with £ polynomial in n.

Asked: Whether }_ g1y C(2) # 0.
The following follows quickly from the standard embedding of GF(2°):

» Theorem D.1. There is a polynomial time algorithm that takes an instance C : {0,1}" —
GF(2Y of @ CKT-SAT as input and outputs an instance C : {0,1}" — {0,1} of ®CKT-
SAT that is equivalent with one-sided constant error probability (e.g., with only false posi-
tives), with |C'| < |C|poly(¥).

Proof. It is well known that an element a of GF(2¢) can be represented as a degree ¢
polynomial a; + asx + ... + ayz*~! € Zy[x]. Using circuit C, we can construct a circuit C;
such that C;(z) = a; if C(z) = a1 + agw + ... + apzt~ L.

Based on this, we construct C’ as follows: pick a random subset X € {1,...,l} and
construct C’ such that C’(z) is the parity of Zle C;(x). By the random subsum principle
(e.g., Section 11.5.1 in [3]), we see that if >0 (g 1y. C(@) = 0, 3, c(913» C'(z) = 0 and
otherwise >, (g 1y» C'(2) = 1 with probability 1/2. <

D.1 Long Path

In this section we briefly revisit the LONG PATH, and briefly outline how the existing fastest
algorithm is captured as parity compression. Recall the problem statement of LONG PATH:
Long PaTH Parameter: k.

Instance: Graph G = (V, E) and integer k

Witness: A simple path of length k (a so-called k-path)

In page [11, Page 350], a polynomial R depending on G (and random bits) is defined
that is not identical to the zero polynomial with probability Q(k~1) if G contains a k-path
(Corollary 10.27), and identical to zero if it does not contain a k-path. As argued on page
[11, Page 351], this polynomial can be evaluated in O*(23#/%) time by inclusion-exclusion
over the set L which satisfies |L| < 3k/4 since this gives a summation of O*(2/*1), each
of which summands can be computed in polynomial time. Based on this we can reduce
this computation to ©*CKT-SAT on log(|L|) variables, and thus also to @CKT-SAT by
Theorem D.1.

D.2 K-Cycle
In this section we revisit an approach by Wahlstrém for the K-cycle problem [39] and note
his approach can be seen as a parity compression as well. The problem is defined as follows:
K-CYCLE Parameter: k.
Instance: Graph G = (V. E), K CV, k= |K]|
Witness: A cycle visiting all vertices from K.
For clarity, we’ll restate the following two results:
» Lemma D.2 ([39], Lemma 2). Let P(x1,...,2,) be a polynomial of a field of characteristic

two, and T C [n] a set of target indices. For a set I C [n], define P_j(x1,...,2,) =
P_i(y1,...,Yn) wherey; =0 fori € I and y; = x; otherwise. Define

Q(z1,...,xy) = Z P_j(z1,...,zp).

ICT

[183]:21

ESA 2016

[183]:22 Exponential Time Paradigms Through the Polynomial Time Lens

Then for any monomial m such that t := [[,cpx; divides m we have Q(m) = P(m), and
for every other monomial we have Q(m) = 0.

» Theorem D.3 ([39], Theorem 1). Let T' = {x; k12i—1, Tikt2i—1 % € [k]} and t =[], .
Then G has a K-cycle if and only if det(Mc), viewed as a polynomial, contains a monomial
m with non-zero coefficient such that t divides m.

Here we refer to [39] for the definition of Mg and merely note it can be computed in
polynomial time. Then Wahlstrom continues by observing that Theorem D.3 implies an
O*(4/K1) time algorithm for K-CYCLE since after applying Lemma D.2 we may evaluate the
resulting polynomial @ randomly over GF(2°) for £ = Q(logn). Here we stress that the
polynomial (det(M¢))—; can be computed in polynomial time. Thus the algorithm can be
seen as a reduction to the @ CKT-SAT problem where the associated circuit has an indicator
variable for each element of T and computes (det(Mg))_; for the subset I as represented
by the input bits of the circuit.

E Disjunctive Dynamic Programming.

Recall that the problem central to disjunctive dynamic programming is:
CNF-REACH Parameter: n
Instance: A CNF-formula ¢ : {0,1}"™ — {0, 1} with m clauses and even n even, integer
¢ = poly(n).
Witness: z',...,2¢ € {0,1}*/? with ' = 00---0,2* = 11---1 and @(z’z**") = 1 for
every 0 <3</ —1.
For ease of showing an algorithm is a disjunctive dynamic program, we show that CNF'-
REACH is equivalent to the following generalization:
CNF-REAcH’ Parameter: n

Instance: CNF-formula’s ¢, ..., "1 : {0,1}" — {0,1} with m clauses and even n
each, integer /.

Witness: z',..., 2 € {0,1}"/? with 2! = 00---0,2° = 11---1 and ;(2'2'T!) = 1 for
every 0 < </ —1.

To see how to reduce from CNF-REACH’ to CNF-REACH, note we can add [log(¢)]
variables representing ¢ and use

—1
<p=/\(<piv[ﬁ7éi])-

It is easily seen that, when rewritten as a CNF formula using distributivity, ¢ has at most
ml clauses (and there sizes have increased with [log(¢)] each).

E.1 IS/pw is equivalent to CNF-Reach

In this subsection we provide to (nearly) tight reductions between IS/pw and CNF-Reach.

IS/pw is at least as hard as CNF-Reach

» Theorem E.1. There exist a function f and polynomial time algorithm that given e > 0,
CNF-formula ¢ on n variables and m clauses and integer £, outputs an integer 0 and graph
G on at most f(e)nml vertices along with a path decomposition of G of width (1+e€)n+ f(e)

A. Drucker, J. Nederlof and R. Santhanam [183]:23

such that (p,£) is a yes-instance of CNF-REACH if and only if G has an independent set
of size at least 6.

Figure 1 The graph Mg

Of\f\/\f\/\f\O

K1 K9 K3 KRa R5 K6

» Definition E.2. The graph M, is the graph consisting of a sequence of r triangles with
each two consecutive ones connected by two edges, and two pendant vertices attached to
the first and the last triangle. We denote k1, ..., K, for the degree-2 vertices in the triangles
numbered consecutively.

An example for r = 6 is provided in Figure 1.

» Claim E.3 (Claim 14.39 [11]). Assume r is even. Then the maximum size of an independent
set in M, is equal to r + 2, and each independent set of this size contains vertex k; for some
i. Moreover, for every z = 1,2,...,r there exists an independent set Z, in M, such that
|Z,|=r+2and Z,N{K1,...,k} = {k,}. Finally, M, has pathwidth at most 3.

Proof of Theorem E.1. Let ¢ be a CNF-formula in n variables and m clauses. We will now
construct a graph G(¢) that encodes ¢ in some sense; this will function as a gadget used
for the construction of G. Let a be an even integer dividing n/2 to be set later (after a is
set, we can assure a divides n/2 by adding few dummy variables to ¢). Let b = a+ 2[log a].
Note that

b 2402
>ob/p> —— > 90 E1
(b/2> z22/bz a+2[logal — (E1)

Let g = [Z] and partition [n] in g blocks Ay, of size a for h = 1,...,g. Similarly, denote
p = bg and partition [p] into g blocks By, with |By| = b.

For h =1,...,g, arbitrarily fix an injective function 7y, : 24» — (5/’5) (which is possible
by virtue of (E.1)). Note this naturally induces an injective encoding 7 : {0,1}" — {0, 1}? of
assignments of ¢ to binary strings of length p.'® Now construct the graph G(i) as follows:

For every i+ = 1,...,p and j = 1,...,2m add a vertex p;;; for 1 < ¢ < pand j =
1,...,2m — 1 add an edge (pij, Pit1,5)-
For every j =1,...,2m and h =1,...,¢g do the following:

For every X € ny, (247), add a vertex zé? and make it adjacent to all p;; with j € Bp\X.
Add edges between z?g and z?) for every X,Y € np(24%).

For every j =1,3,5,...,2m — 1 do the following
Denote S; = {X € (E/’é) :1 < h < [g] Ap~1(X) satisfies C(j+1)/2}.

131n this proof we freely interpret subsets of U as binary vectors indexed by U (e.g., elements of {0, l}U
in the natural way.

ESA 2016

[183]:24 Exponential Time Paradigms Through the Polynomial Time Lens

If |S;| is odd, pick an arbitrary element of S; and add it again to S; to assure |.S;| is
even (as a multiset).

Add a copy M of the graph M,, where r = |S;|. Label the degree-2 vertices in the
triangles of this copy with Hg(for X € §; in order of increasing h.

For every X € S; do

Let h be such that X C By,. _
Add edges between p;; and x% such that i € By, \ X.

For a set I of vertices of G(¢), denote y(j,I) € {0,1}” the vector with the ipcoordinate
being 1 if p;; € I and 0 otherwise.

» Claim E.4. ¢ has a satisfying assignment x € {0,1}" if and only if G(¢) has an indepen-
dent set of size § = m(p + 2g + 2) + Z;nzl |S;|. Moreover, for any independent set I of size
0, 17 (y(jo, I)) = n~ (y(j1, 1)) satisfies o for every even jo and odd j;. Here I denotes all
vertices of G not in I.

Proof. Let us start with obtaining an independent set from a satisfying assignment: let
x € {0,1}. Construct I as follows:

1. For every j, do the following:

a. Include p;; in I if ¢ € n(z) and j is odd and include p;; in T if ¢ ¢ n(z) and j is even.
b. For every h=1,...,g, do the following:
i. Include z?g in I where X = n;,(2") and 2" denotes x restricted to By, if j is odd.
ii. Include z?g in I where X = By, \ (") and 2" denotes z restricted to By, if j is
even.

c. If j is odd, note that since x satisfies clause C'y;_; there exists some x; € Ay, satisfying
Cy;—1. Therefore, if x" denotes x restricted to By, Ny (xp) € S; and hence ng(is not
adjacent to any of the vertices added to I. The assumption of the second part of
Claim E.3 applies to M.

d. Add an independent set of M7 of size |S;| + 2 as given by Claim E.3.

Since in 1(a) we add pm vertices, in 1(b) we add 2mg vertices and in (1)d we add Z£1(|Sj|+
2) vertices to I, and I is an independent set by the definition of G(¢), this direction follows.

Now we show how to obtain a satisfying assignment from an independent set I of size 0:
first note that the vertex set of G(¢) can be covered with p paths of length 2m, 2gm cliques
and copies of M. By the simple upper bounds on the independent sets in these graphs, we
see that I needs to take at least half of the vertices from the p paths formed by the vertices
Dij, at least one vertex of every clique formed by the vertices zgg and r + 2 vertices from
every copy of M.

Moreover, by the construction of the vertices z?g we see that I needs to take exactly
half of the vertices {p;; : i € By} for every h,j: if it takes more no vertex z?g can be
included and if it takes less it needs to take more than half of the vertices elsewhere in
paths which is also not possible by the same argument. Thus, I needs to include exactly
one of the vertices p;j,p; j+1 forevery i =1,...,pand j =1,...,2m — 1. This implies that
0~ (y(jo. I)) = 1~ (y(j1, I)) for every even jo and odd ji.

In order to see that this uniquely encoded assignment of x in fact satisfies ¢, consider
the column j where a clause is C(;41)/2 is handled: since I needs to include at least |S;| + 2
vertices from M, by Claim E.3 I includes /i};(j for some X. This means by construction
that x restricted to B}, satisfies clause Cy;_1. |

A. Drucker, J. Nederlof and R. Santhanam

» Claim E.5. G(p) has a path decomposition with all vertices p; 1 in the first bag and p;
in the last bag of width p + 2% that can be found in polynomial time, for some function f.

Proof. The path decomposition has a bag B; containing the set {p;; : 1 < ¢ < p} for every
j. Note that these sets are indeed separators in G (), and for odd j we may simply cover all
vertices z?g and the graph M/ since the graph induced by these vertices has pathwidth at
most 2P. To cover the edges of the type (pij, pit1,;) we make 2p bags interatively introducing
pi,j+1 and forgetting p; ;. <

Now the graph implementing the theorem statement is constructed as follows:

1. Let os = Ax1 =0A...Azpp=0and ps = pAZpjo41 = 1A ... Az, = 1. Construct
graphs G1,...,Gy with G1 = G(¢s), G¢ = G(p;) and G, = G(p) for 1 < k < L.
2. For every k =2,...,¢ do the following:

a. Denote [; for the vertex p; 2., in G_1, and f; for the vertex p; ; in Gt
b. If k is odd, add edges between [; and f; for every p/2 < i < p,
c. If k is even, add edges between [; and f; for every 1 < i < p/2.

The threshold €’ is set to £6. An illustration is provided in Figure 2.

Figure 2 Overview of the construction.

Glps) Gly) Gly) Gly) Gler)
G olle ol|le o
G olle olle o
G olle ol|le o
G olle ol|le o
G olle ol|le o
G olle ol|le o

By Claim E.4 we see that if G has an independent set of size 6’ (the complement of)
this independent set needs to encode a satisfying assignment of the relevant CNF-formula
in the (last) first columnn of Gy, via the encoding 1. Moreover, since I includes exactly half
of each set {p;; : 1 < i < p} for every j, this means that for even k the intersection of the
independent set with the first p/2 elements of the odd columns in G;_; and G} encodes the
same assignment in {0,1}"/2, and similar correspondence occurs for odd k with the last p/2
elements of a column. Thus, the independent set of G indeed implies the existence of the
sequence z', ...,z as asked in the CNF-Reach problem.

For the other direction, note that we can use z*,z*t! to obtain a sufficiently large
independent set in Gy from Claim E.4 and these independent sets will not share incident
edges by the property of how they intersect with odd and even columns of Gj.

For the path decomposition of G, we may use the path decompositions of G obtained
via Claim E.5. This can be concatenated in a natural way to obtain a path decomposition
of G of width at most p + 2%. Setting a large enough such that % < €, we see that
p+2%=bg+2* < (a+2[log(a)])(n/a+1)+2* < (1+e€)n+ f(e). <

MWe'll later refer to such vertices as first and last vertices of G_; and Gy in the natural way.

[183]:25

ESA 2016

[183]:26 Exponential Time Paradigms Through the Polynomial Time Lens

E.1.1 IS/pw Reduces to CNF-Reach
E.1.1.1 Pathwidth and path decompositions.

A path decomposition of a graph G = (V, E) is a path P in which each node = has an
associated set of vertices B, C V (called a bag) such that |JB, = V and the following
properties hold:

1. For each edge {u,v} € E(QG) there is a node z in P such that u,v € B,.
2. If v € B, N B, then v € B, for all nodes z on the (unique) path from « to y in P.

The pathwidth of P is the size of the largest bag minus one, and the pathwidth of a graph G
is the minimum pathwidth over all possible path decompositions of G. Since our focus here
is on dynamic programming over a path decomposition we only mention in passing that the
related notion of treewidth can be defined in the same way, except for letting the nodes of
the decomposition form a tree instead of a path.

It is common for the presentation of dynamic programming to use path and tree de-
compositions that adhere to some simplifying properties, in order to make the description
easier to follow. The most commonly used notion is that of a nice tree decomposition, in-
troduced by Kloks [24]; the main idea is that adjacent nodes can be assumed to have bags
differing by at most one vertex (this can be achieved without increasing the treewidth).
For an overview of tree decompositions and dynamic programming on tree decompositions
see [5, 23]. In a similar way, but using also the introduce-edge bags from [12], we define nice
path decompositions as follows.

» Definition E.6 (Nice Path Decomposition). A nice path decomposition is a path decompo-
sition where the underlying path of nodes is ordered from left to right (the predecessor of
any node is its left neighbor) and in which each bag is of one of the following types:

First (leftmost) bag: the bag associated with the leftmost node x is empty, B, = 0.
Introduce-vertex bag: an internal node = of P with predecessor y such that B, =
B, U {v} for some v ¢ B,. This bag is said to introduce v.

Introduce-edge bag: an internal node z of P labeled with an edge {u,v} € E(G) with
one predecessor y for which u,v € B, = B,,. This bag is said to introduce uv.

Forget bag: an internal node x of P with one predecessor y for which B, = B, \ {v}
for some v € B,,. This bag is said to forget v.
Last (rightmost) bag: the bag associated with the rightmost node z is empty, B, = 0.

It is easy to verify that any given path decomposition of pathwidth pw can be transformed
in time |V (G)|pw®(® into a nice path decomposition without increasing the width.

E.1.1.2 A folklore dynamic programming algorithm.

For a node z, denote GG, for the subgraph of G induced by all vertices and edges introduced
to the left of z in the path decomposition. For a node z, integer j and subset Y C B, define

true, if there exists an independent set I of G, satisfying |I| >iand INB, =Y

T(z,i,Y) = {

false, otherwise.

A. Drucker, J. Nederlof and R. Santhanam

We see that

true ifr=0,i>0,and Y =0,
false ifr=0andY # 0 ori<0,
T(x—-1,i—1,Y\v), if x introduces v and v € Y,

T(x,i,Y) = T(x—1,i,Y), if « introduces v and v ¢ Y,
T(x—1,,Y)VT(x—1,4,Y Uv), if x forgets v,
T(x—1,4,Y) if z introduces uv and {u,v} €Y,
false, if & introduces wv and u,v € Y.

(E.2)

And G has an independent set of size at least 6 if and only if T'(x, 6, 0) = true, where x is
the rightmost bag.

E.1.1.3 Translating to CNF-Reach’.

To translate the dynamic programming in the previous subsection to a reduction to CNF-
Reach’, we simply need to show that the adjacency matrix of each layer of the configuration
graph of this dynamic programming recurrence can be encoded as small enough CNF for-
mula. To see that this is possible, note we have a layer for every x, and for each layer
there is a vertex for every triple (x,¢,Y"). There is an edge from (x — 1,7, Y”) to (x,¢,Y) if
T(x—1,#,Y") implies T(x,1,Y) according to (E.2).

Thus for z =1,...,¢ — 1 we may use ¢, ((¢',Y"),(1,Y)) =

(! =i=1AY' =Y \v]AweY)V([i=d]AY =Y\]A[v¢Y]), ifx introduces v,
([=AY =Y V(=AY =Y Un)), if = forgets v,
([

Note that if #/,7 are encoded in binary and Y,Y” are encoded with at most pw bits
each indicating whether possible elements are included, in each of the three cases @, is
easily written as a CNF formula on 2pw 4+ O(log(n)) variables and poly(pw,log(n)) clauses.
Moreover, it is easily seen for the first bag, the bit string 0000 indeed encodes the only state
that is true in (E.2), and we can define ¢, such that it is only satisfied by ((4,0),11111) for
1 <6.

Combining this with the observation that CNF-REACH’ reduces to CNF-REACH, we
have shown:

» Theorem E.7. There is a polynomial time reduction that, given an instance of INDEPEN-
DENT SET, outputs an equivalent instance of CNF-REACH with ¢ = O(npw), and ¢ has at
most 2pw + O(log(n)) variables and poly(pw,log(n)) clauses.

E.1.2 Set-Cover Reduces to CNF-Reach.

In the Set Cover problem, we are given sets Si,...,S5, C U, integer 6 seek to find a subset
X satisfying U;exS; = U and |X| < 6. A standard dynamic programming algorithm is

i| A [{u,v} £ Y]) if introduces uv.

[183]:27

ESA 2016

[183]:28 Exponential Time Paradigms Through the Polynomial Time Lens

known that uses the following recurrence:

true ifz=0,i>0and Y =0,

T(z,i,Y) = q false ifz=0andY #0 ori<0, (E.3)

Tx—-1,4Y)VT(x—1,i—1,Y \ S;), otherwise.

And we have a set cover if and only if T'(m,0,U) = true.
As before, we define a layered graph with a layer for x = 1,...,m. In every layer we

have a vertex for each triple (z,4,Y) and edges ((z — 1,¢,Y”), (z,4,Y)) if T(x — 1,¢,Y")
implies T'(x,4,Y"). We see that we can use

ex((,Y7), (1Y) = (i =@ ANY =YV ([=i - 1AV =Y\ S]),

and similarly as in the previous subsection we conclude that

» Theorem E.8. There is a polynomial time reduction that, given an instance of SET
COVER, outputs an equivalent instance of CNF-REACH with { = m, and ¢ has at most
2n 4+ O(log(m)) variables and poly(n,log(m)) clauses.

F

G

Missing Problem Definitions (mainly for Section 6)
SUBSET SUM Parameter: log(W).
Instance: Integers wy,...,w, and W
Witness: A subset X C [n] such that) . w. = W.
KNAPSACK Parameter: log(V).
Instance: Integers vq,...,v,,w1,...,w, and VW
Witness: A subset X C [n] such that) .y w. <W and) xve > V.
KNAPSACK/WEIGHT-VALUE Parameter: log(V) + log(W).
Instance: Integers vy,...,v,,w1,...,w, and V,W
Witness: A subset X C [n] such that) .y w. <W and) oy ve > V.
K-CYCLE Parameter: k.

Instance: Graph G = (V. E), K CV, k = |K]|

Witness: A cycle visiting all vertices from K.

DisjoINT PATHS Parameter: k.
Instance: Graph G = (V, E), vertices s1,..., Sg,t1,- ..,k

Witness: A set of disjoint paths connecting s; to t; for every i.

Proof of Theorem 3.3

We use the following Theorem:

» Theorem G.1 ([26]). Let G be an n-vertex graph with non-negative vertex costs summing
to no more than one and let 0 < € < 1. Then there is some set C' of O(\/Tm) vertices whose
removal leaves G with no connected components of cost exceeding €. Furthermore the set C
can be found in O(nlogn) time.

A. Drucker, J. Nederlof and R. Santhanam

Apply Theorem G.1. Assign to every vertex cost 1/n and set with e = log(n)/n. We
obtain a set C' of size O(y/n2/log(n)) which is O(n/+/log(n)) such that after removing C
all connected components consist of at most log(n) vertices. Therefore we can simply guess
Y = C N X of a maximum independent set X by letting Y be a random subset from C and
Y will be a correct guess with probability at least 1/2/°! which is at least 1/20(/v1os(®)),
Given a guess Y we can compute the maximum size of an independent set M such that
MNC =Y since after removing Y and its neighbors and C' all connected components are of
size log(n) and we can find the maximum independent set in each component independently
by trying all at most 2'°2(") = poly(n) subsets.

H Proof of Theorem 3.9

We give a simple constructive AND-composition from INDEPENDENT SET to IS/pw: Given
instances (G1,601),...,(G¢,0:) let G be the graph with a connected component G; for ev-
ery ¢ and pick 6 uniformly at random from 1,...,|V(G)|. With probability 1/|V(G)| >
exp(—poly(max; |V;|) log(t)), this equals the size of the maximum independent set. Then a
witness is a maximum independent set which is maximum in all connected components, and
we can read off whether each (G;,0;) € INDEPENDENT SET and, if so, a witness for this.
Since INDEPENDENT SET is PC-complete, and this is a constructive AND-composition of
degree 1, the claim follows from Theorem 3.2 since any instance can be represented with
[V og(|V[) (poly (pw)) bits.

[183]:29

ESA 2016

	Introduction
	Preliminaries and Notation
	Branching via OPP Algorithms and Witness Compressions
	Parity Compression
	Disjunctive Dynamic Programming
	Directions for Further Research
	Proof of Lemma 3.5
	Some Constructive Polynomial Witness Compressions.
	Longest Path
	Steiner Tree
	Directed Feedback Vertex Set

	Proof of Theorem 3.2
	Parity Compression
	Long Path
	K-Cycle

	Disjunctive Dynamic Programming.
	IS/pw is equivalent to CNF-Reach
	IS/pw Reduces to CNF-Reach
	Set-Cover Reduces to CNF-Reach.

	Missing Problem Definitions (mainly for Section 6)
	Proof of Theorem 3.3
	Proof of Theorem 3.9

