
Preface

One good example is worth a host of generalities (Hyland)

“It is too early for a book on realizability”, Martin Hyland has said on
various occasions. And certainly, the ultimate book about this topic will
have to wait until the world of realizability is better understood.

In the meantime, however, one can try to do something about the
publicity situation of the field, which leaves something to be desired.
Whenever a starting Ph.D. student wishes to work in realizability, he
or she has to fumble his/her way forward amidst a mass of scattered
papers, unpublished notes, Ph.D. theses which are not all electronically
available. It seemed to me that one coherent presentation might help.

The main purpose of this book is to introduce you to the effective
topos Eff and related toposes. The effective topos is a strange thing,
and understanding of its logic is rare, even among topos theorists; and
although by now there is quite a collection of books on topos theory,
none of them treats Eff in anything like the detail it deserves. True,
I am aware that Peter Johnstone is writing the third volume of his
monumental Sketches of an Elephant, in which there will be a part on
this topos; but I am quite sure that the overlap between his and my
treatment will be limited.

Instead of aiming for a structural approach, which would first estab-
lish as many abstract properties of the object one is studying and then
try to view as much as possible as consequences of these, I decided to
work by example (see the motto of this introduction). I am, as Alex
Simpson once remarked, a “details person” and I believe very much in
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concrete understanding taking place in the mind by working through
lots of examples; the concepts, hopefully, come afterwards. Of course, it
would be silly to refrain from developing some theory first if this really
makes things simpler, and I start by going over the theory of partial
combinatory algebras, and then the theory of triposes. When studying
the effective topos, it is by interpreting various theories in it, that I hope
you get some sort of picture.

Quite a bit of work on realizability takes place entirely in the cate-
gory of assemblies, the separated objects for the double negation local
operator; and assemblies are a very nice place to be. But the effective
topos is much more, and I have deliberately focused on the higher order
features of Eff too, by going over interpretations of higher order arith-
metic, set theory and synthetic domain theory, in an attempt to stay
clear of Scott’s lamented “first order disease” (preface to [18]).

It is my hope that at least the first three chapters of the book are
written in a sufficiently leasurely text book style for a graduate student
with some requisite preliminary knowledge (which I will detail below) to
read it. In the fourth and last chapter, which is a bit of ‘capita selecta’,
the style becomes more succinct and the aim is rather to summarize
results and give a guide to the literature.

Preliminaries. The book is aimed at advanced undergraduate students
or beginning Ph.D. students, who have at least some knowledge of the
following topics:

1. Logic: a course presenting the notions of language, theory, struc-
tures and Gödel’s Completeness Theorem. At least some acquain-
tance with Peano Arithmetic. However, it would be very useful if
you have studied Intuitionistic logic too.

2. Category Theory: the first five chapters of MacLane’s Categories
for the Working Mathematician, as well as acquaintance with the
notion of a topos, and the general idea of interpreting a theory in
a category. As I said, there is by now quite a range of books on
topos theory but if you really want to learn the subject, in my
opinion the best book is still the old [80]. Yes, it is tough going.
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3. Recursion Theory: the basics of computable functions, Kleene’s T -
predicate and normal form, the recursion theorem and the notion
of Turing reducibility.

Style. There is only one aspect in which I have deliberately deviated
from standard scientific usage: and that is, that being not a group of
authors or of royal descent, I see no point in writing ‘we’ when I mean ‘I’
(which doesn’t mean I don’t use ‘we’, like in: ‘. . . now we shall see. . . ’),
and therefore also none in writing ‘the reader’ when I mean ‘you’. But,
I have not been very consistent in this.

Terminology and Notation. I have tried to be as conservative and un-
controversial as possible, but as this has become a somewhat contentious
issue in Category Theory, I should maybe clarify my position. Over the
last 20 years, a few attempts have been made to improve categorical
terminology, with varying degrees of success. Category theory has a lot
of redundant terminology (just think of the number of ways you can say
that a category ‘has finite limits’); despite this, words are often used
with multiple meanings; and then, sometimes terminology is not very
well chosen.

The most radical attempt to rename everything, was [48]. Unless you
have read this book from cover to cover, it is impossible to find anything,
because the index will be meaningless to you. In this particular case my
advice would be: just read it from cover to cover (it is a wonderful book),
but forget about the new terminology since it didn’t catch on.

The choice of good terminology, it is too often forgotten, requires a
bit of literary talent. Such talent is not displayed by calling a terminal
object a ‘terminator’. Good examples of imaginative terminology are
Paul Taylor’s ‘prone’ and ‘supine’ in the context of fibrations.

In general my position is that there is only one thing worse than bad
terminology, and that is continually changing terminology. Therefore,
even if I agree with some criticisms made, I stick in most cases to the
old names. I do avoid ‘left exact’ because one can just say ‘has finite
limits’. Using the word ‘cartesian’ for this (as in [83]) creates confusion
and is ineffective if one still has to write on p. 161 (l. -10): ‘cartesian
(i.e. preserves finite limits)’. For ‘exact category’ I see no alternative. If
this is horrible, is ‘effective regular’ an improvement?
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Introduction

In 1945, Stephen Cole Kleene published a paper ([88]) in which he
showed that the partial recursive functions (the theory of which he had
been developing himself during the 1930-ies) could be used to give an
interpretation of the logic of Brouwer’s Intuitionism. By means of this
interpretation any classical mathematician, whatever his philosophical
views, could study intuitionistic logic.

Every partial recursive function can be assigned a Gödel number
or index, in such a way that, if we denote by ϕe the partial recursive
function with index e, and write ϕe(x)↓ for ‘x is in the domain of ϕe’,
we have the following properties:

The partial function sending the pair (e, f) to ϕe(f) is partial
recursive as function of e, f ;

there are primitive recursive functions Smn with the property that
for every e and every m+ n-tuple x1, . . . , xm, y1, . . . , yn, we have

ϕSm
n (e,x1,...,xm)(y1, . . . , yn) ' ϕe(x1, . . . , xn, y1, . . . , ym)

where ' means: either side is defined iff the other is; and if defined,
they are equal.

There is, moreover, a primitive recursive bijection 〈·, ·〉 : N×N → N. We
say that the number 〈a, b〉 codes the pair (a, b). From the code of a pair
one can, primitive-recursively, recover both components of the pair.

Kleene’s interpretation was given in the form of a relation between
numbers and sentences of arithmetic, which he called ‘realizes’: a num-
ber could realize (that is: witness, carry information to the truth of)
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a statement. The relation is defined by recursion on the logical struc-
ture of the sentence. Two significant clauses (for the full definition, see
section 3.1) read:

n realizes (φ ∨ ψ) if and only if n codes a pair (a, b) and either
a = 0 and b realizes φ, or a 6= 0 and b realizes ψ;

n realizes (φ → ψ) if and only if for every m such that m realizes
φ, ϕn(m)↓ and ϕn(m) realizes ψ.

Kleene proved that the axioms and rules of first-order intuitionistic arith-
metic are sound for this interpretation. That is: if φ is a consequence of
these axioms and rules, then there is a number n which realizes φ.

The converse does not hold: there are sentences which have a realizer,
yet are unprovable in intuitionistic arithmetic. This makes Kleene’s
interpretation an interesting model.

In subsequent years, many variations of this idea were developed,
and interpretations given. At the same time (the 1950-ies and 1960-
ies) a school of ‘recursive constructive mathematics’ was working; these
people investigated which theorems of mathematics would remain valid
if ‘everything is recursive’. For example, a group would be a subset
G of N together with partial recursive functions (·)−1 : G → G and
· : G×G→ G satisfying the group axioms, and a group homomorphism
G → H would have to be a partial recursive function. Which theorems
of algebra would remain?

Or, more sophisticatedly, a group would be a set G together with,
for every x ∈ G, a set of numbers E(x) thought of as carrying ‘recursive
information’ about x; a function from such a construct (G,E) to another
(H,E′) would be a function f : G → H for which there exists a partial
recursive function φ such that for every x ∈ G and every n ∈ E(x), φ(n)↓
and φ(n) ∈ E ′(f(x)). Such objects (G,E) are now called assemblies, f
is a morphism of assemblies and φ tracks f .

If ‘everything is recursive’ then certainly all functions from natural
numbers to natural numbers are; what about functions on functions
from N to N, etcetera? Well, every function N → N has an index e, so
a function from functions N → N to N is a partial recursive function
acting on indices. But it has to be extensional: if e and e′ are indices
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of the same function (and every function has infinitely many indices),
they should be sent to the same number. This leads to the construction
of the type structure HEO of hereditary effective operations, which I
define now.

We have types: a type o for natural numbers; if σ and τ are types
then we have a type (σ → τ) of functions from things of type σ to things
of type τ . For every type σ we define a set HEOσ of natural numbers
and an equivalence relation ≡σ on this set, as follows:

HEOo = N
n =o m iff n = m

HEOσ→τ = {e | ∀f ∈ HEOσ(ϕe(f)↓ ∧ ϕe(f) ∈ HEOτ )∧
∀ff ′ ∈ HEOσ(f ≡σ f

′ ⇒ ϕe(f) ≡τ ϕe(f
′))}

e ≡σ→τ e
′ iff ∀f ∈ HEOσ(ϕe(f) ≡τ ϕe′(f))

Then HEO gives some interpretation of the hierarchy of higher-type
functions from a recursive point of view.

Now the objects (HEOσ,≡σ) can also be seen as assemblies, in the
following way. Given two assemblies (X,E) and (Y,E ′) we can form
an assembly of functions (X,E) ⇒ (Y,E ′): this is an assembly (V,E ′′)
where V is the set of all functions f : X → Y which are tracked by
a partial recursive function, and E ′′(f) is the set of indices of partial
recursive functions which track f . Let us now form a type structure
of assemblies: we take for o the assembly Ao = (N, n 7→ {n}) and,
supposing that for types σ and τ we have defined assemblies Aσ and Aτ ,
then at type σ → τ we take the assembly Aσ→τ = Aσ ⇒ Aτ . So for
each σ we have an assembly Aσ = (Xσ, Eσ). With this notation we can
verify that for every σ, there is a bijection between Xσ and the set of
equivalence classes of HEOσ under ≡σ such that for every x ∈ Xσ, the
set E(x) is equal to the ≡σ-equivalence class to which x corresponds.

Inspired by this phenomenon, Martin Hyland constructed a topos in
which HEO is really the structure of all higher type functionals over the
natural numbers.

This topos is the effective topos.

At the same time, his student Andy Pitts worked out a general theory
on how to obtain such toposes: tripos theory. It turned out that various
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modifications of the realizability interpretation that had been studied in
the past, also gave rise to toposes, and these came often out of standard
topos-theoretic constructions applied to the efective topos.

The enormous advantage of the topos-theoretic approach is, that
there is a uniform notion of truth for any higher-order language, and
mathematical constructions like function space, power set and so on are
already given to you. You don’t have to wonder about what real-valued
functions are, and in the effective topos all functions from the reals to
the reals are continuous.

The natural numbers are not the only set which can act as a set
of ‘realizers’. The properties of indices of partial recursive functions,
given at the beginning of this introduction, mean that N is an example
of a so-called ‘partial combinatory algebra’. This notion, first formally
defined by Feferman but going back to the work of Schönfinkel, embodies
exactly what one needs in order to construct a ‘realizability topos’.

In this book, I start with a chapter on partial combinatory algebras.
Then, tripos theory is developed. In the third, and most voluminous
chapter, I present the effective topos in detail. This topos harbors in-
terpretations of a number of theories, and in some cases I have found
it necessary to also introduce you briefly into the particular theory at
hand. Finally, chapter 4 gives a number of variations, with emphasis on
how these can be topos-theoretically constructed.

If you are only interested in the effective topos, you can skip chapter
1, but you’ll need at least some parts of chapter 2 (which give the tripos-
to-topos construction and the internal logic of the constructed topos out
of that of the tripos).
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