Bonus Test Proof Theory, 6-4-2011 with solutions

Exercise 1 LJ denotes the sequent calculus for intuitionistic logic.

Prove: if the sequent

 $\rightarrow \forall x \exists y A(x, y)$

is provable in LJ, then there is a term t(x) such that the sequent $\rightarrow \forall x A(x, t(x))$ is provable in LJ.

Solution: if the sequent in question has a proof, it has a cut-free proof by the cut-elimination theorem for LJ. If P is a cut-free proof of $\rightarrow \forall x \exists y A(x, y)$ then the last step in that proof must have been either a \forall right, or a Weakening right. In the second case, we have a proof of the empty sequent \rightarrow , and we can get the conclusion (for *any* term in the language) by Weakening right; in the first case, we have a proof of $\rightarrow \exists y A(x, y)$ and hence a term t(x) such that $\rightarrow A(x, t(x))$ is provable; an application of \forall right then gives the result,

Exercise 2 We are given the propositional Kripke structure with underlying partial order $\{0 < 1\}$, and the following truth assignment:

$$\sigma_p = \{1\}, \ \sigma_q = \sigma_r = \emptyset$$

Determine for which of the following formulas ϕ we have $0 \Vdash \phi[\sigma]$ (no proofs are required):

a. $\neg p \supset p$ b. $((p \supset q) \supset p) \supset q$ c. $((p \land q) \supset r) \supset (p \supset (q \supset r))$ d. $((p \supset q) \supset r) \supset (p \supset (q \supset r))$

Solution:

a. No. $0 \Vdash \neg \neg p$ but $0 \not\vDash p$. b. No. Note that $0 \Vdash \neg q$; since $0 \Vdash \neg \neg p$, $0 \Vdash \neg (p \supset q)$, so $0 \Vdash (p \supset q) \supset p$. However, $0 \not\vDash q$.

c. Yes. This formula is provable in LJ.

d. Yes. Since $0 \Vdash \neg q$, $0 \Vdash q \supset r$ hence $0 \Vdash p \supset (q \supset r)$ and $0 \Vdash ((p \supset q) \supset r) \supset (p \supset (q \supset r))$.