Bonus Test

Proof Theory, 18-5-2011
Exercise 1 Show that $I \Sigma_{1}$ proves that there are infinitely many prime numbers; i.e. the sentence

$$
\forall x \exists y(y>x \wedge \operatorname{Prime}(y))
$$

Solution: by Σ_{1}-induction one proves that for all x,

$$
\begin{equation*}
\exists y \forall i \leq x(i>0 \supset i \mid y) \tag{1}
\end{equation*}
$$

and either x is prime or there is, by Δ_{0}-minimization, a least y such that $y>1$ and $y \mid x$, which least y must be prime; hence

$$
\begin{equation*}
\exists w(\operatorname{Prime}(w) \wedge w \mid x) \tag{2}
\end{equation*}
$$

Now given x, take y as in (1); and then take w as in (2) for $y+1$. Then w is a prime number $>x$.

Exercise 2 Let $G: \mathbb{N} \rightarrow \mathbb{N}$ be primitive recursive. Show that the function H, defined by

$$
H(n)=\underbrace{G(\cdots(G}_{G(n) \text { times }}(n) \cdots)
$$

is primitive recursive too.
Solution: Let $K(n, y)$ be defined by

$$
K(n, y)=\underbrace{G(\cdots(G}_{y \text { times }}(n) \cdots)
$$

Then $K(n, y)$ is primitive recursive, since $K(n, 0)=n$ and $K(n, y+1)=$ $G(K(n, y))$. Now $H(n)=K(n, G(n))$ so by composition, H is primitive recursive.

